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ABSTRACT

Channel State Information (CSI) has been proposed to enhance
physical layer security between a transmitter and a receiver be-
cause it decorrelates over half wavelength distances in rich scatter-
ing environments. Consequently, CSI was employed to generate
passwords, to authenticate the source of packets, and to inject ar-
tificial noise to thwart eavesdroppers. However, in this paper, we
present CSIsnoop, and show that an attacker can infer CSI in a
multi-user WLAN, even if both channel sounding sequences from
the access point and CSI measurement feedback from the clients
are encrypted. The insights of CSIsnoop are that the CSI of clients
can be computed based on transmit beamforming weights at the
access point, and that the transmit beamforming weights can be
estimated from downlink multi-user transmission. We implement
CSIsnoop on a software defined radio and conduct experiments in
various indoor environments. Our results show that on average
CSIsnoop can infer CSI of the target client with an absolute normal-
ized correlation of over 0.99, thereby urging reconsideration of the
use of CSI as a tool to enhance physical layer security in multi-user
WLANS.
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1 INTRODUCTION

Channel State Information (CSI) plays a key role in multi-user
beamforming systems, because it enables an Access Point (AP) to
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increase throughput by concurrently sending multiple data streams
to multiple clients. According to IEEE 802.11ac/af [7, 8], a known
channel sounding sequence is broadcasted by the AP, from which
clients compute and feedback their measurement results of the
channel’s effect on the known sequence. Based on the collected
CSI, the AP can compute transmit beamforming weights and, for
example, zero-force the signals of one client at other clients in order
to eliminate inter-client interference [2, 24]. Moreover, CSI can be
also used to increase network throughput by grouping clients with
orthogonal channels [24, 25].

Besides data transmission, CSI has also been proposed to enhance
network security, because it decorrelates over half a wavelength
(several centimeters in 2.4/5 GHz WiFi) in rich scattering environ-
ments. Therefore, wireless devices can employ CSI for secret key
establishment [12], which appears especially promising when there
are limited resources or lacking key management infrastructure. In
addition, CSI can be used as a signature to authenticate the source
of packets, as each client in the network will have a unique CSI
signature [9, 22]. Finally, CSI can be used to inject artificial noise
orthogonal to the intended recipient to degrade an eavesdropper’s
channel [1, 5]. Such artificial noise is nulled at the clients by the
AP so that the signal SINR at the clients will not be reduced.

Because of the importance of CSI, it has been proposed to encrypt
CSI during the standard-defined explicit channel sounding process:
either by encrypting the measurement feedback from the clients,
or by encrypting the channel sounding sequence from the AP [19].
Therefore, a malicious node within range of the network cannot
learn clients’ CSI by overhearing their measurement feedback.

However, we discover that the above methods cannot ensure the
confidentiality of CSI in multi-user MIMO WLAN:S. In particular, in
this paper we describe CSIsnoop, a framework by which a passive
attacker can infer the CSI of clients by overhearing their downlink
beamforming transmission. The first step of CSIsnoop is to employ
the knowledge of part of the transmitted symbols (e.g., the MAC
header) and trains an adaptive filter to separate the different data
streams at the multiple-antenna malicious node (Eve), which we
term as a known-transmitted-symbol attack (a PHY analogy of
the known-plaintext attack). The malicious node subsequently esti-
mates her channel from the AP and combines it with the adaptive
filter to compute the transmit beamforming weights that the AP
must have used. Finally, CSIsnoop uses the estimated beamforming
weights to compute the CSI of clients. We analyze CSIsnoop with
various number of clients within the network, and also show that
even if the AP encrypts the channel sounding sequence [19], it is
still possible for the multiple-antenna malicious node to estimate
CSI for both herself and the target client. Moreover, we discuss how
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an active adversary can accelerate the computing process by using
a variant of CSIsnoop which we name CSIsnoop+a.

Our results reveal a fundamental conflict between using CSI to
optimize PHY design and hiding CSI from malicious nodes, which
urges reconsideration of the use of CSI to enhance physical layer
security in multi-user WLANS. In particular, with CSIsnoop, we
demonstrate that a malicious node can now break the following
security schemes in multi-user WLANS:

e The malicious node can compute CSI of clients even if the
AP encrypts the channel sounding sequence and the clients
encrypt their CSI measurement feedback [19].

e With the computed CSI, the malicious node can further
estimate the CSI-based password [12].

e With the computed CSI, the malicious node can fake CSI-
based signatures [9, 22].

e With the computed CSI, the malicious node can remove
most of the artificial noise and decode the overheard pack-
ets [1, 5].

In addition, we show that CSIsnoop can be also employed to
degrade downlink and uplink throughput in the network. Specifi-
cally, we identify a new threat, which we term selective jamming,
to the uplink multi-user transmission in next generation wireless
standards [4, 6, 18]: once the malicious node obtains the CSI of
a target client, she can selectively jam the client’s data stream in
uplink multi-user transmission, while not interfering with the data
streams from all other clients. This is fundamentally different from
current jamming techniques [14, 23], which treat all the concurrent
data streams identically.

Finally, we implement CSIsnoop on WARP v3 [20], deploy a
testbed, and conduct experiments in various indoor environments.
Specifically, we consider that the AP has 2, 3, or 4 antennas and
collect measurements from over 100,000 over-the-air transmissions.
Our main experimental results can be summarized as follows:

o With the adversary’s average signal SNR being 30 dB and
the average condition number of the channel matrix be-
tween the AP and the adversary being 5, CSIsnoop can
infer the target client’s CSI with an absolute normalized
correlation of over 0.99.

o The accuracy of CSIsnoop is related to the attacker’s chan-
nel: if Eve is able to move to a location with high signal
strength but small condition number of her CSI matrix from
the AP, she can perform better by observing just a single
frame than if she were able to observe multiple frames but
in a less favorable location. This also provides hints of how
attacks based on CSIsnoop can be mitigated.

o CSIsnoop enables the malicious node to compute over 85%
of the CSI-based password.

e For selective jamming, CSIsnoop creates a 20 dB average
increase in interference to the uplink data stream of the
target client compared to other clients.

