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Abstract—We present the design and implementation of
ADAM, the first adaptive beamforming based multicast system
and experimental framework for indoor wireless environments.
ADAM addresses the joint problem of adaptive beamformer
design at the PHY layer and client scheduling at the MAC layer
by proposing efficient algorithms that are amenable to practical
implementation. ADAM is implemented on an FPGA platform
and its performance is compared against that of omni-directional
and switched beamforming based multicast.
Our experimental results reveal that (i) switched multicast

beamforming has limited gains in indoor multi-path environ-
ments, whose deficiencies can be effectively overcome by ADAM
to yield an average gain of three-fold; (ii) the higher the dynamic
range of the discrete transmission rates employed by the MAC
hardware, the higher the gains in ADAM’s performance, yielding
upto nine-fold improvement over omni with the 802.11 rate
table; and (iii) finally, ADAM’s performance is susceptible to
channel variations due to user mobility and infrequent channel
information feedback. However, we show that training ADAM’s
SNR-rate mapping to incorporate feedback rate and coherence
time significantly increases its robustness to channel dynamics.

I. INTRODUCTION

Wireless multicasting is becoming increasingly important
for applications such as video/audio streaming. While the
inherent broadcast nature of the wireless medium allows for
a single multicast transmission to cover a group of users
simultaneously, its performance is determined by the client
with the weakest channel (SNR). On a parallel front, beam-
forming antennas have recently gained a lot of attention in
indoor wireless networks [1], [2]. These are multiple-element
arrays that are able to focus their signal energy in specific
directions and hence form a natural solution to improve the
channel to the weakest client and hence the multicast system
performance. Beamforming could be either adaptive where
the beam patterns are computed on the fly based on channel
feedback from clients, or switched, where precomputed beams
that cover the azimuth of 360o are used.
Recent work advocated the use of switched beamforming

to improve multicasting [3], [4], [5]. However, the beamform-
ing gain (from restricted signal footprint) comes at the cost
of reduced broadcast advantage, thereby requiring multiple
beamformed transmissions to cover all the clients unlike
an omni-directional transmission. Addressing this tradeoff in
turn requires the use of composite beams that are generated
by combining individual beams so as to effectively balance
between beamforming gain and coverage [3]. Be it individual
or composite beams, we experimentally show that the perfor-

mance of switched beamforming is limited for multicasting in
indoor wireless networks. The reasons are two fold: (i) using a
pre-determined set of beam patterns limits performance when
simultaneously catering to a multitude of clients in multipath
environments; (ii) since the resulting SNR on a composite
beam is not available a priori, it is modeled based on the
measured SNR from its constituent beams; however, such
modeling is inaccurate in multipath environments, resulting
in limited performance when a composite beam is applied. To
address these deficiencies, we advocate the use of adaptive
beamforming for multicasting in indoor wireless networks.
Translating the potential of adaptive beamforming into

practically realizable benefits for multicasting is a highly
challenging task. Specifically, (i) given the channel informa-
tion of clients, an optimal solution needs to identify if and
how a set of clients must be partitioned into separate groups
(scheduling) and how to design an adaptive beamformer that
simultaneously caters to all clients within the same group;
(ii) if such a solution can be realized and implemented in
practice to overcome the deficiencies of switched beamforming
and provide gains in indoor multipath environments, and what
are the factors affecting its performance; and (iii) in practical
scenarios the rate of channel feedback from a client may not
be sufficient compared to the coherence time of its channel
either due to limited feedback (for reducing overhead) or small
coherence times (due to client mobility). In such cases, the
adaptive beamformer must incorporate robust mechanisms to
compensate for the lack of timely channel feedback not only
to retain its benefits, but also to avoid degrading to worse than
omni.
Towards addressing these challenges, we present ADAM-

the first adaptive beamforming based system for multicasting
in indoor wireless networks. ADAM decouples the joint client
scheduling and beamformer design problem into two individ-
ual sub-problems in a manner that allows their solutions to
reinforce each other, while also making them amenable to
practical implementation. It first partitions the set of clients
into groups based on the “closeness” of their channels. This
allows it to later determine an efficient adaptive beamformer
for clients within the same group, wherein a greedy, one-shot
algorithm yielding near-optimal performance is employed.
ADAM is implemented on the WARP platform and its per-

formance is extensively evaluated in indoor environments. Our
experimental results reveal that (i) while switched beamform-
ing provides limited gains for multicasting in indoor multipath



environments, ADAM is able to address these deficiencies to
yield a three-fold average gain; (ii) ADAM’s gains are more
with a higher dynamic range of the (discrete) transmission
rates employed by the MAC, yielding gains as high as nine-
fold over omni with the 802.11 rate table.
Finally, with controlled experiments performed with a chan-

nel emulator, we show that the performance of ADAM is
strongly dependent on both the coherence time (tc) of the
channel as well as the channel feedback time scale (tf ) and
more specifically on the s-ratio, where s = tf

tc
. Hence, ADAM

categorizes the clients based on their s parameter and em-
ploys client-specific rate tables in determining the beamformed
transmission rate, thereby increasing its robustness to both
client mobility and limited channel feedback.
The rest of this paper is organized as follows: Section II

provides a background on beamforming along with related
work. Sections III describe the challenges in realizing a prac-
tical adaptive beamforming system for multicast. Section IV
describes the components of ADAM. Section V describes its
implementation followed by detailed evaluation in Sections VI
and VII. Finally, we conclude the paper in Section VIII.

