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ABSTRACT
In this paper, we study the performance of utility maximization
congestion control over multihop CSMA-based networks. We con-
sider decoupled vs. joint design of congestion control and medium
access and consider unmodified MAC protocols such as IEEE 802.11.
Networks employing such MAC protocols incur flowstarvation
both without congestion control and with existing TCP-based con-
gestion control. We develop a framework to study key issues in
such networks that are not incorporated by prior models, yetare
critical to the performance of congestion control algorithms. We
study the role of data transmission capacity that is location de-
pendent and, even more, unknown. We show that for the case of
consistent channel state, a single globally optimal data transmis-
sion capacity does not exist. Moreover, for the case ofinconsistent
channel state that arises due to the carrier sense mechanismitself,
a data transmission capacity that provides convergence to perfectly
fair rates does not exist, i.e., the congestion control algorithm con-
verges to incorrect rates. We study the impact of inter-nodecol-
laboration within a contention region, and show that collaboration
can alleviate these problems and ensure convergence to fairrates.
Finally, we compare the performance of congestion control in a
collaborative network with the performance of TCP, and showthat
TCP starves some flows, whereas congestion control with collab-
oration removes starvation, provides significantly betterfairness,
and achieves 17% higher aggregate throughput.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network Archi-
tecture and Design—Wireless communication
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Design, Performance
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1. INTRODUCTION
Flows can experience severe unfairness and even starvationin

multihop wireless networks employing variants of CSMA proto-
cols [1, 2, 3, 4, 5]. The origin of this behavior is inconsistent chan-
nel state, i.e., in multihop topologies, different nodes have different
observable views of the system state. These different viewscan
lead to starvation of a sending node when, for example, the sending
node cannot infer another flow’s transmission status, resulting in re-
peated backoffs for the starving flow. Models were developedin [2,
3] that incorporate these effects and predict each flow’s throughput.

Because this problem is most severe when all flows are fully
backlogged, use ofcongestion control (such as reduction of the
input rates of dominating flows) has the potential to alleviate star-
vation. For example, throttling the input rates of dominantflows
yields sufficient spare capacity for otherwise-starving flows. How-
ever, prior work on congestion control does not incorporateincon-
sistent state, starvation, and other critical CSMA-related behaviors,
and therefore does not address how MAC related problems mani-
fest in congestion control.

In this paper, we study utility-maximization congestion control
in networks with unmodified CSMA-based MAC protocols. Our
problem formulation of an “unmodified” MAC is a practical con-
straint prohibiting changing the MAC protocol (e.g., IEEE 802.11)
in any way. This contrasts with joint design in which congestion
control and medium access are designed together, e.g., [6].We
study the effects of incorrect feedback information due to channel
inconsistency associated with CSMA on the performance of utility
maximization congestion control. We study scenarios with single
hop flows that can be seen as a part of more complex multihop sce-
narios. Our contributions are as follows.

First, we present a framework for congestion control algorithm
design that incorporates key issues encountered in CSMA-based
multihop wireless networks. In particular, data transmission capac-
ity is a critical input to utility maximization based congestion con-
trol algorithms. While transmission capacity inwireline networks
is immediate, the scenario we consider has collisions, channel ar-
bitration overhead, etc., all of which depend on spatial location.
Thus, the data transmission capacity in the scenario we consider
is unknown. The framework also incorporates the roles of packet
service order, which can deviate significantly from first-come first-
serve due to MAC behavior, and state observation, includingin-
ference of channel state that is inconsistent among nodes sharing
spectral resources.

Second, we analyze topologies with unknown data transmission



capacity, yetconsistent channel state. In this way, we isolate the
impact of unknown capacity from the issue of inconsistent state
observation. We find the optimal data transmission capacitythat
provides the best throughput and fairness. Unfortunately,we show
that the optimal data transmission capacity is topology dependent,
i.e., even in networks with a homogeneous propagation environ-
ment, there is no globally optimal value that provides the best per-
formance in all topologies. The key issue is that the source nodes
may have consistent channel state, and at the same time this state
can be incorrect. For example, source nodes can measure the same
average fraction of busy time that is not the true fraction ofbusy
time of the contention neighborhood they belong to.

Next, we study the role of unknown data transmission capacity
in topologies withinconsistent channel state. If all flows are back-
logged, the service order in these topologies can be close tostrict
priority, with one flow taking most of the bandwidth [3]. The key
issue is that due to carrier sense, there is asymmetry in knowledge
of the channel state among the senders. Thus, senders with better
knowledge of the channel state know when to contend for the chan-
nel while senders with less information contend randomly, and suf-
fer tremendously in terms of service order and thus throughput. We
show that in such topologies, there is no data transmission capacity
that provides perfect fairness, despite the fact that flows belong to
the same clique. We also show that this is the case regardlessof the
magnitude of the difference in channel state. In other words, even
if there exists a small but constant difference in channel state, the
congestion control algorithm converges to incorrect rates.

Finally, we study the impact of node collaboration on the per-
formance of the congestion control algorithm in multihop topolo-
gies. A network with collaboration provides a mechanism to sup-
port inter-node collaboration in order for nodes in the samecon-
tention region to obtain the correct channel state. We show that
it is critical to performance to obtain per-flow informationinstead
of aggregate information, since aggregate information canlead to
convergence to a false stable operating point. We also compare
the performance of such collaborative congestion control with TCP
and show that TCP fails to provide fairness and leads to starvation
of some flows. In contrast, the congestion control algorithmthat
maximizes the sum of utility functions in a network that enables
collaboration among nodes prevents starvation, achieves fairness,
and achieves 17% higher aggregate throughput than TCP.

