

A Measurement Study of Multiplicative Overhead Effects in Wireless Networks

Joseph Camp, Vincenzo Mancuso, Omer Gurewitz, and Edward W. Knightly

INFOCOM 2008 http://networks.rice.edu

System: Large-scale, Multi-tier Mesh Network

TFA-Rice Mesh Deployment http://tfa.rice.edu

- Serving 4,000 users over 3 km²
- 802.11b access and backhaul tiers
- 802.11a directional tier for capacity injection
- Multiple radios at gateway nodes, single radios elsewhere

Background

Two key components driving this study are present in all wireless networks, not just mesh networks (e.g., TFA):

- 1. Heterogeneous Connectivity Set
 - a) Forwarding links (selected by routing protocol)
 - b) Non-forwarding links (broadcast medium)
- 2. Data and Control Planes
 - a) Large-sized data frames
 - b) Small-sized control frames
 - 1) Link Establishment
 - 2) Routing
 - 3) Congestion Control
 - 4) Network Management

Contributions

Heterogeneous connectivity matrix produces two key effects:

- Control frames force multiplicative degradation on data plane
 - Overhead traffic at rate r can reduce data throughput by up to 50 times r
 - Wireless Overhead Multiplier driven primarily by non-forwarding links
- Competing data flows have severe throughput imbalance and poor network utilization
 - RTS/CTS ineffectiveness coupled with heterogeneous links
 - Lower rate forces longer transmission time, decreasing success probability

Impact of Overhead

- Without network overhead (small-sized packets including AODV, beacons):
 - Minimal control overhead from only TX and RX
- With network overhead:
 - All the overhead of the control protocols from <u>all other nodes</u>
- **Experiment Details:**
 - All one-hop nodes from gateway
 - UDP traffic (1500B)

Diverse Overhead Effects

- Identical hardware platform
- Identical configuration
 - TX power 200 mW, RTS disabled, Autorate enabled
- Overhead of 80 kbps (approx. 10 kbps/node)
- Vastly different performance with and without overhead
 - 800 to 1800 kbps degradation
 - 10-20 times injected overhead

Wireless Overhead Multiplier Definition

- Define WOM to quantify the effect of the bits of overhead
 - O is a set of OH-injecting nodes, where o ∈ O
 - $-\lambda_{O}$ is bits/sec of injected overhead from O
 - $t_{s\rightarrow r}$ {s,r} is saturation throughput of tx (s) and rx (r)

$$W_{s o r} = rac{t_{s o r}^{\{s,r\}} - t_{s o r}^{\{s,r\} \cup O}}{\lambda_O}$$
 (Mesh Node N

Link Behavioral Classes for Heterogeneity

- Typical WOM experiment set-up
 - TX (s) fully backlogged to RX (r)
 - UDP, TCP traffic, RTS disabled
- Node o (OH-injecting node) has various link quality to s and r
- Classes of transmitter behavior according to IEEE 802.11 (o to s)
 - Decode Transmission
 - Detect Channel Activity
 - Unable to Detect Channel Activity
- In-lab experiments on widely used chipsets (Prism and Atheros) and drivers (HostAP and MadWiFi)
 - No threshold where carrier sense occurs

WOM for Two TFA Link Classes

- Data Set of 3-node Topologies
 - All one-hop nodes around GW
 - TCP and UDP traffic
 - Autorate enabled, RTS off
 - Measured injected overhead: 10 kbps
- Transmission Range (link o to s)
 - Overhead effectively sent at base rate (2 Mbps)
 - On average, quality of TFA links enables 11 Mbps operation

Header Payload verage WOM: 10 (high variance)

Hase Rate might variance in WOM?