II. BACKGROUND AND RELATED WORK

A. Preliminaries
Beamforming: Beamforming radios consist of an array of

omni-directional elements and sophisticated signal processing
capabilities to control the signals that are sent/received from
each of these antennas. The signals that are fed to each of
these elements can be weighted in both amplitude and phase
to produce a desired beam pattern that increases the SNR at
the receiver. These weights are applied at the Tx antenna array
and can be written as w = [w0 w1... wN−1]T . Depending on
the level of sophistication in adapting these weights, there are
two main types of beamforming: switched and adaptive.
In switched beamforming, a set of pre-determined beam

patterns is available. Each of these beams has a main lobe
of maximum gain and some side lobes representing leakage
of energy. In switched beamfoming, a Tx normally chooses a
beam that provides the strongest signal strength at the client,
without requiring fine-grained channel information. Such a
beam may not coincide with the physical direction of the Rx
depending on the multipath scattering in the environment [6].
In adaptive beamforming, channel estimation from the Rx is

used to adapt the beam pattern in the signal domain at the Tx.
The resulting beam pattern may not have the single main lobe
structure (pointing in the direction of the Rx) of a switched
beam, but is optimized to reinforce the multipath components
of the signals arriving at the Rx from the different Tx antenna
elements.
Multicast and Beamforming: The solution to address the

beamforming-coverage tradeoff with switched beamforming is
to employ individual beams sequentially or form a composite
beam by combining multiple individual beam patterns so as
to cover multiple clients simultaneously [3]. However, since
the energy is conserved, the net power in a composite beam
is distributed among its constituent beams, and hence the

resulting beamformed SNR at the clients is reduced. Hence,
it becomes important to intelligently choose composite beam
patterns that tradeoff user coverage and beamforming gain [3].
In adaptive beamforming, the channel to each of the clients

is estimated and fed back to the AP. With the complete channel
information, the AP determines and applies a beamformer that
maximizes the minimum SNR among all the clients.

B. Related Work
Beamforming and Multicast: Beamforming has received

a lot of attention recently in unicast [7], [8] and multicast [9],
[10], [11], [4], [3] applications. The problem of multicasting
with adaptive beamforming has received significant attention
in the physical layer community [9], [10], [11] from a the-
oretical perspective. While these works target the continuous
(power, rate) version of the problem without addressing the
scheduling aspect, we consider both. Further, our focus is
on building a practical system that realizes the benefits of
adaptive beamforming for multicast. The joint problem of
scheduling and beamforming has been considered in theory
with switched beamforming antennas [4], [3]. In addition
to switched beamforming solutions being less effective in
practical indoor multipath environments (shown experimen-
tally later), the problem formulation and hence solutions are
significantly different when it comes to adaptive beamforming.
MU-MIMO Protocols: MU-MIMO implementations has

been explored in [2], [12] for unicast. In unicast, different
streams cause mutual interference to one another. However, in
multicasting a common stream needs to be optimized for all
the clients. Thus, MU-MIMO techniques for unicast do not
apply to the multicast problem, necessitating redesign of the
beamforming algorithms along with scheduling for multicast.

III. DESIGN CHALLENGES
In this section, we describe the system model and challenges

in realizing a practical adaptive-beam multicast system.

A. System Model
We consider a single-cell environment, where a smart an-

tenna AP is equipped with N antennas and transmits to K
clients each equipped with a single antenna. Once a multicast
session has been selected, our goal is to determine: (i) how to
group (schedule) the clients that belong to a multicast session,
into one or multiple transmissions, (ii) how to calculate the
adaptive beamformer for each of the transmissions, and (iii)
the transmission rate for each of the groups.
We consider a narrowband system model, where the re-

ceived baseband signal yk of the k-th user is given by:
yk = hkx+ zk, k = 1, ...,K (1)

here x is the transmitted symbol from the base station an-
tennas, hk = [h1kh2k...hNk] is the channel gain for the
kth user, and zk represents the circularly symmetric additive
white Gaussian noise at the receiver. In this model, the base
station transmitter is subject to a total power constraint P ,
i.e., x∗x ≤ P (x∗ is the conjugate transpose of x). The total
transmit power does not depend on the number of transmit



antennas and remains the same for all the schemes studied
in this paper. With beamforming, the transmitted signal x is
given by x = ws, wherew is the beamforer vector and s is the
intended symbol. When beamforming is applied, the resulting
SNR at a client k is equal to hkww∗h∗

k.