The reminder of this paper is structured as follows. Section2
provides background on the utility maximization frameworkfor
congestion control in wireless networks. Section 3 presents the
framework for algorithm design in a CSMA environment as well
as performance metrics and our simulation environment. Section
4 provides a performance evaluation for topologies withconsistent
channel state and no inter-node collaboration, and topologies with
inconsistent channel state and no inter-node collaboration is studied
in Section 5. We study collaboration in Section 6. Finally, related
work is discussed in Section 7 and Section 8 concludes the paper.

2. BACKGROUND
We first review utility maximization congestion control in the

commonly considered case of a wireless network with a perfect
collision-free channel and a single transceiver utilizinga single
channel. (Section 7 presents a complete discussion of priorwork.)
Such a wireless network consists of overlapping contentionneigh-
borhoods. We define a contention neighborhood as a subset of links
that satisfy two properties: first, no two links from the subset can
be active simultaneously, and second, there is no other linkin the
network such that by adding it to the subset, the first property is
preserved. The contention neighborhood defined as above includes

both transmission and interference ranges. Note that a single link
can belong to multiple contention neighborhoods. LetCl be the ca-
pacity of link l when active in isolation, andLn the set of all links
in contention neighborhoodn. Denote setF as the set of all flows
in the network, andLf

n as the set of links in contention neighbor-
hoodn traversed by flowf . Assume that each flowf transmits
at ratexf . Since flows within the same contention neighborhood
cannot transmit simultaneously, for each contention neighborhood
n we can write

τn =
X

f

X

l∈L
f
n

xf

Cl

≤ 1. (1)

We make the following three observations. First, the above inequal-
ity provides only a necessary condition for the feasibilityof rates
xf (see [7]). However, if the contention graph [8] is perfect [9], the
above condition is also a sufficient feasibility condition (see [10],
also cited in [7, 6]). Second, for a perfect contention graphand the
IEEE 802.11 MAC, we have thatτn < 1 due to contention, over-
head such as RTS/CTS exchange, SIFS, DIFS etc. Finally, observe
that

xf

Cl
is the fraction of time needed for amountxf of flow f to

be transmitted over linkl with capacityCl.
Next, we define the congestion control algorithm as an optimiza-

tion problem such that the goal is to maximize the sum of util-
ity functions. Later, we study the performance of this congestion
control algorithm over wireless networks with IEEE 802.11 DCF
MAC.

Assume that each flowf obtains a utilityUf (xf ) when it trans-
mits at ratexf . As in [11], we assume thatUf is strictly concave,
continuously differentiable and increasing, and that utilities are ad-
ditive. Our objective is to determine ratesxf such that [6, 11]

max
xf≥0

X

f

Uf (xf ) (2)

s.t.τn ≤ 1,∀n. (3)

Since the objective function is strictly concave and the feasible re-
gion is convex, we know that a unique maximizer exists. However,
the solution to this maximization problem assumes that sources
know all utilities, which is impractical, and requires coordination
among possibly all sources. Thus, a distributed algorithm can be
devised by considering a relaxation of the original problem[11]:

max
xf≥0

Λ(x) (4)

where

Λ(x) =
X

f

Uf (xf ) −
X

n

Z τn(x)

0

pn(v)dv, (5)

τn(x) =
P

f

P

l∈L
f
n

xf

Cl
is the fraction of time contention neigh-

borhoodn is active (i.e., there is an ongoing transmission), and
pn(x) is a price function that can be viewed as the price charged
by contention neighborhoodn for transmission. We assume that
pn(x) is a continuous, non-negative, increasing function ofx, and
is not identically zero.

It has been shown in [6] that under the above assumptions,Λ(x)
defined by Equation (5) is strictly concave. From concavity,it
directly follows that the above relaxation defined with (4) has a
unique maximizer. We calculate the optimal rates solving the fol-
lowing differential equations,

∂Λ

∂xf

= 0, f ∈ F. (6)



Thus we obtain

U ′
f (xf ) −

X

n

X

l∈L
f
n

pn(τn(x))
1

Cl

= 0. (7)

Applying the gradient method to (4)-(5), the following conges-
tion control algorithm can be defined

ẋf (t) = kf (U ′
f (xf ) − qf (t)), f ∈ F, (8)

wherekf is a positive constant andqf =
P

n

P

l∈L
f
n

pn(τn(x)) 1
Cl

.
Note thatqf (t) is the feedback that the source of flowf observes.
The pricepn(τn) can be interpreted as a measure of the congestion
in contention neighborhoodn when the total channel busy time is
τn [11]. Therefore,qf (t) represents the congestion in all conges-
tion neighborhoods traversed by flowf .

It has been shown in [11] that for any initial conditionxf (0), the
congestion control algorithm (8) converges to the unique solution
of the relaxation defined in (4).

We note that the algorithm defined by Equation (8) provides an
approximate solution to the original problem (2)-(3). However, by
choosing the appropriate price functionp(·), the original problem
(2)-(3) can be solved exactly [12]. We discuss the choice of the
price function in the next subsection.

3. FRAMEWORK AND PERFORMANCE MET-
RICS

The utility-based optimization framework was originally designed
for wireline networks [11]. The same framework has been applied
to study congestion control over wireless networks as described in
Section 2 [6]. Here, we describe decoupled vs. joint congestion
control and MAC design, and describe the issues and challenges
such designs encounter in wireless networks in which the MAC
protocol is a CSMA variant such as the IEEE 802.11 distributed
coordination function (DCF) [13].

3.1 Joint vs. Decoupled Design
As described above, utility maximization congestion control is

based on feedback characterized by the price functionpn(t). The
price is a function ofτn(t), which can be described as the fraction
of time contention neighborhoodn is busy due to transmissions.
Therefore, congestion control solutions can be classified according
to the way the congestion price is realized.