Autorate enabled, RTS off

Relative Link Quality of Competing Links

- Same link behavior as defined by 802.11 (unable to carrier sense) but high variance - why?
 - Same injected overhead and non-forwarding links
 - Expect high WOM values (low variance)
- Find impact of relative forwarding link quality
- Expected high WOM as data flow has lower quality
- Asymmetric WOM with forwarding link differences

physical layer capture

UDP data traffic (1500 byte), Autorate disabled, RTS off

Reconsidering Link Classes for WOM

- Asymmetry of hidden terminal class, must reconsider WOM classes
 - Split hidden terminal link class
- Node winning capture has minimal WOM
 - Slightly better than transmission range
- Node losing capture has WOM of up to 30

Cumulative Link Effects

- Measure injected overhead as it scales with TFA backhaul nodes
- Measure achievable throughput with increasing number of OH-injectors
- Measured Overhead (AODV, Beacons)
- Reference point for overhead of other networks (no TFA nodes on the channel)
- 10 kbps overhead per node

Cumulative Link Effects

- Findings in 3-node topology hold for more complex topologies
- Node n4 sends data to GW
 - Wins capture with n2 (20 kbps)
 - Loses capture with n7 (520 kbps)
 - Hidden, unclear capture result with n6 and n8 (differ < 1dB at GW)
 - Transmission range with n1 and n3

Worst Case WOM Scenario for Data Flows

- Capture-losing data flow with competing OH
- Capture-losing data flow with competing data
 - Frequency of loses sufficient to trigger autorate policy (unlike OH)
 - Prolongs transmissions of capture losing node, less likely to transmit successful packet
- Even RTS ineffective for capture losing node
 - RTS packet also captured and must fit into backoff window of capture winning node

dataA

In Summary

- Low-rate control frames can produce multiplicative throughput degradation effects on the forwarding links
 - Up to 50 times the actual overhead load!
 - Protocol designers forced to reconsider tradeoff of injected overhead bits with protocol gains
 - Potentially zero-overhead control algorithms
- Severe throughput imbalance and aggregate throughput degradation due to coupling of:
 - Physical layer capture effect yields RTS/CTS ineffective
 - Prolonged transmissions from falsely triggering rate lower decreasing ability of capture losing node to transmit packets

Questions?

Contact Info:

Joseph Camp

E-mail: camp@rice.edu

RNG: http://networks.rice.edu

Backup Slides

Asymmetry between Hidden Nodes

- Choose two nodes with large relative difference in link quality at GW
- Relative SNR difference of 5 dB at mutual receiver
- Physical layer capture occurs at node
 - n7 has WOM of 1
 - n2 has WOM of 10
- TCP/UDP perform similarly with respect to WOM

TCP/UDP data traffic (1500 byte), Autorate disabled, RTS off

Energy Detect and Carrier Sense in OTS Card

- In-lab measurements shows no carrier sense threshold
- Set-up: 3 different cards (2Mbps fixed modulation rate, UDP traffic)
 - Constant Noise
 - External 802.11 source heard only at transmitter (not shown)
- Throughput degradation due to transmitter becoming deaf to ACK
 - Producing excessive backoff
 - Continues to transmit
 - MAC traces taken with Kismet

RTS Effect on WOM

- RTS/CTS designed to overcome hidden terminal problem
- Tradeoff of using RTS/CTS mechanism when capture occurs
 - WOM reduced with the use of RTS in both cases (winning and losing)
 - However, aggregate throughput is lower when using RTS
- Overall, RTS mechanism ineffective

Related Work

- Mesh Network: Increasing mesh node density increases throughput and connectivity [1], in contrast, we show backhaul link degradation
- Scaling Overhead: AODV shown to be linearly increasing [2], while we confirm w/ measurements, we show severe multiplicative effects
- Collision-aware Multirate: [3] shows adaptively enabling RTS able to make loss-based multirate collision-aware, we show RTS ineffective
- Measurement Study: [4] and related works measure performance of routing metrics in mesh networks, in contrast, we show the multiplicative losses due to routing and beaconing overhead
- [1] J. Bicket, S. Biswas, D. Aguayo, and R. Morris, "Architecture and Evaluation of the MIT Roofnet Mesh Network," *MobiCom*'05.
- [2] A. Iwata, C. Chiang, G. Pei, M. Gerla, and T. Chen, "Scalable routing strategies for ad hoc wireless networks," *Selected Areas of Communica-tion*, 1999.
- [3] J. Kim, S. Kim, S. Choi, and D. Qiao, "CARA: Collision-aware rate adaptation for IEEE 802.11 WLANs," *Infocom*'06.
- [4] D. De Couto, D. Aguayo, J. Bicket, and R. Morris, "A high-throughput path metric for multi-hop wireless routing, *MobiCom*'03.