B. Addressing the Beamforming-Multicasting Problem
Solving the joint beamforming-multicasting problem is

challenging at two levels: (i) determining an adaptive beam-
former catering to a set of users simultaneously; (ii) deter-
mining if and how a set of users must be partitioned into
sub-groups, where beamforming is executed separately in each
group.
Adaptive Beamformer Design: Consider the objective of

maximizing the minimum rate of the users in a single multicast
group under constant transmit power constraint. The rate of the
kth user can be written as

Rk = log2(1 + hkww
∗
h
∗

k) (2)

The multicast beamforming problem is then
maxw min

k
{log2(1 + hkww

∗
h
∗

k)}

s.t. w
∗
w ≤ P

Without loss of generality we assume ||s||2 = 1. Here,
optimizing the rate is equivalent to optimizing the minimum
SNR of the multicast group. Hence, the problem can be
alternatively presented as the maximization of the minimum
received SNR of all users, i.e.

P1 : maxw min
k

{w∗
h
∗

khkw}

s.t. w
∗
w ≤ P

The problem formulation in P1, is a quadratically con-
strained quadratic optimization program (QCQP), which is
a non-convex problem and its discrete version is NP-hard
as well [9]. Designing an efficient algorithm to address this
problem, while being amenable to implementation is all the
more challenging.
User Partitioning:We perform an experiment in which we

increase the number of users in the multicast group from one
to five in the topology of Fig. 3(a). The adaptive beamformer
is determined for each group and the gain of the resulting
minimum SNR of the beamformed transmission over omni is
plotted in Fig. 1(a). It can be seen that as the size of the group
increases, the adaptive beamforming benefits tend to decrease
with its performance tending to that of an omni transmission.
This in turn advocates the need to restrict beamforming to
small multicast groups and hence to partition users in a large
multicast group into smaller groups, where beamforming is
executed separately within each group. The need for such
partitioning is exacerbated in the presence of discrete rate
tables. For example, consider two users that each achieves
a 5 dB SNR when jointly beamformed to. With 802.11 rate
table of Fig. 2(b), the transmission rate would be 1Mbps.
Now, if sequential beamforming of the users increases each
user’s SNR by 3 dB, the resulting data rate of each client
would be 9 Mbps. Since multiple transmissions are required,
the performance metric shifts to latency (schedule length) -

total time required to transmit L bytes of multicast data to
all users. Thus, while joint beamforming incurs a tranmission
time of L

1 , sequential beamforming would incur
L
9 + L

9 = L
4.5 ,

which is latency reduction of over four-fold.
Note that when users are partitioned into sub-groups, there

is a (time) multiplexing loss with different sub-groups receiv-
ing transmissions sequentially. Hence, there is a tradeoff be-
tween operating on low rates (low min SNR) by beamforming
to all the users in one shot or operate on higher rates in each
sub-group but incur the multiplexing loss.
Problem Formulation: Assume K users in the system, and

a multicast data size of L bytes. The objective is to partition
the users into J groups and transmit L bytes sequentially on
each group using adaptive beamforming, such that the total
schedule length to deliver L bytes to all users is minimized.
The problem can now be formally stated as:

P2 : min
J
∑

j=1

L

R(SNRj)

s.t. w
∗

jwj ≤ P ; and SNRj = min
k∈Sj

(hkwjw
∗

jh
∗

k)

where J is the number of partitions, Sj is the set of user
indices and wj is the beamformer for partition j. The rate
function R(SNR) maps SNR into the appropriate rate based
on a coding-modulation scheme and is discrete in practical
systems. J , Sj , and wj are the outputs of the problem.

C. Robustness to Channel Dynamics and Feedback Rate
The above two challenges are with respect to determination

of a solution under the assumption of instantaneous channel
information from clients. However, in any practical system,
channel state feedback constitutes overhead and may not be
available for every single packet. The mobility of clients
further reduces the coherence time of the channel, thereby
requiring increased feedback frequencies, the absence of which
could render the feedback both outdated and inaccurate.
We conduct an experiment in which the AP transmits 100

pkts/sec to a static client at night. The client estimates the
channel from the preambles. The variation in the channel
magnitude and phase is plotted as a function of the interval size
in Fig. 1(b),(c). The experiment is then repeated for a mobile
client and the results are also indicated. It can be seen that
the channel dynamics are almost negligible for a static client,
indicating a large coherence time for the channel as well as its
ability to withstand reduced feedback frequencies. However,
with a mobile client, the situation is quite the contrary, where
the mean channel magnitude and phase variations are around 1
dB and 30o, indicating the small coherence time of the channel
and thereby the need for high feedback frequency.
Hence, it is important to understand the sensitivity of

the adaptive beamforming multicast solution to such channel
dynamics, and hence incorporate robustness into its design.

IV. DESIGN OF ADAM
We now present our adaptive-beam multicast system

(ADAM) that addresses the identified challenges. We present
our solution to the beamforming-multicasting problem that is
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Fig. 1. Adaptive beamformer challenges ((a), (b), (c)), and WARP board SNR-rate relation (d).

amenable to a practical implementation, while its extension to
handle channel dynamics is deferred to Section VII.