The rest of the paper is organized as follows. Sec. 2 introduces our
threat model. Sec. 3 and Sec. 4 describe the principles of CSIsnoop
and its variant CSIsnoop+a. We discuss implementation in Sec. 5
and experimental evaluations in Sec. 6. Several attack applications
of CSIsnoop are explored in Sec. 7. Sec. 8 discusses related work and
Sec. 9 concludes the paper.

Xu Zhang and Edward W. Knightly

ﬂ

7
/
/
\ V

Y,
- [Bob]

N i i Bobm
~ o —

Figure 1: Threat model of CSIsnoop.

2 THREAT MODEL

In this paper, we consider the threat model illustrated in Fig. 1.
Alice is a multiple-antenna multi-user AP and each Bob is a legiti-
mate single-antenna client. The network has multiple clients, i.e.,
multiple “Bobs”. Within the scope of this paper, we consider that
explicit channel sounding is employed (as is the case with IEEE
802.11ac/af [7, 8]). That is Alice transmits beacons such that the
Bobs can measure CSI and send the results back to Alice. However,
each Bob can encrypt his CSI feedback in order to prevent mali-
cious nodes from directly overhearing his CSI measurements. We
also consider the case that Alice encrypts her broadcasted channel
sounding sequence [19] (i.e., the beacon sequence is only known to
Alice within the network).

After acquiring Bobs’ CSI Hyp, Alice uses zero-forcing beam-
forming (ZF-BF) to compute her transmit beamforming weights,
which is Wa = H), ; = (H{,Hap) " Hap. ZF-BF has been widely
used because it can asymptotically achieve network capacity with
relatively low computational complexity [2, 11, 19, 24]. Nonethe-
less, the CSIsnoop framework can be extended to other different
beamforming algorithms, e.g., conjugate beamforming. Moreover,
we assume that Alice uses all of her antennas to transmit no mat-
ter what the number of data streams is. In other words, Alice will
fully utilize her antenna resources to boost the downlink network
throughput.

There is a malicious node, Eve, within range of Alice. We consider
a rich scattering environment typical of an indoor WLAN so that
Eve can overhear signals of Alice’s downlink transmission to all
Bobs. And Eve has the same number of antennas as Alice (Alice’s
antenna number can be known from the network control signals).

We further assume that Eve knows a subsequence of the symbols
that are transmitted by Alice for each Bob’s downlink data packet.
These known symbols can be portions of the MAC packet header
that follow a pre-defined format in the standards [7, 8]. Finally,
we assume that Eve knows which Bobs are included in a specific
downlink transmission. This can be done by Eve overhearing the
control signals broadcasted by Alice before the data transmission,
or the ACK packets sent from the Bobs after the data transmission.

3 CSISNOOP

In this section, we describe CSIsnoop, a technique by which a passive
adversary can infer the CSI of different clients by overhearing
downlink multi-user transmission. We begin by analyzing the base
case where the number of data streams from Alice to the Bobs
equals the number of antennas at Alice. Then we generalize to
scenarios where the number of data streams is smaller. Finally, we
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Figure 2: Base case analysis of CSIsnoop, where Bobs’ data
stream number equals the number of antennas at Alice in
one downlink transmission.

show that Eve is able to estimate her channel (an important step of
CSIsnoop) even if the channel sounding sequences are encrypted
by Alice.

3.1 Base Case Analysis of K X K

To begin with, we first consider the base case of CSIsnoop as shown
in Fig. 2, where Alice has K antennas and beamforms K data streams
to K Bobs in one downlink transmission. In this case, the pseudo-
inverse computation of ZF-BF is simplified to matrix inversion.
Thus Hap and Wy uniquely determine each other.

We denote the channel between Alice and Bob; to be Hyp;,

and Hapg = [HIXB]’HZ;BZ’ ..
channel between Alice and Eve is Hqg. Xj is a 1 X L vector that
contains L symbols of Bob;’s data stream. Therefore, for all K Bobs,
X = [XlT yeen ,XIE]T represents the K X L transmitted symbols from
Alice. Similarly, we denote Y; as the L symbols received by the
j" antenna of Eve, and Y = [YlT, cee, YIE]T as the K X L symbols
overheard by Eve. Therefore, Y can be represented as

.]%. Eve also has K antennas, and the

Y = Hy\gW4PX + N, (1)

where Wy is Alice’s transmit beamforming weights, P is the trans-
mit power scaling matrix and P = diag({+/p1, ..., VPk}), and N is
random noise.

In order to compute Hyp between Alice and the Bobs, Eve
needs to first estimate W4 used by Alice. We identify the known-
transmitted-symbol attack that can be employed by CSIsnoop to
accomplish this. After that, Eve computes Hyp based on the rela-
tionship between Hyp and W4. We divide the whole process into 4
steps and discuss each of them as follows.

(1) Known-Transmitted-Symbol Attack. CSIsnoop employs
known-transmitted-symbol attack to compute an adaptive filter
based on only X and Y, and uses this filter to further compute
HagW4P. Specifically, if Eve knows the 1 X L vector X of Bob; (as
discussed in Sec. 2, these known symbols can be part of the MAC
header that follow a pre-defined format in the standards [7, 8]), she

can compute a 1 X K receive beamforming vector Wélj). such that

E(lle 1} = E(IX; - Wiy} @)

is minimized. By taking the derivative of E{ ||e](.1) ||} over Wél; and
setting it to zero, Eve obtains

1
Wé; =Xj YT, (3

where YT is the Moore-Penrose pseudo-inverse of Y.
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Therefore, if Eve launches known-transmitted-symbol attack
targeting Bobs’ K data streams, she can compute

) _ yyt
Wy’ = XY, ()

T T
where W]g) = [W(l) - W]gl;( 17. By ignoring the random noise

E1 o
N, Eve can estimate

_ 7
HigWuP WE . (5)

Here ngl) is a K X K square matrix because of the K data streams.
So Eve can directly compute its inverse.