In joint design of congestion control and medium acces, the con-
gestion price is generated directly from the multiple access scheme.
An example of this approach is [6]. Indecoupled design, the MAC
algorithm is strictly defined and cannot be modified. Thus, the price
function is specified in accordance with this unmodified MAC.Ide-
ally, the price function in this case is chosen such that the approx-
imation defined by Equation (8) provides the same solution asthe
original problem (2)-(3).

In this paper we considerdecoupled design and study CSMA-
based MAC protocols such as IEEE 802.11 that cannot be modified.
We use the following price function,

pn(x) = (τn(x) − 1 + ε)+/ε2. (9)

In [11, 12] it has been shown that asε → 0, the approximation is ar-
bitrarily close to the exact solution of the original problem defined
by (2)-(3). Note that a node within a contention neighborhood n
needs to obtain the value ofτn. As we discuss below, obtaining the
correctτn represents a challenge in multi-hop wireless networks.

We also consider a hop-by-hop scheme in which the feedback is
realized based on nodes’ perception of congestion that is advertised

to an upstream node. In the next section, we argue that a node’s per-
ception of congestion in CSMA-based networks is not necessarily
correct, and in subsequent sections we study how feedback based
on such incorrect congestion inferences affects the performance of
the congestion control algorithm.

Finally, without loss of generality, we assume that the utility Uf

of a flow f is defined asUf (xf ) = wf log xf , which enforces
weighted proportional fair resource allocation.

3.2 Algorithm Design Framework
Channel State in Multihop Networks. In a multihop topology

in which all nodes are not within radio range, different nodes can
have different views of the channel. In particular, even if aset of
nodes are within a singlecontention neighborhood, they do not nec-
essarily have the same views of the channel. For example, in Figure
1(a), the two depicted flows share a contention neighborhood, yet
the sender of flow one does not observe flow two’s transmission.
On the other hand, the sender of flow two observes flow one, such
that the two senders have different channel state.1

f1 f2

Wireless Channel

Service Order

     System State

(a) Contention Neighborhood

f1

f2

fn

Data Transmission

          Rate

Observation State

(b) Model

Figure 1: System Model Illustration

This inconsistency in channel state is not addressed in the utility-
based optimization framework presented in Section 2 and thecon-
gestion control algorithm from Equation (8). In particular, in that
formulation, all source nodes need to have the same information
about the channel state expressed as the channel busy time ofcon-
tention neighborhoodn (τn) to achieve convergence to the fair
rates. Therefore, we study the impact of inconsistent channel state
on the performance of congestion control algorithms.

Data Transmission Capacity.The actual capacity available for
data transmission within a contention neighborhood depends on
many factors such as the number of competing flows, node loca-
tions, and the propagation environment. Moreover, due to the ran-
dom nature of the MAC protocol, a portion of resources (e.g.,time,
bandwidth) cannot be used for data transmission. For example,
during collision resolution, there are time instances in which the
channel is idle even though flows are backlogged.

Consequently, because of these dependencies on numerous dy-
namic factors, the data transmission capacity cannot be determined
in advance. Thus, the constraint defined by Equation (3) cannot be
determined in advance. Therefore, we define the Efficiency Index
0 ≤ γn ≤ 1, which can be viewed as thenet data transmission
capacity, expressed in time, of contention neighborhoodn. Then,
instead of the original constraint defined by (3), we consider the
constraintτn ≤ γn,∀n. Observe thatγ can have different values
depending on the MAC layer, e.g., a MAC layer that uses time divi-
sion multiple access (TDMA) would result inγ = 1. However, the
IEEE 802.11 MAC layer will always result inγ < 1. Moreover,
we show that the IEEE 802.11 MAC layer in different topologies

1In our terminology, the channel state at a particular location refers
to both physical-layer state such as SNR as well as MAC-layerstate
such as carrier-sense state.



results in differentγ. Therefore, the price function (9) becomes

pn(x) = (τn(x) − γn + ε)+/ε2, (10)

whereγn is the Efficiency Index of contention neighborhoodn.
Because of its critical role in describing system resources, through-
out this paper we study the performance of the congestion control
algorithm as a function ofγ. We show thatγ plays a critical role in
topologies with inconsistent channel state.

Service Order. Because nodes that share a single contention
neighborhood contend for the same channel, all of the local queues
in the contention neighborhood can be considered as adistributed
queue for that contention neighborhood, as depicted in Figure 1(b).
The service order of this distributed queue is in generalnot FCFS
and can diverge from FCFS as far as strict priority. Moreover, the
actual service order is unknown and depends on the topology,num-
ber of nodes, nodes’ transmission and carrier sense ranges,etc.

For example, it is well established in the literature that 802.11
suffers from severe unfairness and starvation in the presence of
hidden terminals [1] and information asymmetry [1, 8, 14], for un-
controlled UDP or TCP traffic [4]. The service order in topologies
with hidden terminals or information asymmetry is very close to
strict priority, i.e., one flow achieves a throughput equal to its in-
put rate, while the other flows, even if backlogged, achieve only a
fraction of the remaining resources. While it may be possible to de-
sign a congestion control algorithm to achieve fairness in anetwork
with strict priority service, our scenario imposes a further design is-
sue. In particular, the service order here is unknown in advance, is
topology dependent, and spans orders ranging from FCFS to strict
priority.

State Observation and Sharing.To deploy the congestion con-
trol algorithm defined by (8), each source node needs to obtain the
fraction of “busy” timeτn(x) for all contention neighborhoodsn
it belongs to. Moreover, in some realizations, each source node
needs to obtain the capacity of the links between the source and
destination. In our formulation, a source node can locally observe
multiple metrics, such as channel occupancy time, flow throughput,
or its input rate. Thus, we evaluate three different metricsto obtain
the needed fraction of busy time, namely direct measurementof
channel busy time, the sum of the ratios of measured throughputs
over measured capacities, and the sum of measured input rates over
measured capacities.