A. Operations in ADAM

Once the AP receives data to be disseminated for a multicast
session, ADAM operates as follows:
(i) AP sequentially transmits training symbols on each of

its antennas; (ii) Each client measures the channel amplitude
and phase for each of the transmitting antennas; (iii) Clients
sequentially feedback channel information to the AP; (iv)
AP runs algorithms which partition the clients to different
groups and find the beamformer for each group; (v) AP selects
the appropriate rate for each group based on a rate table,
and transmits multicast data. The algorithmic component of
ADAM (step iv) is responsible for designing an efficient user
partitioning and multicast beamformer algorithm.

B. Algorithm Overview

The optimal user partitioning in problem P2 depends on
the rate achieved by each group (partition), which depends on
the beamformer used for that group (NP-hard), which in turn
depends on the set of users grouped together. To address this
cyclic dependency, we decompose the problem into two sub-
problems in a manner that they re-inforce each other and pro-
pose the following algorithm (JPB-A). For a given number of
partitions, we first partition the users based on the “closeness”
of their channels. This allows us to employ a greedy, one-
shot algorithm to provide a near-optimal multicast beamformer
within each partition. Based on the client membership and
beamformer employed, the resulting rate in each partition is
determined to obtain the net schedule length. The procedure
is repeated for all number of partitions (up to K) and the one
(j∗) yielding the minimum schedule length is chosen along
with its corresponding beamformers and client memberships.
The above algorithm needs to address two sub-problems:

(i) given a number of partitions, how to assign the clients to
the given number of partitions; and (ii) design an appropriate
beamformer for the clients within each group. These two
components are discussed next.

C. User Partitioning

We use the notion of chordal distance [13] between two
vectors as our metric for user partitioning. Given two users

with channels hi and hj , the chordal distance between them
is defined as:

dc(hi,hj) =

√

1−
|hih

∗
j |

2

|hi|2|hj |2
(3)

The multicast beamformer can be efficiently designed for
a group of channels with low chordal distance between each
other. This is because of two reasons. First, a beamformer
w that has a low chordal distance from one channel in such
a group, would have a low chordal distance from any other
channel in the group due to the following property of chordal
distance

|dc(hi,w)− dc(hj ,w)| ≤ dc(hi,hj) (4)

Second, based on Eq. 3, minimizing dc(hj ,w) is equivalent
to maximazing w̃h̃jh̃

∗
j w̃

∗ (SNR) where w̃, and h̃j are the nor-
malized beamforming and channel vectors. Hence, when we
subsequently design a beamformer for clients that are grouped
together based on their chordal distance, the beamformer
would efficiently increase the SNR across all the clients.

Algorithm 1 Multicast user partitioning GM-UP.
1: Input:
2: Channel vectors hk, 1 ≤ k ≤ K
3: Number of partitions n and number of iterations Q
4: Output:
5: A partitioning of K clients into n sets (S1, ..., Sn)

6: Normalize the channel vectors hk = hk
|hk|

, 1 ≤ k ≤ K

7: Randomly assign clients to partitions s.t. |S(0)
i | "= 0

8: Let M(0)
i = 1

|S
(0)
i |

∑

k∈S
(0)
i

hkhk
∗

9: Find partition centroid: m(0)
i = largest eigenvector M(0)

i

10: for t = 1 to Q do
11: ∀j = 1, ..., n : Let St

j = {k : dc(hk,m
(t−1)
j ) ≤

dc(hk,m
(t−1)
i ),∀k = 1, ..., K,∀i = 1, ..., n, j "= i}

12: Let M(t)
i = 1

|S
(t)
i |

∑

k∈S
(t)
i

hkhk
∗

13: Find partition centroid: m(t)
i = largest eigenvector M(t)

i

14: end for
15: Si = SQ

i ∀i ∈ {1, ...n}

Algorithm 1 summarizes the procedure for grouping of users
into a given number of partitions. The algorithm is mainly
composed of two steps:



Step 1: Partitioning (Line 11): users are assigned to parti-
tions which have the least chordal distance from the centroid
or mean of the partition.
Step 2: Finding the centroid (Line 13): new mean of each

partition is calculated.
Algorithm 1 takes the maximum number of iterations as

input and converges to a partitioning within a small number
of iterations.

D. Multicast Beamformer Design
The remaining component in algorithm JPB-A is that for a

given set of users that are grouped together, how to design a
beamformer that maximizes the minimum SNR of the users
(problem P1). The solution to the optimization problem in P1

is equivalent (up to a scaling constant) to the solution to the
following problem

P3 : minw w
∗
w

s.t. min
k

w
∗
h
∗

khkw ≥ α, ∀k ∈ [1,K]

This is because the optimal solution to P1 will be given
by the product of α and a scaling constant. Based on the
KKT optimality conditions of P3, we make the following
two observations which serve as the basis for our beamformer
design algorithm.
Observation 1: The multicast beamformer w is a linear

combination of h∗

k, k ∈ [1,K].
Observation 2: Given a permutation of the users (π),

the optimal solution can be represented as a function of
the orthogonalized channels of each user with respect to the
channels of users preceding it in the permutation (h∗