However, the above process will amplify the random noise N
when calculating YT, which degrades the accuracy of the estimation
of HygWyP. Therefore, instead of Eq. (2), CSIsnoop minimizes

E(le@1} = E{IlY - wPX|)}. (6)
which leads to
w? = yxt, @)
and
HagWaP = W ®)

In the following, we use WE to represent Wéz) .

(2) Estimation of H4g. It can be observed from Eq. (8) that in
order to compute W4 P, Eve needs to estimate H4g first. As explicit
channel sounding is employed within the network, if the channel
sounding sequences broadasted from Alice are not encrypted, Eve
can use them to estimate Hu g directly (even though these sequences
are designed for the Bobs to measure their CSI). The computation
of Hyr at Eve under encrypted channel sounding sequences is
discussed in Sec. 3.3.

(3) Computation of W P. With Wg and H4 g, Eve can compute

WaP = H L WE. 9)

This is because Eve has the same number of antennas as Alice and
Hyrg is a K X K square matrix. Thus its inverse can be directly
computed.

(4) Computation of H,g. ZF-BF computes the transmit beam-
forming weights as the pseudo-inverse of the CSI matrix. For the
base case, because the number of data streams equals the number
of antennas at Alice, the pseudo-inverse computation is matrix
inversion. As a result, Eve can compute

P 'Hap = P7'W;! = Wy Hyg. (10)
It should be noted that the jth row of P"'Hyp (which is ‘/%HABj)
J

and the jth row of Hyp are in the same sub-space. Therefore, even
though Eve does not know P, she can still locate the signal sub-
space from Alice to Bob;. This already provides enough information
for Eve to learn the relative relationship among the CSI of different
Bobs, and to further break various CSI-based security mechanisms
and decrease network throughput as discussed in Sec. 7.

3.2 Generalization to M x K with M < K

In the above base case analysis, we assume that the number of
data streams from Alice to the Bobs in one downlink transmission
equals the number of antennas at Alice. Therefore, Eve can directly
compute the inverse of W4 P in Eq. (10). However, in practice, it is
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Figure 3: CSIsnoop combines the computation of multiple
downlink transmissions to compute the CSI of a target Bob.

possible that the number of data streams in one downlink trans-
mission is smaller, e.g., not all Bobs are backlogged. Under such
circumstances, while Eve can still compute Alice’s transmit beam-
forming weights Wy, Hap is no longer a square matrix and the
sub-space spanned by each of its rows can be no longer uniquely
determined by its pseudo-inverse. In the following, we discuss how
CSIsnoop addresses this problem by overhearing multiple downlink
transmissions.

We first use an example in Fig. 3 to illustrate Eve’s computing
process. Suppose that there are M and M1 Bobs involved in trans-
mission s and s + 1, respectively. And both M and M1 are smaller
than K. Because Eve has the same number of antennas as Alice, she
can always compute W4 P from Eq. (9). And we denote Wy ¢Ps =
[Vs.15- -, Vs, m,] and Wa s11Ps+1 = [Vs+1,15- - -5 Vsr1, M, ] to be
the multiplication of transmit beamforming weights and transmit
power scaling matrix at Alice for downlink multi-user frame s and
s + 1, respectively.

If Bob; is included in both transmissions, because ZF-BF trans-
mits the data of all other Bobs into the null space of Hap, of Bob,
Eve can obtain

Hpp,Vs,i = Hap, Vs+1,i = 0, Vi > 2. (11)

Consequently, when the total number of different Bobs that are
included in these 2 transmissions is no smaller than K, Eve can
have at least K — 1 uncorrelated vectors V from Eq. (11) such that
Hap,V = 0, which enables Eve to locate the sub-space spanned by
the 1 X K vector Hap, .

Therefore, when the number of data streams in one downlink
transmission is smaller than K, for Eve to compute Hx Bj» she needs
to overhear multiple downlink multi-user transmissions that (1)
each includes Bobj, and that (2) the total number of different Bobs
that are involved should be no smaller than K. However, these
multiple transmissions need not be consecutive as long as Hap,
remains stable. In comparison, Hap,,; of other Bobs can even vary
during the transmissions. In fact, as can be observed from Eq. (11),
a changing Hup,,; will only increase the number of different V’s
that Eve can have and thereby enable Eve to locate the sub-space
of Hyp; more quickly. Hap can also change as long as its variation
can be detected by Eve so that Eq. (9) remains accurate.

3.3 Estimating Hsr with Encrypted Channel
Sounding Sequences

For explicit channel sounding, in order to prevent Eve from knowing

Bobs’ CSI by overhearing their measurement feedback, we can

either (1) ask each Bob to encrypt his sounding feedback, or (2)
ask Alice to encrypt her channel sounding sequences. However, as
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Figure 4: VHT PPDU format of IEEE 802.11ac [7] and IEEE
802.11af [8] (with different length of each field). The Null
Data Packet for explicit channel sounding has the same for-
mat except that there is no data field.

discussed in Sec. 3.1 and Sec. 3.2, encrypting Bob’s measurement
feedback cannot stop Eve from computing Bob’s CSI, because Eve
can use the known channel sounding sequence to estimate Hag
and then compute Hyg based on CSIsnoop. In the following, we
show that even if Alice encrypts her channel sounding sequences,
Eve can still estimate Hyg and thereby compute Hap.

We consider that Alice uses the CSIsec scheme [19] to encrypt
her channel sounding sequences. Particularly, in each sub-carrier,
Alice broadcasts a random symbol R instead of the known symbol
D. Therefore, Bob; and Eve measure their channel as (R/D)Hap;
and (R/D)HyE, respectively. Because Alice knows R/D, she can
remove it from Bob;’s measurement feedback. In contrast, Eve does
not know R/D and thereby cannot obtain Hag.