There are multiple ways a source node can obtain the fractionof
busy time. In this paper, we classify all approaches according to
whether or not nodescollaborate. Without collaboration, a source
node uses only information available locally to infer the shared
state of the channel, whereas with collaboration, nodes within a
contention neighborhood exchange messages in order to obtain the
same correct channel state.

3.3 Example
To illustrate this design framework, consider the scenarioshown

in Figure 2. In this example, nodes A, B, C and D use their own
view of the channel to calculate the congestion feedback. Asde-
scribed above, a node’s local view of the channel is not necessarily
correct. For example, node B (depending on its spatial location)
may be unaware of D-E transmissions. This leads to node B’s per-
ception of congestion being incorrect, and thus node’s B feedback
being incorrect.

As described in Section 2, the congestion control mechanismad-
justs source rates based on the congestion sources perceive. Note
that the way the congestion control algorithm is defined allows for
some flexibility in the choice of parameters used to describecon-
gestion. For example, the joint MAC and congestion control algo-

CBA
Source Destination

Feedback

Source traffic
D

E

Figure 2: Illustration of Feedback Based on Inaccurate Infor-
mation

rithm proposed in [6] uses only channel busy timeτn to describe
congestion. However, unlike this paper, [6] derives the price func-
tion directly from the MAC algorithm, and does not consider IEEE
802.11 media access. Similarly, [7] uses the number of transmis-
sions in a time interval to describe congestion, and studiesIEEE
802.11 media access. Here, in order to ensure that the algorithm
in (8) solves the original problem (2)-(3) exactly, we definethe
price function by (10), thus we describe congestion of a particular
contention neighborhoodn using two parameters, namely channel
busy timeτn and Efficiency Indexγn. In subsequent sections, we
show that both parameters are critical in scenarios which donot
employ inter-node collaboration to realize channel state.

3.4 Performance Metrics and Simulation En-
vironment

3.4.1 Performance Metrics
To characterize the performance of a congestion control algo-

rithm, we use throughput, short-term fairness index and long-term
fairness index. As a measure of long-term fairness, we definethe
Kullback-Leibler (KL) Fairness Index using KL distance, similar to
[15]. KL distance (or relative entropy) is a distance from a “true”
probability distribution,p, to a “target” probability distribution,q,
and is denoted asD(p‖q). It is a measure of “the inefficiency of
assuming that the probability distribution isq when the true distri-
bution isp” [16]. Thus, if we define vectorsΘ andΘ̃ as vectors of
achieved and ideal fair shares respectively, then we can define the
KL Fairness Index as follows:

D(Θ‖Θ̃) = D([θ1, θ2, ..., θN ]‖[θ̃1, θ̃2, ..., θ̃N ]

=

N
X

i=1

θilog2
θi

θ̃i

, (11)

whereN is the number of flows in the network. Note that KL
fairness index 0 indicates perfect fairness.

We then use the sliding window technique to measure short-term
fairness. In other words, for a given window size we calculate the
fairness index within that window. Then, as we slide the window,
one element at the time, we obtain a series of fairness indices. Fi-
nally, after sliding the window through the entire sequence, we find
the average of all fairness indices.

3.4.2 Simulation Environment
Our evaluation of congestion control algorithms uses extensive

simulation experiments. Unless explicitly mentioned, allsimula-
tion experiments use the configuration described here. As the sim-
ulation platform we usens-2 version 2.27. Most parameters are
default values: the channel rate is constant and has 2 Mb/secca-
pacity, the channel propagation model is the two-way groundre-
flection model, and the transmission range is 250 m. The MAC
protocol is IEEE 802.11 DCF. At the beginning of a simulation, all
source nodes start transmitting UDP traffic with 1000 byte packets



at the full link rate. Rates are updated periodically every 10 msec.
The buffer size at each node is 50 packets, and the simulationtime
is 250 sec. We set all weights to be 1, while the parameterε in the
price function we set to 0.005.

4. CONGESTION CONTROL WITH CON-
SISTENT STATE

Previous work either ignores the issue of unknown data trans-
mission capacity, or acknowledges it but does not study whatthe
ideal data transmission capacity should be. Here, we first study
data transmission capacity in terms of the Efficiency Indexγ in
topologies with consistent state and no inter-node collaboration.
We show thatγ is critical to performance as it significantly impacts
short-term fairness and controls throughput. Moreover, weshow
that, unfortunately, there is no singleγ that is optimal in all topolo-
gies, i.e., theγ that provides high throughput and ideal fairness is
topology dependent.

In this section, we consider topologies with the property that all
source nodes have consistent state, in other words on average they
measure the same channel busy time. We name these topologies
as symmetric topologies. Observe that the source nodes may have
consistent channel state, and at the same time this state canbe in-
correct. In other words, source nodes can measure on averagethe
same fraction of busy time that is not the true fraction of thebusy
time of the contention neighborhood they belong to. Therefore,
we classify symmetric topologies in two classes, fully connected
topologies and symmetric incorrect state topologies. All source
nodes in fully connected topologies have the same correct channel
state, whereas source nodes in symmetric incorrect state topologies
have the same, however, incorrect, channel state.

4.1 Fully Connected Topologies
We first address fully connected topologies in which all source

nodes are able to locally and independently measure the samecor-
rect fraction of the busy time. While fully connected topologies
have been studied in the literature (e.g., see [17]), we study them
here as a baseline to illustrate the effect of the Efficiency Indexγ
on the throughput and fairness properties of the utility maximiza-
tion congestion control algorithm. A fully connected topology for
two flows is shown in Figure 3.

S1 S2

R2R1

f1 f2

Figure 3: Fully Connected Topology

Using the utility maximization problem defined by (2) and as-
suming a perfect MAC, the congestion control algorithm is anap-
proximation to the following problem

max
x1,...,xn≥0

n
X

i=1

wi log xi (12)

s.t.
n

X

i=1

xi

Ci

≤ γ. (13)

Using Equation (7) we have thatxi, i = 1, ..., n are solutions to
the following system of equations:

wi

xi

=
(
Pn

i=1
xi

Ci
− γ + ε)+

Ciε2
, i = 1, ..., n (14)

Whenwi = 1, Ci = C andε → 0 we have

xi =
γC

n
, i = 1, ..., n.