π,π(k)).,
i.e. w =

∑K
k=1 βπ,kh

∗

π,π(k).
Leveraging these observations, the key steps of our proposed

greedy algorithm can be summarized as follows.
Step 1: For a given permutation of users, orthogonalize the

user channels with respect to the channels of users preceding
it in the permutation.
Step 2: With the help of the orthogonalized channels

determined, each weight βπ,k is obtained successively as a
function of the orthogonalized channels of users [1, k] such
that they minimize the norm of w.
Step 3: Steps 1 and 2 are repeated for every permutation

π (or a randomly selected number of permutations to reduce
complexity) to obtain the corresponding beamforming vector
wπ. The final beamforming vector is obtained as the one that
has the minimum norm over all permutations.
Note that since the main focus of this paper is on the

implementation and experimental evaluation of adaptive beam-
forming for multicasting, we have omitted details of the beam-
former algorithm (derivation, pseudo-code, etc.) and presented
them in [14].

V. EXPERIMENTAL SETUP
A. Hardware and Software
Our implementation is based on the WARPLab framework

[15]. In this framework, all WARP boards are connected to a
host PC through an Ethernet switch. The host PC is responsible

a) WARPLab PHY Parameters. b) 802.11 SNR-Rate table.
Fig. 2. WARPLab (a) and 802.11 SNR-Rate Table.

for baseband PHY signal processing, while WARP boards act
as RF front-ends to send/receive packets over the air. Fig. 2(a)
specifies the PHY parameters used in our evaluation. Our APs
use four radios connected to 3 dBi antennas. The antennas are
mounted on a circular array structure with a half-wavelength
(λ2 ) distance between adjacent antennas (6.25 cm at 2.4 GHz).

B. Multicasting Framework
We implemented three multicast mechanisms on our testbed.
Omni. This mechanism obtains SNR feedbacks from all

of the clients in the multicast group and transmits packets
with the rate supported by the weakest client. This mechanism
always uses the first (fixed) antenna for transmission.
Multicasting with Switched Beam Antennas. We have

considered Linear and Circular arrays for switched-beam
multicasting with 3 and 4 orthogonal beams respectively. Our
implementation is according to [3], whose solutions considers
both individual and composite beams, and shows considerable
reduction in schedule length compared to schemes using indi-
vidual beams alone. In this approach, the base station transmits
training symbols for each of its beams sequentially. Next, the
clients feedback the beam index on which the strongest signal
was received, together with the corresponding beam index.
The base station then constructs a set of optimal composite
beams to cover all of the clients. However, when a composite
beam is used, the total power is equally distributed among its
constituent beams. In such cases, the algorithm predicts the
resulting SNR of the clients associated to a composite beam
and selects a rate supported by the client with the lowest SNR.
ADAM. Our proposed adaptive beam multicast system.

C. System Implementation
We now describe the components of our implementation.
Channel Training During the channel training, the trans-

mitter sends a known preamble. The preamble is composed of
a training sequence and a pilot tone. The training sequence is
used to achieve frequency and phase synchronization between
the transmitter and receiver. The pilot is used for actual
channel estimation. In omni, the preamble is sent over the
fixed antenna. For each of the beam patterns in switched
beamforming, the preamble is multiplied by the corresponding
beam weight. The weighted preambles are next transmitted se-
quentially. In ADAM, the base station transmits the preamble
sequentially on each of its antennas. Thus, clients can correctly
measure the channel for each transmitting antenna.



Channel Estimation. During the channel estimation, each
client measures the h or SNR and sends it to the host PC. In
omni, each of the clients measures the preamble’s SNR and
feeds back its value. In switched beamforming, each beam’s
SNR is measured and the value of the highest SNR together
with its beam index is fed back. In ADAM, h is measured and
fed back by each of the clients.
Modulation and Coding Scheme (MCS) Selection. All

of the studied protocols in this paper select a MCS according
to the resulting SNR. Thus, we need to quantify the SNR-
rate relation for the WARP boards. We have used the Azimuth
ACE 400WB channel emulator [16] to find the WARP board’s
rate table. We connect one single antenna transmitter and one
single-antenna receiver to the emulator and vary the SNR
accross the full range of allowable received power for the
WARP radio board. The channel profile parameters used by
the channel emulator are adapted from the 802.11n task group
(TGn) models for a small office environment. The channel
profile is composed of 14 Rayleigh fading channels with
multipath RMS delay spread of 30 ns, and maximum delay
of 200 ns. Fig. 1(d) shows the packet delivery ratio (PDR) as
a function of received power for various MCSs. We select the
rate of an SNR value, as the highest MCS such that the given
SNR achieves 100% PDR.
Multicast Packet Transmission. In this step, the AP sends

the multicast packet with the appropriate parameters.