The key reason that Eve can estimate Hg in CSIsnoop is because
she now has multiple antennas instead of only a single antenna as
in the discussion of [19]. In particular, CSIsnoop combines the mea-
sured (R/D)Hag with the L-LTF field defined in IEEE 802.11ac/af
to compute Hyg. Fig. 4 shows the standard-defined packet for-
mat. The L-LTF field contains the long training sequence of IEEE
802.11a/b/g, and is designed to make IEEE 802.11ac compatible with
IEEE 802.11a/b/g. However, to avoid un-intentional beamforming,
the L-LTF field is sent with dynamic cyclic shift, i.e., a different
phase shift is added to the signals sent by each of Alice’s anten-
nas. Such phase shifts are pre-defined in the standard and publicly
known. Moreover, the L-LTF field is used by other clients to decode
the following L-SIG field and thereby cannot be encrypted by Alice.

We still consider that both Alice and Eve have K antennas. In
addition, we denote the known channel sounding symbol and its
encrypted version from the i th antenna of Alice to be D; and R;,
respectively. Therefore, from the channel sounding phase between
Alice and the Bobs, Eve can compute

Gag = Hagl, (12)

where T = diag({R1/D1, . ..,Rg/Dxk}). Suppose that the dynamic
cyclic shift added to the i*" antenna of Alice is ;. Thus from the
L-LTF field of the same channel sounding packet, Eve can estimate

Fap = HagB = Haglp1, .., fi)” (13)

Combining Eq. (12) and Eq. (13), Eve can obtain

_ _ Dy Dk
GAIEFAEZF 1B:[R—1ﬂ1,..,,§ﬂK]T. (14)
Since Eve knows B = [f1,..., k]’ she can solve I'"! from Eq.

(14) and thereby compute Hag = GopI™ .
Therefore, whether or not Alice encrypts her channel sounding
sequences, Eve can always estimate Hqp and further compute Hyp.
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Figure 5: For CSIsnoop+a, Eve becomes active and joins in
the downlink transmission, which enables Eve to compute
H,p more quickly in certain scenarios.

4 CSISNOOP+A

In the discussion in Sec. 3, Eve is completely passive and computes
Hyp by only overhearing the downlink transmission from Alice to
the Bobs. In this section, we describe a variant of CSIsnoop which we
name CSIsnoop+a. For CSIsnoop+a, Eve becomes active and joins
in the downlink multi-user transmission, which enables Eve to
compute Hyp more quickly in certain scenarios.

One of the examples is shown in Fig. 5, where there are K — 1
single-antenna Bobs within the network. As a result, the maximum
number of different Bobs that are included in multiple transmis-
sions can only be K — 1. If Eve uses CSIsnoop to compute Hap; of
Bobj, at least one Hap,,; of Bob; need to change during the over-
heard multiple transmissions, so that Eve still has at least K — 1
uncorrelated vectors V for Eq. (11).

In comparison, if CSIsnoop+a is employed, Eve can locate Hagp;
much more quickly. As shown in Fig. 5, Eve now fakes the legiti-
mate client Bobg by using her first antenna and participates in the
downlink multi-user transmission, i.e., she sends channel sounding
measurements back to Alice and asks Alice to beamform downlink
data to the faked Bobk (e.g., Eve can setup a remote server and
ask the server to send data to the faked Bobg ). After that, Eve still
uses her K antennas to overhear the K data streams, except that
now she only needs to launch K — 1 known-transmitted-symbol
attacks, because the first row of Wg in Eq. (7) can be directly set to
[0,...,0,1/4/pK]. Then Eve can obtain P~ Hp by following step
2 to step 4 in Sec. 3.1.

In general, if there are N Bobs in the network and N < K, Eve
can use her K — N antennas to pretend to be K — N clients and join
in the downlink multi-user transmission. However, Eve still only
needs to have K antennas in total. What is more, Eve can pretend
to be legitimate clients using a subset of her antennas while at the
same time overhear multiple downlink transmissions. Therefore,
Eve does not need to have precise timing control of when her
downlink data of the faked clients should arrive at the AP.

5 IMPLEMENTATION

Access Point (Alice) and Legitimate Clients (Bobs). We imple-
ment the functions of beamforming transmission of Alice and the
Bobs in the software defined radio WARP v3 [20]. In particular,
Alice broadcasts the channel sounding sequence defined in IEEE
802.11ac [7] from each of her antennas, which is used by the Bobs
to measure their channel. After Alice receives the measurement
feedback from the Bobs, she uses ZF-BF to calculate her transmit
beamforming weights and beamforms Bobs’ downlink data packet.
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Figure 6: Fractional timing offset due to ADC sampling.

We also implement the CSIsec scheme [19], with which Alice en-
crypts the channel sounding sequence by multiplying it with a
random complex number in each sub-carrier and for each of her
antennas.

The transmission has a bandwidth of 20 MHz and includes 64
OFDM sub-carriers (based on IEEE 802.11ac). Bobs’ data are modu-
lated by BPSK or 4-QAM. And we use different WARP v3 boards to
implement Alice and the Bobs so they are not clock-synchronized.

CSIsnoop and CSIsnoop+a. We also implement all steps and cal-
culations of CSIsnoop and CSIsnoop+a as described above in WARP
v3. Specifically, when Eve overhears the downlink transmission, she
first uses the normal method [15] to correct the timing and carrier
frequency offset (due to the different oscillator frequencies between
devices) based on the L-STF and the L-LTF field of each packet.
After that, even though Eve has not computed the transmit beam-
forming weights Wy at Alice yet, she can still track and correct the
residue carrier frequency offset with the aid of the pilot sub-carriers
(these are reserved sub-carriers with pre-defined pilots throughout
the entire packet [7, 8]). Suppose that the pilot is a. According to
the standards, it is the same for all data streams. Therefore, what
Eve overhears can be represented as

[Yh cees Yk]T = HAEWAP([as a]lxdata stream #)T . (15)

Even if H4gWy4P is not known by Eve, for her jth antenna, Yj/a
should have a fixed phase over time if there is no residue carrier
frequency offset (but it can have different values across Eve’s an-
tennas). Therefore, by tracking the phase of every Y;j/a, Eve can
detect and correct the residue carrier frequency offset.