We make the following observations. First, the allocated rates of all
n flows are the same so that fairness is achieved. Next, the allocated
rates are a linear function of the Efficiency Indexγ, indicating that
the total throughput can be controlled as a linear function of γ.
Therefore, the optimalγ that provides the maximum throughput
and the best fairness in fully connected topologies isγF C

opt = 1.
Next, we use simulations to validate these results and to study the
throughput and fairness properties of fully connected topologies.

Throughput. Figure 4(a) depicts total throughput vs. Efficiency
Indexγ for two- and five-flow fully connected topologies. For ease
of comparison, we report the results for total throughput, and note
that the per-flow throughput for fully connected topologiesis the
total throughput divided by the number of flows. In all simulations,
the algorithm converged so that the sum of utilities is maximized.
Both curves show the linear dependency onγ as predicted by the
above analysis, and that the throughput achieves a maximum of
1.46 Mb/sec forγ = 1. Moreover, the curves are nearly identical
because we consider the total throughput, and not per-flow through-
put.

Fairness properties.Next, we study fairness properties of fully
connected topologies. We find that the long term fairness index is
always 0 (i.e., perfect fairness) and does not depend onγ. How-
ever, the short-term fairness index depends on bothγ and the win-
dow size. Figure 4(b) depicts the short-term KL fairness index as a
function of window size for two different values ofγ = 0.9 and 1.
Observe that whenγ = 1, the window size needs to be more than
double the window size for the case whenγ = 0.9 to achieve the
same short-term fairness of 0.05. At the same time, the throughput
for γ = 1 is 1.46 Mb/sec, whereas the throughput forγ = 0.9 is
1.35 Mb/sec. Finally, we note that the short-term fairness proper-
ties forγ < 0.9 are similar to those forγ = 0.9, therefore, we omit
them from the figure.

Figures 4(a) and 4(b) point out the tradeoff between throughput
and short-term fairness. For example, by settingγ = 1 maximum
throughput can be achieved, yet short-term fairness deviates con-
siderably from the perfect value. Thus, to achieve a satisfactory
short-term fairness, one needs to “sacrifice” throughput. This prob-
lem is even more pronounced in symmetric incorrect state topolo-
gies that we investigate next.

4.2 Symmetric Incorrect State Topologies
In this section, we study Symmetric Incorrect State (SIS) topolo-

gies without inter-node collaboration. The key issue in these topolo-
gies is that, due to symmetry, all source nodes on average measure
the same fraction of the channel busy time, yet this measurement
does not correspond to the actual value of the contention neighbor-
hood’s busy time. These topologies occur when receivers arein
transmission range of one another while senders are out of range of
senders and receivers of the other flows. Thus, the local inference
of the channel state and busy time at each sender does not reveal
the actual channel busy time. At the same time, due to the symmet-
ric geometric relationship among flows, flows measure the same
incorrect channel busy time on average. Observe that [17] cannot
predict the throughput for this topology since it applies only to fully
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Figure 4: Fully Connected Topology: Simulation Results

connected topologies. The throughput properties of incorrect state
two-flow topologies in which flows are continuously backlogged
have been studied in [3].

S1 S2R2R1

f1 f2

Figure 5: Symmetric Incorrect State Topology

One such topology is presented in Figure 5. Observe that senders
are in transmission ranges of their respective receivers only. Here,
we study the impact of incorrect, but on average the same, channel
state on the throughput and fairness properties of SIS topologies in
the presence of congestion control without collaboration.

Since the senders use the information available locally to infer
the channel busy time, the congestion control algorithm is not the
approximation to the original problem as stated in Equations (12)-
(13), but the following problem instead

max
x1,...,xn≥0

n
X

i=1

wi log xi (15)

s.t.
xi

Ci

≤ γ , ∀i = 1, ..., n. (16)

This is due to the fact that sourcesSi, i = 1, ..., n are in ranges
of their respective receivers only, and thus are unable to locally
measure the busy time of the other flows. Using (8), thexi, i =
1, ..., n are the solution to the following system of equations

wi

xi

=
( xi

Ci
− γ + ε)+

Ciε2
, i = 1, ..., n. (17)

Again, whenwi = 1, Ci = C, andε → 0 we have

xi = γC, i = 1, ..., 1.

Assuming a perfect MAC, the above solution will be feasible only
for γ ≤ 1

n
, and the maximum throughput is achieved forγ = 1

n
.

Thus, further increasingγ results in an infeasible solution, and no
throughput increase. Moreover, because the allocated rates are the
same, fairness is achieved forγ < 1

n
. However, forγ > 1

n
, the

same allocated rates and the symmetric geometric relationship be-
tween the flows provide long-term fairness but not short-term fair-
ness. Therefore, the optimal Efficiency Index isγSIS

opt = 1
n

. Fi-
nally, observe thatγSIS

opt 6= γF C
opt , hence there is no single globally

optimal γopt. Next, we use simulations to study throughput and
fairness properties in the two-flow SIS topology from Figure5.

Throughput. Results for total throughput vs. the Efficiency In-
dex γ are shown in Figure 6(a). In all simulations the algorithm
converges and the sum of utilities is maximized. We observe that
the dependency between throughput andγ for SIS topologies con-
sists of two segments. In the first segment forγ ≤ 0.6, throughput
increases linearly asγ increases. Due to MAC imperfections, the
actual value of the “knee” is approximately 0.6. The slope ofthe
increase is twice the slope for the case of the fully connected topol-
ogy. In the second segment forγ > 0.6, the throughput is constant
at 1.41 Mb/sec, and does not depend onγ. Therefore, in order to
maximize throughput, the ideal setting of the Efficiency Index is
γ > 0.6.

