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ABSTRACT

The existing Carrier Sense Multiple Access (CSMA) method widely used in
amateur packet radio on shared simplex packet radio channels frequently suffers from
the well-known “hidden terminal problem® and the less well known but related prob-
lem of the “exposed terminal.” This paper proposes @ new scheme, Multiple Access
with Collision Avoidance (MACA), that could greatly relieve these problems. MACA
can also be easily extended 1o provide sutomatic transmitter power control. This could
increase the carrying capacity of a channel substanially.

total
throughput

1. Introduction

In the classic hidden terminal situation,
station Y can hear both stations X and Z, but X
and Z cannot bear each other. X and Z are
therefore unable to avoid colliding with each
other at Y. (See figure 1)

densely populated area, thus satisfying both the
FCC mandste to use "the minimum power
necessary to carry out the desired communica-
tions" (Part 97313) and to “contribute to the
advancement of the radio ant® (Part 97.1 (b)).

Collisions

2. How CSMA/CA Works

In the exposed terminal case (figure 2). a
CSMA/CA as used by Localtalk works as

well-sited station X can hear far away station Y.
Even though X is too far from Y to interfere
with its traffic to other pearby stations, X will
defer to it unnecessarily, thus wasting an oppot-
tunity to reuse the channel locs Sometimes
there can be so much traffic in the remote area
that the well-sited station seldom transmits. This
is & common problem with hillop digipeaters.

This paper suggests a new channel access
algorithm for amateur packet radio use that can
minimize both problems. This method. Multiple
Access with Collision Avoidance (MACA), was
inspired by the CSMA/CA method (used by the
Apple Localtalk network for somewhat different
reasons) and by the "prioritized ACK" scheme
suggested by Eric Gustafson, N7CL., for AX25.
It is not only an elegant solution to the hidden
and exposed terminal problems, but with the
necessary hardware support it can be extended
to do automatic per-packet transmitter power
control. This could substantially i
"carrying capacity” of a simplex packet radio
channel used for local communications in a

crease  the

! MACA s an scroaym, not a Spanish word.

follows. When a station wants to send data to
another. it first sends a short Reguest To Send
(RTS) packet to the destination. The receiver
tesponds with a Clear to Send (CTS) packet.
On receipt of the CTS, the sender sends its
quened data packet(s). If the sender does not
receive u CTS after u timeout. it resends its
RTS and waits a little longer for a reply. This
three-step process (not counting retransmissions)
is called u dialogue. Since s dialogue involves
transmissions by both stations. 1 will avoid con-
fusion by referring to the station that sends the
RTS and dats packets as the initiaror, and the
station that sends the CTS s the responder.
The RTS packet tells u responder that data
follows. This gives the responder & chance to
prepare. e.g., by allocating buffer space or by
entering a "spin loop” on a programmed-1O
interface. This is the main reason Localtalk
uses the CSMA/CA dislogue. The Zilog 8530
HDLC chip used in the Apple Macintosh can
buffer the 3-byte Localtalk RTS packet in its
FIFO, but without a DMA path to memory it
needs the CPU to transfer data to memory as it
arsives. The CPU responds o the arrival of an
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Objective

s Fundamentally re-think the way control
information is conveyed in order to
guarantee low overhead and robustness
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Control Messages === CSS
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Outline

Correlatable Symbol Sequences (CSS)
Control Information via CSS

11 ec Protocol lllustration

Experimental Results



Why Correlatable Symbol Sequences?




Why Correlatable Symbol Sequences?

CSS’s key idea:
Signal detection is more robust than decoding

e Sender and receiver agree upon a set of pre-
defined CSS

* The receiver can detect a specific CSS u(k) by
correlating it with the incoming samples y(k)



Why Correlatable Symbol Sequences?

CSS’s key idea:
Signal detection is more robust than decoding

* The receiver can detect a specific CSS u(k) by
correlating it with the incoming samples y(k)

L-1

C(A) = Z u (k) y(k +A)

/ \css NON MATCHING

C(A)=L C(A)=0

CSS MATCHING




Why Correlatable Symbol Sequences?

— CSS length L determines the max size of the CSS set

L-1

C(A) = Z u (k) y(k +A)

CSS MATCHING

/ \CSS NON MATCHING




CSS Intuition

* Node S wants to convey control information (“Information K”) to node R
via a pre-defined CSS u(k)

Information K

v

CSS u(K)
N
CSS+INTERFERENCE as received by R .