Eve can subsequently begin to compute HqygW4P by known-
transmitted-symbol attack (Eq. (7)). In our implementation, we
directly minimize the mean square error for this computation. While
this has computational complexity of O(n®) (n is the size of the
matrix X), it is optimal. Alternatively, we can use the iterative Least
Mean Square algorithm to reduce computational complexity [16].

Finally, after Eve overhears multiple packets within channel
coherence time of H, AB; (during which H, AB; stays stable), she can
combine her estimates together to increase accuracy. However,
Eve cannot simply compute the average value, because different
packets will have different (1) transmit power scaling factors and (2)
fractional timing offsets. The impact of scaling factors has already
been discussed in Sec. 3.1. In the following, we analyze the impact
of fractional timing offset.

Fractional timing offset is mainly due to the ADC sampling
at the receiver. Particularly, in wireless networks the correlation
computation of the training sequences in the L-STF and the L-
LTF field is used to determine the start of a packet among a series
of sampling points [15]. Because this computation occurs in the
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digital domain, the actual start of the packet may deviate from the
computed point with a maximum error of 2, where A is the ADC
sampling interval (as shown in Fig. 6). Therefore, even if the physical
channel stays unchanged, the actual channel that the packets go
through will be different. According to the Fourier transform, delay
in the time domain translates into rotation over sub-carriers in the
frequency domain. As a result, each estimated Hy g at Eve will also
have an additional unknown phase rotation.

To address the different transmit power scaling factors and frac-
tional timing offsets, when Eve has a set of observations J“fABj =

T o o : ‘i
[Hyp. -Hup ....]1", shesearches Hyp; that maximizes
J J

(i) H
DI AR | (16)
Vi
with constraint ||[H4 B, |l = 1. The evaluation in Sec. 6.4 shows that

this will lead to a significantly more accurate result compared to
simply calculating the average.

6 EXPERIMENTAL EVALUATION

In this section, we conduct experiments in various indoor environ-
ments to evaluate the performance of CSIsnoop and CSIsnoop+a. We
first describe our experimental setup. Then we discuss the accuracy
of the estimated Hyp as well as the impact of various factors be-
ginning with the base case, followed by the generalized scenarios.
Finally, we study how accurately Eve can estimate H4g when Alice
encrypts her channel sounding sequence.

6.1 Experimental Setup

We use our WARP v3 implementation to conduct experiments in
typical lab, office, and apartment environments. Alice is configured
to have 2, 3, or 4 antennas and beamform data to up to 4 single-
antenna Bobs. Eve has the same number of antennas as Alice and
stays within Alice’s transmitting range. Therefore, Eve can overhear
Bobs’ downlink packets and use CSIsnoop to compute Hy g. During
the experiments, we collect more than 100,000 over-the-air packets.

Due to the extra delay of the WARPLab framework [21], in order
to ensure that the experiment is finished within channel coherence
time (during which the channel stays stable), we divide it into 2
phases. In the first phase, we continuously measure HAB, meqs for
over 100 ms. In the second phase, we first ask Alice to broadcast
the channel sounding sequence (to emulate the explicit channel
sounding process), by which Eve can estimate H4g. After that, Alice
sends the pre-computed downlink beamforming data packets to
the Bobs, which are based on the previously collected HAp meqs-
Eve launches known-transmitted-symbol attack targeting these
downlink packets and uses CSIsnoop to compute Hap, comp- The
timeline of the experiment is shown in Fig. 7.
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Figure 8: CCDF of the absolute value of normalized correla-
tion between Hap, meas and HAB, comp, and HAB, meas and HAg.
(b) is the zoomed-in upper-right portion of (a).

6.2 Accuracy of CSIsnoop

We first define a metric for estimation accuracy. As discussed in
Sec. 3.1, Eve only needs to compute the sub-space spanned by Hap;
instead of its exact value. Therefore, it is natural to use the degree
of correlation as the evaluating metric. In particular, we use the
absolute value of the normalized correlation, which is defined as

gH
|HABj’C0mP HABj,meas|

17)

B ”HAB-,com ” . ”HAB-,meas”
j P j

for Hyp; of Bobj. C ranges from 0 to 1. C = 0 indicates that
HaB;,comp and HAB;, meas are orthogonal, while C = 1 indicates
that Hy Bj,comp and H, ABj,meas are perfectly correlated. Therefore,
the closer to 1 is C, the more accurate the estimation is by Eve.

We assume that Eve uses 20 known symbols for the known-
transmitted-symbol attack according to [16]. And Fig. 8(a) displays
the complementary cumulative distribution function (CCDF) of
C when Eve’s average signal SNR is 30 dB and when the average
condition number of Hyg is 5 (the influence of signal SNR and
condition number are discussed later in Sec. 6.3). As a baseline
for comparison, we also plot the CCDF of correlation between
HAB;,meas and Hag: if CSIsnoop is not employed, we suppose that
Eve uses Hyg to infer Hyp;. The results indicate that CSIsnoop
enables Eve to locate the sub-space spanned by Hap, with very
high accuracy. For all 2-, 3-, and 4-antenna Alice, the average value
of C largely increases from 0.46 to over 0.99.

We further zoom in the upper-right portion of Fig. 8(a) and show
the details in Fig. 8(b). For 2-antenna Alice, it can be seen that
over 99% of Eve’s CSI inferences yield C larger than 0.99. However,
the estimation accuracy decreases with the number of antennas at
Alice. The main reason is that more noise will be included into the
computation when Alice has more antennas.