Finally, observe that the maximum throughput is lower than for
the case of fully connected topologies. The main reason is the in-
creased contention that we explain as follows. Assume that there is
an ongoing transmission betweenS1 andR1 in Figure 5. SinceS2

is unaware of this transmission it can possibly send an RTS mes-
sage toR2. At the same time,R2 is aware of the transmission and
does not reply with a CTS message. Consequently,S2 increases
its contention window and enters backoff. At the same time,S1

is more likely to acquire the channel in the next transmission at-
tempt, and consequently, to hold the channel for long periods of
time. This increase of the contention window leads to a decrease
in throughput, while the long periods of time in which the channel
is occupied by a single flow leads to serious short term unfairness
that we explore next.

Fairness Properties.Figure 6(b) reports the short-term fairness
index vs. window size for two values of the Efficiency Indexγ. We
observe that short-term fairness properties are extremelydifferent
for γ = 0.6 and forγ = 0.7. Whenγ = 0.6 a satisfactory fairness
index of 0.05 can be achieved at time scales less than 300 msec,
whereas whenγ = 0.7 this same index can only be achieved at
much longer time scales of 4.7 sec. On the other hand, the total
throughput whenγ = 0.6 is 1.33 Mb/sec, while the throughput
whenγ = 0.7 is 1.41 Mb/sec, a 6% difference. This characterizes
the strong tradeoff between short-term fairness and throughput loss.
We note that short-term fairness properties forγ < 0.6 andγ > 0.7
are similar to those shown in Figure 6(b) forγ = 0.6 andγ = 0.7
respectively, and are therefore omitted from the figure. Finally, the
long-term fairness index is always 0 (i.e., perfect fairness) and does
not depend onγ.

Thus, in SIS topologies, the optimal Efficiency IndexγSIS
opt that



0 0.2 0.4 0.6 0.8 1
0

200

400

600

800

1000

1200

1400

1600

Efficiency Index γ

T
ot

al
 T

hr
ou

gh
pu

t [
K

bp
s]

(a) Total Throughput vs. Efficiency Index

0 1 2 3 4 5 6 7

10
−3

10
−2

10
−1

10
0

Measurement Window [sec]

A
ve

ra
ge

 K
ul

lb
ac

k−
Le

ib
le

r 
F

ai
rn

es
s 

In
de

x

Efficiency Index = 0.7
Efficiency Index = 0.6

(b) Short-Term Fairness Index

Figure 6: Symmetric Incomplete Information Topology: Simulation Results

provides the highest throughput and satisfactory short-term fairness
properties is always less than 1. In other words, for the price of
a moderate throughput loss, short-term fairness properties can be
substantially improved.

5. CONGESTION CONTROL WITH INCON-
SISTENT STATE

In this section, we consider topologies in which source nodes do
not have the same channel state due to their spatial locations, trans-
mission ranges and carrier sense ranges. We refer to topologies in
which source nodes have inconsistent channel state as asymmetric
topologies, as there is an asymmetry in knowledge of the channel
busy time among the senders. Asymmetric topologies with fully
backlogged flows have been studied in the literature [1, 3, 14], and
severe MAC unfairness was established. Even more, it has been
shown that the service order in such topologies is close to strict pri-
ority (SP), in which packets of one flow are nearly always served
before packets of another flow, i.e., the “low priority” flow only ob-
tains service if the “high priority” flow is not backlogged. Here, we
study the impact of this unfairness and unknown data transmission
capacity on the performance of the congestion control algorithm in
asymmetric topologies with no inter-node collaboration. We show
that the asymmetry in channel state is critical to performance and
leads to convergence to incorrect rates.

R1

S2R2

S1

f1
f2

Figure 7: Asymmetric Topology: Transmission Range is Equal
to Carrier Sense Range

We classify the asymmetric topologies into two groups according
to the difference in the source nodes’ knowledge of the channel.
The two classes are topologies with equal transmission and carrier
sense range and topologies with different transmission andcarrier
sense range.

5.1 Topologies with Equal Transmission and
Carrier Sense Ranges

In previous sections, we studied topologies in which the MAC
protocol is able to achieve long-term fairness when all flowsare
continuously backlogged. However, in asymmetric topologies, due
to asymmetry in the channel state, the MAC protocol experiences
severe unfairness for continuously backlogged flows. An example
asymmetric topology with two flows is shown in Figure 7.

In this example, the senderS2 is out of range of the sender and
receiver of flowf1, whereas the sender and receiver of flowf1 are
in the range ofR2. Thus, the two flows have different (asymmet-
ric) views of the channel: flowf1 is aware of flowf2 whereas the
opposite is not true. Consequently, if both flows are backlogged,
flow f1 will have considerably higher throughput than flowf2 be-
cause the senderS1 is able to sense CTS and ACK sent byR2, thus
knows exactly when to contend for the channel, whereasS2 cannot
sense neitherS1 nor R1, hence contends randomly. In this case,
the system performs close to a distributed strict priority queue, in
which flowf1 has strict priority over flowf2. Below, we study the
throughput and fairness properties of this asymmetric topology in
the presence of congestion control without collaboration.

With congestion control and a perfect contention-free MAC,the
allocated ratesx1 andx2 are the approximation to the following
system of equations

w1

x1
=

( x1

C1

+ x2

C2

− γ + ε)+

C1ε2
(18)

w2

x2
=

( x2

C2

− γ + ε)+

C2ε2
. (19)

This is due to the fact that flowf1 is measuring the correct busy
time, while flow f2 is unaware of flowf1 and is able to locally
measure only its own busy time. Whenw1 = w2 = 1, C1 = C2 =
C, andε → 0 we have

x1 = 0 andx2 = γC.