D. Performance Metrics
All of our indoor experiments are conducted during night

and with static nodes. Experiments were conducted on the
802.11 2.4 GHz channel 14, which consumer devices are not
allowed to use in the USA. As observed in Fig. 1(b),(c), the
variations in channel in such conditions are such that the chan-
nel remains coherent during the experiments. This allows for
valid comparison among multiple multicasting schemes. Each
data point in our indoor over-the-air experiments is an average
of fifty samples. In our channel emulator based experiments,
we take 1000 SNR measurements for each data point. We
consider the received signal strength (dBm), schedule length
(delay), packet delivery ratio (PDR), and throughput as our
metrics of comparison. We define PDR and throughput for
a client, based on the number of packets that are received
correctly by that client over all the transmitted packets. Next,
we define the multicast PDR and throughput as the average of
PDRs and throughputs over all of the clients.

VI. GAINS OF ADAPTIVE BEAMFORMING
In this section, we compare the performance of ADAM to

omni and switched beamform multicasting.
Scenario. Fig. 3(a) depicts our experimental setup in which

we deployed 6 nodes in an office environment. Nodes 1 and 2
each have four antennas and thus, can be used as transmitters
or single-antenna receivers. We first consider node 1 as our
transmitter, and amongst the remaining five nodes, consider
all subsets of two, three, four, and five nodes as our different
client sets for generating different topologies. We repeat the
experiment with node 2 as our transmitter, leading to a total

of 52 topologies. For each of these topologies, we measure
the schedule length for all of the multicasting systems.

A. ADAM’s performance characterization

Performance Gains: Fig. 3(b) shows the schedule length
of ADAM when the rate is selected according to the WARP
SNR-rate relation of Fig. 1(d). Topology indices 1-10, 21-30,
41-45, and 51 are respectively 2,3,4, and 5 client topologies
with node 1 as the transmitter. Topology indices 11-20, 31-40,
46-50, and 52 correspond to node 2 as the transmitter.
Fig. 3(b) shows that for some of the topologies with node 1

as the transmitter, ADAM provides negligible gains compared
to omni. For these topologies, the minimum rate that is
supported by omni is high. Thus, the increase in SNR due
to adaptive beamforming does not provide high throughput
gains. However, in topologies where at least one client has a
weak channel, the gains of adaptive beamforming are much
higher. In such topologies, omni would choose the lowest rate
such that all clients can successfully receive the packet. A
similar increase in the SNR would then result in high gains
due to the nonlinear mapping of SNR-rate of WARP boards.
On average, in this experiment ADAM reduces the schedule
length by a factor of 2.8 compared to omni.
Sub-optimality of Partitioning: Fig. 3(b) also compares

the performance of ADAM’s user partitioning (JPB-A) to
the optimal partition. We find the optimal partition of a
given topology, by considering all possible partitions of its
corresponding client set and selecting the one with the min-
imum schedule length. According to Fig. 3(b), JPB-A has a
performance that is very close to that of the optimal partition.
On average, JPB-A increases the schedule length only by 7%
compared to that of the optimal partition.
Dynamic Range of Rate Tables: ADAM’s user partitioning

and its overall schedule length is dependent on the SNR-
rate mapping of its hardware. We now explore ADAM’s
performance when we select the rates according to 802.11’s
rate table. The SNR-rate mapping of 802.11a is shown in
Fig. 2(b). Fig. 3(c) depicts the schedule length of ADAM
as well as omni. In order to measure the schedule length,
we measure the beamformed multicast packet’s SNR at the
corresponding clients. Next, we map the measured SNR to
802.11 rate table of Fig. 2(b) and calculate the resulting
schedule length for each of the schemes.
Fig. 3(c) shows that ADAM has significantly reduced the

schedule length with an average reduction factor of 9. 802.11a
uses OFDM modulation with rates of 6 to 54 Mbps. It also
supports basic rates of 1 and 2 Mbps with DSSS modulation.
Thus ADAM has the potential to provide gains as high as 54.
This in turn results in additional decrease in schedule length
as compared to WARP board’s SNR-rate table.
Finding: ADAM with four antennas can reduce the schedule

length by about 2.8 times compared to omni. As the SNR of
the weakest client increases, ADAM’s gain decreases. ADAM’s
gains are also highly dependent on the SNR-rate table used
by the specific hardware and can significantly increase when
the dynamic range of a rate table is high.
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Fig. 3. Gains of ADAM.

B. Adaptive vs. Switched beamforming

In this section, we compare the performance of ADAM
to that of switched beamforming. We have used the same
experimental setup of Fig. 3(a). For each topology, we first
perform adaptive beamforming. Next, without changing the
antenna array, we perform switched multicast beamforming by
using the pre-determined beams for the circular array. Finally,
we change the antenna array to a linear array and perform
switched multicast beamforming with its corresponding beam
weights. While changing the antenna array, we keep the first
antenna at its former location. Since the performance of omni
is only dependent on the first antenna, its schedule length
remains similar to that of Fig. 3(b)).
Relative Gains: We now compare the schedule length

of switched beamforming to that of adaptive beamforming.
Fig. 4(a) shows that ADAM provides an average gain of
1.8 and 2.1 over switched beamforming with circular and
linear arrays respectively. Further, ADAM consistently out-
performs switched beamforming in every topology. This can
be attributed to the fact that switched beam uses only a finite
set of pre-determined beams which might even have a lower
gain compared to an omni transmission in the presence of
multipath. Indeed, by comparing Fig. 3(b) and Fig. 4(a) we
observe that in many scenarios switched beamforming would
not be used and instead the switched beam algorithm would
end up using omni transmission.
Drawback of Switched Beamforming: Fig. 4(b) shows the