6.3 Impact of Hyp

In the following, we study the influence of Eve’s relative position
to Alice via Hqg on CSIsnoop’s accuracy. Hug is important because
(1) if Eve is mobile or there are multiple Eves, CSIsnoop can search
for places with favorable Hy g to reduce the estimation error; and
(2) Alice can also use the connection between Hag and CSIsnoop’s
accuracy to design schemes to prevent Hyp from being computed.

Strength of H,g. On average, the strength of Hyg determines
the signal SNR at Eve (while for each overheard packet, the SNR



CSlsnoop: Attacker Inference of Channel State Information in Multi-User WLANs

=)
©
o
o
©
o

abs (Norm’d Correlation)
2 o
o :
o ©

abs (Norm’d Correlation)
o
©

o
©
o

__va
0.8 L

15 0 5 10 15 20 25 30 35 40
Average cond(Hup)

(a) (b)

Figure 9: The variation of C (median with 25th/75th per-
centile) over (a) the average signal SNR at Eve and (b) the
average condition number of Hyg. Alice has 4 antennas.

o
©

.20 25 3
Signal SNR (dB)

is also related to Alice’s transmit beamforming weights). To exam-
ine how SNR impacts Eve’s CSI inference accuracy, we consider
measurements only from scenarios in which the average condi-
tion number of H4f is 5, and plot the median of C (with 25th and
75th percentile) under different SNR in Fig. 9(a). We do not use the
mean and standard deviation here because the distribution of C is
highly non-normal (as shown in Fig. 8). It can be observed from the

blue solid curve (when Wg = W}gz) is employed by CSIsnoop) that,
the median of C decreases to below 0.96 when the SNR becomes
smaller than 15 dB. On the other side, when the SNR is over 25 dB,
increasing the SNR further does not lead to a large increase of C.
Moreover, as discussed in Sec. 3.1, there are 2 ways for Eve to
compute the adaptive filter based on known-transmitted-symbol
attack. Therefore, Fig. 9(a) also depicts the median of C when Wg =

Wél) is employed. It can be seen that W]gz) consistently outperforms

Wél) in accuracy. Moreover, the difference between Wéz) and W]gl)
increases when the signal SNR becomes smaller: from 30 dB to
15 dB, the difference between their median increases from 0.001
to 0.05; and at 15 dB, the 25th percentile of C further reduces to

below 0.8 when W}E}) is used. The main reason is that during the

computation of Wél) , the random noise in the signals are amplified.
Thus the reduction in estimation accuracy increases with larger
noise strength (or equivalently, smaller signal SNR).

Condition Number of Hyg. After Wg = WE(Z) (Eq. (7)) is esti-
mated from known-transmitted-symbol attack, CSIsnoop computes
Alice’s transmit beamforming weights as Wy P = HA}S WE. There-
fore, the accuracy of Wy is also related to the condition number
of Hag. To analyze this factor, we consider measurements only
from scenarios in which the average signal SNR is 30 dB, and plot
the median of C with different condition number of H4g in Fig.
9(b). In our experiments, we use the 2-norm condition number of
Hyp, which is defined as the ratio of the largest singular value of
HaF to the smallest. It can be seen that C decreases when H4g has
a larger condition number. In particular, the estimation accuracy
becomes worse than the 15 dB SNR point in Fig. 9(a) when the
average condition number of Hqp exceeds 35.

Therefore, if Eve wants to increase her accuracy, she needs to
search for favorable places where the signal SNR is large but the
condition number of Hug is small. Given that Alice is often fixed,
one of the best strategies for Eve is to find a favorable place near
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Alice. Moreover, when Eve is near Alice, the change of Hyg due to
environmental mobility also tends to be smaller.

6.4 Number of Known Symbols and Overheard
Packets

Here, we evaluate whether the CSIsnoop’s inference accuracy is
improved when Eve has more observations. Specifically, Eve can (1)
still overhear just one transmission but have more known symbols,
or (2) overhear multiple packets within the channel coherence time
of Hy B and combine the observations.

More Known Symbols. When Eve overhears just one trans-
mission but has more known symbols, she can calculate Wg in Eq.
(7) with smaller error and thereby increase her estimation accuracy.
To study this, we suppose that Eve knows from 10 to 50 symbols
and plot the change of C in Fig. 10(a).

It can be observed that when Eve is in a favorable location (where
the signal SNR is high while the condition number of H4g is small),
having more known symbols does not lead to a large increase of
C, especially when the number of known symbols is over 20. This
is because CSIsnoop already achieves a very accurate estimation
with as few as only 10 known symbols (median of C is 0.993). In
contrast, when Eve is restricted to a non-favorable location, the
estimation accuracy keeps improving when Eve has more known
symbols: from 10 to 50 known symbols, the median of C increases
from 0.95 to 0.98. Nonetheless, even with 50 known symbols, the
estimation is still less accurate compared to the results when Eve is
in a favorable place but has only 10 known symbols.

Overhearing Multiple Packets. When Eve overhears multiple
transmissions, she can combine them to improve accuracy. Fig.
10(b) and Fig. 10(c) depict C when the number of overheard packets
increases from 1 to 5. Specifically, SubSpaceSearch indicates that
Eve maximizes Eq. (16) when combining the multiple observations,
while SimpAvg indicates that Eve simply calculates the average.

Similar to Fig. 10(a), it can be observed that when Eve is in a
favorable location, the computation based on 1 overheard trans-
mission is already very accurate, and repeated observations do
not lead to a large increase in C. In comparison, when Eve is in a
non-favorable location, accuracy significantly improves with more
overheard transmissions. Yet, again, even with 5 transmissions, the
accuracy is still worse than when Eve is in a favorable place but
overhears just 1 transmission. Therefore, compared to increasing
the number of known symbols or overhearing multiple transmis-
sions, it is more important for Eve to have a favorable H4g.