Thus, congestion control in asymmetric topologies leads tounfair-
ness, and according to the above analysis, there is no optimal γ.
Next, we use simulations to study the throughput and fairness prop-
erties of this asymmetric topology.

Throughput. Figure 8(a) depicts the throughput of the two flows
as well as the aggregate throughput asγ varies from 0 to 1. For
γ = 1, the system defaults back to the undesirable performance of
802.11 without congestion control.

First, the simulation results match the above theoretical results
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Figure 8: Asymmetric Topology with Equal Transmission Range and Carrier Sense Range: Simulation Results

only for γ < 0.7. This discrepancy is due to assumption that
ε → 0, whereas in simulations we useε = 0.05. Further de-
creasingε shifts this transition point towardsγ = 1. Due to the
MAC unfairness described above, for any allocated ratex1 > 0 the
throughput of flowf1 is close to the allocated rate, while flowf2 is
able to utilize only the leftover capacity. Next, there is a value ofγ,
0.7 < γ < 0.8, such that the rates of the two flows are equal. We
name this value as the optimalγopt for the asymmetric topology
with equal transmission and sense ranges. Finally, the aggregate
throughput curve has a dip forγ = γopt. The reason is that when
the flows are transmitting at similar rates, some air time is being
wasted as flowf1 is rate limited and flowf2 is in backoff as it is
contending randomly.

Fairness Properties.The fairness properties of asymmetric topolo-
gies are illustrated in Figure 8(b), which depicts the long-term fair-
ness index vs. the Efficiency Indexγ. We observe that the fairness
index varies drastically withγ. There are only two narrow regions
in which the fairness index is smaller than 0.5. The first suchregion
is γ < 0.1: unfortunately, the throughput is low and the perfor-
mance is unacceptable. The second region is0.7 < γ < 0.8, near
γopt, with throughput between 1.1 Mb/sec and 1.25 Mb/sec. While
a seemingly desirable operating point, unfortunately, we found that
the exact value ofγopt is quite sensitive to many parameters such
as channel capacity, packet size, etc.

In general, to achieve fairness flowf1 has to be aware of the de-
mand of flowf2. Also, there exists an optimalγopt for the case in
which two flows are having different views of the channel. How-
ever, the system robustness as a function ofγ is low.

5.2 Topologies with Different Transmission and
Carrier Sense Ranges

In this section, we study the impact of a small but constant differ-
ence in the measured channel busy time on the performance of the
congestion control algorithm without collaboration and inasym-
metric topologies. We first discuss an example that points out the
importance of relying on the Network Allocation Vector (NAV) in
random access networks. Then, we describe how the use of NAV
results in a small but constant difference in measured busy time,
and finally how this impacts the performance of congestion control
in asymmetric topologies.

5.2.1 Importance of Network Allocation Vector (NAV)
Consider the topology in Figure 9, in whichR2 is in the carrier

sense range of bothS1 andR1, whereasS2 is out of the range of
both. Thus, whenR2 is transmitting,S1 andR1 receive the packet

but cannot decode it. Consequently, as per IEEE 802.11 [13] both
S1 andR1 set their NAVs to the value of EIFS as depicted in Figure
10. IEEE 802.11 also specifies the duration of EIFS frame to be
longer than time needed for an ACK frame to be transmitted at the
physical layer’s lowest mandatory rate. Not relying on the NAV

R1

S2R2

S1

Transmission Range

Carrier Sense Range

f1
f2

Figure 9: Motivating Example

in such topologies would result in collision, i.e., ifS1 does not set
its NAV and starts transmitting there would be a collision atR2.
Consequently, when inferring the channel state locally, wehave
to assume that the channel is busy whenever the NAV is nonzero.
Finally, observe that in the topology in Figure 9, neitherS1 norR1

are able to decode the packet fromR2, thus none of them have the
exact information about the channel busy time. Next we discuss
how this effects the performance of congestion control.

DATARTS

CTS ACK

NAV(RTS)

NAV(CTS)

SIFS

SIFS

SIFS

NAV(EIFS)

NAV(EIFS)

NAV(EIFS)

DIFS

DIFS

Source

Destination

Transmission

Range

Carrier Sense

Range

Defer Access

Figure 10: IEEE 802.11

5.2.2 Performance
Here, we study congestion control in topologies in which source

nodes measure busy times with a small, constant difference.For
that purpose, we use the same example as in Section 5.1, and weset
the carrier sense range to be twice the transmission range. There-
fore,S2 is now in carrier sense range of bothS1 andR1 (and vice
versa) as shown in Figure 11. Observe that flowsf1 andf2 cannot
transmit simultaneously. The throughput and fairness properties for
this asymmetric topology are discussed below.
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Figure 13: Asymmetric Topology with Carrier Sense Range Twice Transmission Range: Simulation Results
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Figure 11: Asymmetric Topology: Carrier Sense Range is
Twice Transmission Range
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Figure 12: Allocated Rates of Two Flows vs.ξ

For the given topology, the busy time flowf2 measures is always
larger than the busy time flowf1 measures. The reason is that when
eitherS1 or R1 are transmitting,S2 is able to sense the channel
busy, but is not able to decode the packet. Thus, it sets its NAV
to the value of EIFS as described above and as shown in Figure
10. Since the duration of EIFS is determined by the time needed
for an ACK packet to be transmitted at the physical layer’slowest
mandatory rate,S2 overestimates the busy time by some valueξ >
0. Thus, the rates the congestion control algorithm will converge to
are the solution to the following system of equations:

w1

x1
=

( x1

C1

+ x2

C2

− γ + ε)+

C1ε2
(20)

w2

x2
=

( x1

C1

+ x2

C2

+ ξ − γ + ε)+

C2ε2
(21)

Figure 12 plotsx1 andx2 as a function ofξ. The other parameters
from the above equations are as presented in Section 3.4.2. We
observe that forξ as small as 0.0001 the ratex2 converges to a
value close to 0.