drawback of switched beamforming when employing compos-
ite beams. The resulting PDR of switched beamforming could
be a lot lower than the predicted 100%, and could be equal to
zero for many topologies. This is due to the composite beam
construction of switched beamforming. For example when two
beams are combined and the power allocated to each beam is
divided in half (so that total power is conserved), the inherent
assumption is that the resulting SNR in each beam reduces by
3 dB and a MCS is selected accordingly.
We have performed an experiment to show the inaccuracy of

such a modeling assumption in indoor multipath environments.
For each of the clients in the topology of Fig. 3(a), we find the
beam that achieves the highest SNR for both linear and circular
array structures. Next, for each client we construct a two-lobe
composite beam by combining its best beam, with every other
beam of that particular antenna array. Finally, we measure the
resulting SNR of the constructed composite beam, and subtract

it from the SNR obtained by using the best beam alone.
Fig. 4(c) shows that when combining two beams, the resulting
SNR could be significantly higher or lower than the predicted
SNR. This is because, even when the constituent beams are
orthogonal, when a composite beam is used in an indoor
multipath environment, the resulting energy at each client not
only depends on its chosen constituent beam but also on other
beams due to reflections and multipath scattering. Depending
on whether the resulting effect is constructive or destructive,
the resulting SNR could be higher or lower, making it hard to
leverage composite beams in indoor multipath environments.
Finding: Switched beamforming has limited performance

for multicasting in indoor multipath environments, while
ADAM benefits from indoor multipath by choosing appropri-
ate weights that reinforce the multipath components at the
receiver.

VII. IMPACT OF CHANNEL DYNAMICS
The experiments so far were conducted with perfect chan-

nel information at the transmitter. However, in any practical
system the rate of channel feedback that is available from
a client may not be sufficient compared to the coherence
time of its channel. The channel feedback time scale could
be inherently limited in the system for overhead reduction,
and/or the channel coherence time could be small due to high
variations in the environment or client mobility. This would
cause inaccurate channel information at the transmitter which
can significantly reduce the gains of ADAM and may even
degrade its performance to worse than omni. In this section,
we first explore the relation between channel feedback rate
and coherence time on the performance of ADAM. Next, we
propose solutions to compensate for the lack of timely channel
feedback, such that the benefits of ADAM are retained.
Scenario. In order to have precise and repeatable channel

conditions, we use a channel emulator for the experiments
within this section. We use the same channel emulator con-
figuration setup of Section V. However, our topology is com-
posed of a four-antenna transmitter, and three single-antenna
receivers. The three receivers constitute a single multicast
group to whom the the transmitter jointly beamforms.

A. Feedback Rate and Coherence Time
We now evaluate the gains of beamfoming in changing

channel conditions as a function of feedback rate. Specifically,
we vary the time scale of channel information feedback (tf )
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Fig. 4. Evaluation of switched beamforming ((a), (b), (c)), and WARP SNR-rate for s =
50
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that is available at the transmitter. Once the transmitter obtains
the channel information, it jointly beamforms towards the
clients and transmits back-to-back multicast packets until the
next channel information feedback is available. We repeat this
experiment for four coherence time (tc) values of 120, 64,
16, and 8 ms. The 120 and 64 ms tc values are associated
with a fixed wireless endpoint in slowly and highly varying
environments, respectively. The 16 and 8 ms tc values are
associated with a typical pedestrian client in slowly and highly
varying environments.
Coupling between tf and tc: Fig. 5(a) shows the average

PDR as a function of channel feedback time scale for differ-
ent coherence times. We observe that the PDR of multicast
beamforming drops as the time scale of channel feedback
increases for a given coherence time, or as the coherence
time decreases for a fixed feedback time scale. This drop in
PDR is significant for smaller coherence times (16 and 8 ms)
associated with user mobility. We also observe that for 8 ms
coherence time, the time scale of 10 ms for channel feedback
results in approximately 8% drop in PDR, whereas 100% PDR
is achieved for all of the other tc.
To understand the reason for the drop in PDR, we evaluate

the variation in the received average SNR of clients in the mul-
ticast group in Fig. 5(b) as a function of channel feedback time
scale. In these experiments, we measure the SNR value for
every packet over all of the clients and plot the average SNR
and its standard deviation. We observe that the average SNR
drops as the time scale of channel feedback (tc) increases for a
given coherence time (tf ), or the coherence time decreases for
a fixed feedback rate, thereby corroborating the corresponding
trend observed in PDR. This also indicates the strong coupling
between tf and tc (specifically the ratio of s = tf

tc
) that keeps

track of channel dynamics and hence impacts the multicast
performance of a group.
Impact on Performance: We next compare the perfor-