Furthermore, it can be observed from Fig. 10(b) and Fig. 10(c)
that simply averaging the results of multiple overheard packets can
actually lead to worse estimation accuracy. This is mainly due to the
random phase rotation from fractional timing offset that is added
to every single observation. For example, if for 2 overheard packets,
the computed channel are Hap and e/ Hyp, SimpAvg computes
the average value to be Hes; = 0, while SubSpaceSearch maximizes

i H .
||HestH£IB|| + ||Hest(e/"Hap) " || and obtains Hest = Hap.

6.5 Number of Clients and Data Streams

In the following, we evaluate the performance of CSIsnoop in the
generalized scenario of Sec. 3.2 and CSIsnoop+a of Sec. 4. Table 1
lists the detailed description and Fig. 11 plots the results.
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Figure 11: The median of C (with 25th/75th percentile) of the
3 cases of CSIsnoop Base, CSIsnoop Multi, and CSIsnoop+a
(defined in Table 1). The average signal SNR at Eve is 30 dB
and the average condition number of H4f is 5.

Table 1: Definition of CSIsnoop Base, CSIsnoop Multi, and
CSIsnoop+a in Fig. 11.

Case Definition
CSIsnoop | The number of data streams from Alice to the
Base Bobs equals the number of antennas at Alice.
Alice has K antennas and there are K Bobs.
CSIsnoop | The 1st packet is to Bob; and Bob;. The 2nd
Multi packet is to Bob; and Bobs (K = 3), or Boby,
Bobs and Boby (K = 4). Eve computes Hap, .
Alice has K antennas but there are K — 1
CSIsnoop+a | Bobs. Eve fakes Bobg by using her first
antenna. So Alice still sends K data streams.

It can be observed in Fig. 11 that the estimation accuracy of the
3 cases of Table 1 are very similar, with the difference among the
median of C within 0.001. But CSIsnoop+a has a smaller variance
than CSIsnoop. This is because when Eve joins in the downlink
transmission, part of Wg become known to Eve. As a result, Eve can
obtain a more accurate Wy and thereby H4 . It should also be noted
that there is a significant difference between the “Multi” case here
and the discussion in Fig. 10(b-c): in Fig. 10(b-c), each overheard
transmission contains k data streams, whereas in the “Multi” case
each overheard transmission contains fewer than k data streams.
Therefore, even if Eve overhears more than one transmission in the
“Multi” case, she may not obtain more information compared to the
base case. Thus estimation accuracy may not be improved.

6.6 Computation of Hyr with Encrypted
Sounding Sequence

Finally, we examine how accurately Eve can estimate H4g when
Alice encrypts the channel sounding sequence [19]. Similar to the
analysis of H4p, it is equivalent that Eve estimates Hqg and d- H5E,
where d is an unknown complex number. Therefore, we still use the
absolute normalized correlation defined in Eq. (17) to evaluate the
estimation accuracy of Hag, which here is computed as (HAE, comp
and HAE, meas are first expanded into 1-dimensional vectors)

H
|HAE,comp : HAE,meas'

(18)

CAE = THazcompll- THAEmeas]

We first fix the average condition number of Hyf to be 5 and
plot the variation of C4g over signal SNR in Fig. 12(a). It can be
seen that under the same channel condition (in terms of Hag),
the computation of Hsg is more accurate than that of Hyp (by
comparing with Fig. 9(a)). Moreover, it can also be observed that,
while the accuracy of H4g reduces when the SNR becomes smaller,
the impact of noise strength is very small from 20 dB to 30 dB, and
the median of C4f is constantly above 0.996.

In comparison, the average condition number of Hf has a larger
impact on the estimation accuracy. Specifically, in Fig. 12(b), median
of C4g decreases to 0.96 when the condition number increases to
40. The 25th percentile also reduces to below 0.94. Nonetheless,
compared to Fig. 9(b), the change of C 4 is still small. In other words,
the estimation of Hag is more robust to the channel condition
between Alice and Eve than the estimation of Hyg. This is mainly
because that the latter computation includes more steps. With the
estimated Ha g, Eve can further use CSIsnoop to compute H4p, even
if Alice encrypts the channel sounding sequence.

7 CSI-BASED ATTACKS

In this section, we study how Eve can use the computed HoB, comp
to attack the network, including computing the CSI-based password
and selectively reducing the uplink throughput of a target Bob.

7.1 Computing CSI-Based Password

Because CSI decorrelates over half a wavelength in rich scatter-
ing environments, which is several centimeters in 2.4/5 GHz WiFi,
schemes were proposed to generate a password between a trans-
mitter and a receiver based on the CSL It was assumed that such a
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password cannot be estimated by Eve even if Eve is close to Alice
or Bob. However, by using CSIsnoop, Eve can compute CSI between
Alice and Bob and use it to further compute the CSI-based password.

To evaluate how much Eve can estimate about the password, we
consider the password generating scheme proposed in [12]: Alice
and Bob quantify the relative amplitude of each sub-carrier of the
downlink channel to generate password bits. Therefore, for g-bit
quantization, the total bits of the password will be k- n- g, where k is
the number of antennas at Alice and n is the number of sub-carriers
that are used. Moreover, we assume that Eve’s average SNR is 30
dB and the average condition number of H4f is 5. After estimating
the CSI from Alice to Bob, Eve uses the same method to compute
the password.

Fig. 13(a) depicts experimental results for the bit mis-match rate
between the password computed by Eve and the password gener-
ated by Bob. As discussed in Fig. 8, when Alice has more antennas,
Eve’s estimation accuracy of Hsp decreases. Consequently, the bit
mis-match rate increases with the number of antennas at Alice,
ranging from 7.5% to 9.5% for 2-bit quantization, and from 10.2%
to 13.1% for 3-bit quantization.

However, Alice and Bob will also have bit mis-match between
them. According to [12], in an indoor environment, the 2-bit scheme
has bit mis-match rate between 3.5% and 5%, and the 3-bit scheme
has bit mismatch rate between 5.6% and 7.9%. Suppose that the
bit mis-match rate between Alice and Bob and between Eve and
Bob is x% and y%, respectively. It can be calculated that Eve can
estimate at least (100 —x —y)/(100 — x) of the common bits between
Alice and Bob. Therefore, for 2-bit and 3-bit quantization, CSIsnoop
enables Eve to estimate over 90% and 85% of the password, respec-
tively. For a practical system, there is still a step called “Information
Reconciliation” for Alice and Bob to correct their bit mis-match by
exchanging some packets over the air [12]. Eve may overhear these
packets to further improve her computation of the password.