CSS Intuition
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CSS Intuition

MATCHING at R

* The correlator spikes when the
pre-defined CSS is received

Information K
Received

:
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CSS Intuition

MATCHING at R NON MATCHING

(at any other node)
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CSS Intuition

* Node S wants to convey control information (“Information K”) to node R
via a pre-defined CSS u(k)

MATCHING at R NON MATCHING

(at any other node)




CSS Summary

Correlatable Symbol Sequences (CSS) are pre-defined
PN bit sequences detected via cross-correlation

CSS do not need any preamble/header

Advantages

Low Overhead

— No preamble
— No encoding

High Robustness

— To low SINR
— To collisions

Length L limits number of pre-defined CSS
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Control Messages === CSS
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Control Information via CSS

e 802.11 control message structure

Preamble

Fixed Control
Field
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Control Information via CSS - Dictionary
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* Define a small dictionary of CSS to represent
the message information content




Control Information via CSS - Dictionary

Preamble

Fixed Control
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Addresses Duration %

* Define a small dictionary of CSS to represent
the message information content

— Type
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Map to different CSS
(e.g., RTS CTS ACK)




Control Information via CSS - Dictionary

Preamble leegigcigtrol Type Addresses Duration %

* Define a small dictionary of CSS to represent
the message information content

— Type — 5 Limited Set Map to different CSS
(e.g., RTS CTS ACK)

Large Set but One CSS per node
— Address —— | ically Limited




Control Information via CSS - Dictionary

Fixed Control
Preamble Field Type Addresses %

* Define a small dictionary of CSS to represent
the message information content

— Type — 5 Limited Set Map to different CSS
(e.g., RTS CTS ACK)

Large Setbut  Ope CSS per node
— Address —— | ically Limited

New CSS types + Timing

Code (e.g., channel free) @

—» Large Set



Control Information via CSS - Scope
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Control Information via CSS - Scope

Preamble

Fixed Control
Field

Type

Addresses Duration %

7

%

* CSS Information Scope Control

— Public

To be received by all nodes
(e.g., Channel Reservation/Release)

>

All nodes detect the CSS

(i.e., possess the correlator)
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Control Information via CSS - Scope

Preamble Fixegigigtrol Type Addresses Duration Z
* CSS Information Scope Control
— Public
To be received by all nodes ‘ All nodes detect the CSS
(e.g., Channel Reservation/Release) (i.e., possess the correlator)
— Unique Feature: Private
To be received by the
. Selected nodes detect the CSS
other endpoint (e.g., ACK, ‘ elected nodes detect the
source/destination address) 2/
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11 ec Protocol lllustration

e 11ec follows the fundamental concepts of 802.11
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11 ec Protocol lllustration

e 11ec follows the fundamental concepts of 802.11
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11 ec Protocol lllustration

11ec follows the fundamental concepts of 802.11
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11 ec Protocol lllustration
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. neighbor

| >

|

; I(r) I (r) Initiation

 — R, Channel Reservation

R, Public CSS

#/ r T > R is a unique CSS
A

™ hidden

- terminal > > >

TIMEOUT

LY %)



11 ec Protocol lllustration

e 11ec follows the fundamental concepts of 802.11
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11 ec Protocol lllustration

e 11ec follows the fundamental concepts of 802.11

neighbor
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TIMEOUT
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CSS Implementation

1. Repeatable and controllable experiments

Physical
Cabling

_ _ Logical
Connection

Sender Receiver Interferer




Cross—correlation Value

CSS Performance Metric
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CSS Performance Metric

Cross—correlation Value

2000 4000 6000 8000
Sample Number

10000

Threshold Selection )

Probability of false positives ~10-8

12000 14000
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Robustness and Overhead Gains
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CSS Implementation

1. Repeatable and controllable experiments
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2. Emulation based on Realistic Channel Measurements
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Hidden Terminals with Heterogeneous Rates [#%" =
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RTS/CTS

1802.11¢c | 802.11

L

e Differently from 802.11, 802.11ec
does not penalize weak and low
data-rate links

D> 802.11¢c increases
airtime utilization
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Summary and Conclusions

Objective: Fundamentally re-think the way control
information is conveyed in order to guarantee low
overhead and robustness

CSS’s have short duration and improve robustness
802.11ec uses CSS’s to convey control information
— Small CSS Dictionary

— Scope Control

802.11 ec improves fairness while also increasing channel
utilization

— Ex. 3x fairness, 1.5x airtime utilization, up to 12x throughput
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