mance of ADAM to omni. In omni, the transmitter selects a
rate that is supported by the weakest client. This rate is used
for all of the multicast packets until the next SNR feedback is
available. Omni with base rate uses the lowest MCS without
any feedback requirement from the clients. This approach is
currently implemented in 802.11 for multicasting.
Fig. 5(c) depicts the throughput results for 16 and 64 ms

coherence times. While both ADAM and omni are highly
sensitive to accurate channel information, the sensitivity is
higher in ADAM as expected due to its stronger dependence on

channel information. Further, at extremely reduced feedback
rate (tf = 500 ms) and small coherence time (tc = 16 ms),
i.e. large s values, both the schemes degrade to perform even
worse than omni with base rate.
Finding: Channel variations reduce the effective SNR of a

multicast group, which in turn depends on both tf and tc, and
more specifically on s = tf

tc
. Inaccurate channel information,

characterized by large s values, can significantly reduce the
multicast throughput to even lower than omni with base rate.

B. Reduced Feedback and Mobility
In any multicast system, the required PDR is dependent

on the application. As seen in Fig. 5(a), for a given PDR
requirement, clients with smaller coherence times require more
frequent feedback. This could result in significant training and
feedback overhead especially with a high number of clients
and/or transmit antennas. Also, when clients in a multicast
system have different coherence times, a single client with a
small coherence time is sufficient to significantly increase the
training overhead. This is because the frequency at which the
AP should transmit training symbols on each of its antennas
depends on the client with the smallest coherence time. Thus,
for any practical system it is desirable to reduce the feedback
rate and hence the overhead.
Since we have no control over tc of clients and would like

to keep tf fixed to a desired value to minimize the overhead,
the resulting infrequent feedback (for clients with small tc)
reduces the effective SNR of the multicast system as seen in
Fig. 5(b). Hence, to account for the reduced effective SNRs,
we propose to train ADAM’s operational SNRs based on both
tf and tc. Since the inaccuracy in channel information is
directly related to s = tf

tc
, training here refers to obtaining the

SNR-rate profiles that are specific to different s values. ADAM
then categorizes clients based on their s value and applies
the appropriate s-rate table for each client in determining the
effective multicast rate. Thus, accounting for tf and tc of each
client helps build robustness into ADAM’s operation against
infrequent feedback and client mobility.
s-valued Rate Tables: To train a rate table corresponding

to a given s = tf
tc
, we perform an experiment with channel

emulator with one sender and one receiver. For each SNR
value, the transmitter sends back-to-back packets to the re-
ceiver for a duration of tf , measures the PDR and repeats this
experiment for a thousand trials. The emulator uses the same
configuration parameters of Section V. However, instead of
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Fig. 5. Impact of coherence time and feedback rate on ADAM ((a), (b), (c)), and training impact on throughput (d).

using a static channel (tc = ∞), its tc value is based on the s
parameter. Fig. 4(d) shows the achieved PDR as a function of
the SNR (dBm) for each of the WARP MCSs for an s = 50

8
(tf = 50,tc = 8 ms). Comparing Fig. 4(d) with Fig. 1(d),
we observe that the required SNR for 100% PDR is now
increased. In other words, a higher average SNR is required
to sustain a given MCS so as to compensate for the infrequent
feedback available to track the channel dynamics.
Impact on Robustness: We now quantify the gains of

training ADAM based on s-rate tables. To achieve this, we use
the same experimental setup of Fig. 5. However, we obtain our
rate table according to Fig. 4(d) for s = 50

8 . Fig. 5(d) shows
the performance of ADAM both with and without training for
coherence times of 8 and 16 ms.
It can be seen that the gains of training are dependent on the

time scale of channel update. With a 10 ms update rate, the
untrained system is capable of tracking channel dynamics to
yield high throughput. However, training becomes critical to
sustain high throughput when channel update rates are equal
or higher than tf for the corresponding s. Since a trained
multicast system selects a lower MCS to account for channel
variations, its resulting throughput compared to an untrained
system would be lower for feedback time scales smaller than
tf , and higher for the time scales larger than tf . Note that
apart from throughput, PDR is another metric that should be
considered in selecting between a trained vs. untrained rate
table. In the above experiment, 100% PDR is achieved by
the trained system for two data points, whose (tc, tf ) is (8,50)
ms and (16,100) ms respectively. However, their s value is the
same (s = 50

8 ), thereby indicating the performance dependence
on the s value as opposed to the individual tf and tc values.
Finding: Training a rate table based on coherence time and

feedback rate allows ADAM to effectively accommodate clients
with varied (tc) values. The client specific SNR-rate mapping
can be incorporated in the user scheduling optimization prob-
lem to further reduce the overall schedule length, which is an
interesting avenue for future research.

VIII. CONCLUSIONS

In this paper, we presented the design and implementation
of ADAM, an adaptive beamfoming system for multicasting
in wireless LANs. We proposed efficient algorithms to solve
the joint scheduling and beamforming problem. We also imple-
mented ADAM on the WARP platform, and through extensive
indoor measurements showed significant gains compared to

switched-beam and omni. We also evaluated the performance
of ADAM with respect to feedback rate and user mobility,
and proposed solutions to increase its robustness to channel
dynamics.
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