7.2 Selectively Decreasing Uplink Throughput

Concurrent uplink transmission of multiple data streams has been
regarded as an important feature in the next generation wireless
standard [4, 6, 18]. Receiver-based ZF-BF can be used to remove
the inter-stream interference by projecting the desired signals onto
the sub-space orthogonal to the interference. Nonetheless, this
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Figure 13: (a) plots the average bit mis-match rate (with stan-
dard deviation) between the password computed by Eve and
the password generated by Bob. (b) plots the CDF of inter-
ference difference between Bob; and Bob;:; when Eve selec-
tively jams Bob; in the uplink.

same property can be exploited by Eve to selectively jam the uplink
transmission of Bobj. In particular, once Eve knows the downlink
CSI of Bobj, she can send interference only in the sub-space of
Bob;’s uplink signals. This is fundamentally different from current
jamming techniques [14, 23], which treat all the concurrent data
streams as the same.

In above analysis of this paper, we only consider the downlink
CSI of Bobj, which we denote as Hj&lB,— in the following. CSIsnoop

computes Hj‘ g, from Alice’s downlink multi-user beamforming
J

B, will be dif-

mainly because of the difference between the re-

transmission. However, the uplink CSI of Bob;, HZ

ferent from HX B
ceiving and the transmitting chain. Such difference has been shown
to be stable over time and can be calibrated [10, 17]. Specifically, we
denote @ajjce,; and agye,; as the calibration coefficient between
the receiving and the transmitting chain of Alice’s and Eve’s it/
antenna, respectively, and Q g7;ce = diag({aAlice’l, A aAlice,k})
and Qpye = diag({aEve,1, - - - ’aEve,k})' For Bobj, ®Bob, j has the

same definition. Therefore, it can be computed that

T
H,ZB]» = QAlice (HZBJ») XBob, j- (19)
If Eve sends her jamming signals with beamforming weights
T\~ T
QFoe ((wa) ) (foB,-) : (20)

it can be calculated that at Alice, the jamming signals will be in the
sub-space spanned by (1/ap,p, ;)H), B, which is exactly the same
signal sub-space of Bob;’s uplink transmission.

To evaluate this attack, we assume that both Alice and Eve have
4 antennas. We also suppose that Eve already computes her cali-
bration coefficients. Fig. 13(b) shows the CDF of the interference
difference between Bob; and Bob;x; when selective jamming or
normal jamming (for which Eve broadcasts her jamming signals)
is used. It can be seen that with selective jamming, Eve is able to
direct most of her jamming signal energy towards the uplink trans-
mission of Bobj. On average, there is a 20 dB difference between the
interference at Bob; and Bob;j, which indicates that this selective
attack is highly effective.
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8 RELATED WORK

CSI-based security schemes. Because CSI decorrelates over half
a wavelength, it has been proposed as a security mechanism. One
technique is artificial noise, which degrades the eavesdropper’s
channel by sending artificial noise in the null-space of the desired
signals. The secrecy rate achieved by this scheme was analyzed
in [5]. Experiments further demonstrated that the eavesdropper
consistently has an SINR 15 dB smaller than the desired receiver [1].
Besides artificial noise, the transmitter and the receiver can also
use CSI to generate a password between them. The generating
framework as well as the secret key extraction speed were studied
both theoretically [13] and experimentally [12]. What is more, the
AP can also use CSI to authenticate the source of packets: if the
packets are from the same client, they should have similar CSI
within channel coherence time. Both averaged CSI magnitudes [9]
and angle-of-arrival information [22] were proposed as a signature.

However, these schemes assume that the malicious node does not
know the CSI between the transmitter and the receiver. Otherwise,
they will be no longer safe. Indeed, artificial noise was demonstrated
to be removable once CSI is known [16]. Likewise, link signatures
based on CSI can be spoofed as long as the attacker has information
about the uplink CSI of the client [3]. Furthermore, we demonstrate
in this paper that once the attacker knows the CSI, a password
generated out of it can also be predicted. Thus, because a malicious
node with CSIsnoop is able to compute the CSI of any client by
overhearing their downlink data transmission, the above designs
need to be reconsidered for multi-user WLANS.

Encrypted CSI measurement. Even though CSI quickly decor-
relates over distance, the explicit channel sounding process in cur-
rent beamforming standards [7, 8] provides an opportunity for a
malicious node to learn the CSI of clients by overhearing their CSI
measurement feedback. One solution is to encrypt the feedback,
but it results in additional overhead for the clients and the AP to
establish the encryption and decryption key. In comparison, CSIsec
uses a random sequence unknown to Eve instead of the pre-defined
one to sound the channel by the AP [19].

In contrast, CSIsnoop uses the downlink data transmission in-
stead of the channel sounding process to compute the CSI of clients.
Moreover, while it was discussed in [19] that an encrypted channel
sounding sequence can prevent the malicious node from estimating
her channel (which is an important pre-filtering step in [16]), we
show that the malicious node can still do so by employing her mul-
tiple antennas and the L-LTF field prepended to every packet [7, 8].

9 CONCLUSION

In this paper, we describe CSIsnoop, a framework by which the
malicious node can infer CSI between the AP and clients by over-
hearing downlink multi-user transmission. We implement CSIsnoop
in the software defined radio WARP v3 and show that the absolute
normalized correlation between the computed CSI by CSIsnoop and
the measured CSI by clients has an average of over 0.99. We also
demonstrate that the malicious node can now use the computed CSI
to break CSI-based security schemes, which urges reconsideration
of the use of CSI as a shared secret in multi-user MIMO WLANSs.
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