In other words, as long as there is a very small but constant dif-
ference between the measured busy times of the two flows, the rates
will converge to incorrect values. Thus, the above analysissuggests
that there is no optimalγ for the asymmetric topologies with small,
constant difference in measured busy times. Next, we study the
throughput and fairness properties via simulations.

Throughput. Figure 13(a) depicts the throughput progression in
time of both flows. The results shown are forγ = 0.8; however,
we note that similar performance is obtained for anyγ < 0.95 (i.e.,
flow f2 always converges to zero throughput while the convergence
value of flowf1 varies withγ).

The main reason as described above is the constant discrepancy
in measured busy times. Figure 13(b) shows a sample of normal-
ized measured busy times of the two flows between 101 sec and
101.5 sec. of simulation time. Observe that flowf2 always mea-
sures slightly larger busy time than flowf1, which based on the
analysis above explains the results.

Fairness Properties.Figure 13(c) depicts the long term fairness
index as a function of the Efficiency Indexγ for the asymmetric
two-flow topology in Figure 11. We observe that the fairness in-
dex is 1 forγ < 0.95 and it decreases to 0.4 forγ = 1 (i.e., the
system performs as pure IEEE 802.11 without congestion control).
This is due to the aforementioned convergence to incorrect rates.
Hence, for the case of local inference of the channel state, con-
gestion control in asymmetric topologies with carrier sense range



twice the transmission range degrades the performance. Therefore,
in the next section we study congestion control in the presence of
collaboration among nodes.

6. CONGESTION CONTROL WITH COL-
LABORATIVE INFERENCE OF CHAN-
NEL STATE

The previous sections clearly indicate that relying on local in-
ference of the channel state can result in serious unfairness, thus
pointing to the need for collaboration among nodes. Thus, inthis
section we study congestion control under inter-node collaboration,
i.e., inter-node sharing of channel-state information within a con-
tention neighborhood.

We first describe how we realize the collaboration and the type of
metrics we are measuring. Then we study fairness and throughput
properties of congestion control in the presence of collaboration in
more complex topologies.

6.1 Collaboration
The objective of the algorithm that enables collaboration is that

each sender collects information about the channel busy time for all
contention neighborhoods it belongs to. The design space for such
a distributed algorithm is immense, and it includes measurement
of the required metric (e.g., busy time, offered load, carried load,
capacity), message distribution, and rate computation.

Our focus in this paper is not the design of the algorithm itself.
Rather, we study the effects of collaboration and the natureof the
metric measured on the throughput and fairness properties of the
congestion control algorithm. Therefore, we use a data structure
to obtain the needed information about the channel state at each
sender. We consider that the topology is known and that the data
structure is populated periodically every 20 msec, which isalso the
period of rate calculation. When a source rate needs to be recalcu-
lated, the data structure is accessed, and the needed information is
fetched. We then use rate limiters to enforce the calculatedsource
rates. In other words, we considerperfect collaboration among
nodes in a contention neighborhood to study the performancelim-
its of collaboration, and omit factors such as overhead and logistics
of information exchange.

As described in Section 2, rate update is done periodically,and
one of the metrics required for the rate update is the channelbusy
time. However, there are multiple ways one can measure the chan-
nel busy time. Here, we consider three approaches. In the first
approach, each node measures the channel busy time locally using
carrier sensing. Thus, in this way each node measures theaggre-
gate busy time of the channel, and populates the data structure by
this aggregate value. In the second approach, the channel busy time
is calculated for each source as the ratio of throughput to capacity.
Thus, here each sender measures the number of packets it trans-
mits. We do not measurecapacity and use the capacity specified
in 3.4.2 instead. The data structure is populated then with the ratio
throughput/capacity for each sender. Finally, in the third approach,
each sender measures its offered load, and the data structure is pop-
ulated withoffered load/capacity. This approach best resembles
what is done in Section 2.

6.2 Flow-in-the-Middle Topology
Here, we study the flow-in-the-middle topology presented inFig-

ure 14. In this topology flowsf1 andf3 are out of range of each
other and can transmit simultaneously. However, flowf2 is in the
range of bothf1 andf3 and can transmit only if none of these two
are transmitting.

S1 S2

R2R1

S3

R3

f1 f2 f3

Figure 14: Flow-in-the-Middle Scenario

Continuously Backlogged Flows.If all flows are backlogged,
flow f2 will have considerably lower throughput than the other two
flows, whose throughput will be close to the maximum. The reason
is that flowf2 is sensing the channel busy whenever either of the
two outer flows are transmitting. Since the transmissions ofthe
outer flows are not synchronized, the busy time flowf2 is sensing
can be quite long, thus the transmission opportunities for flow f2

are severely limited.
Congestion Control with Collaboration. We use this topology

to study congestion control with inter-node collaborationand the
choice of the measured metric. Note that in this topology thepro-
portional fair shares for the three flows are 2/3, 1/3 and 2/3 of the
available capacity. Flowf2 has half the fair share since it belongs
to two contention neighborhoods, whereas the outer two flowseach
belongs to one contention neighborhood.

Figure 15 depicts throughputs for the three flows for the cases
in which the congestion control algorithm calculates ratesbased on
aggregate busy time, throughput, and offered load (Figures15(a),
(b), and (c) respectively). All three plots represent a single simula-
tion run obtained with the Efficiency Indexγ = 0.8, γ = 0.6, and
γ = 0.6, respectively.

We chooseγ’s such that the maximum achievable aggregate through-
put per contention neighborhood is the same, thus the performance
for the three approaches should be similar. We make the following
observations.

• Different values forγ are required when different measures
of busy time are used. The reason is that by measuring ag-
gregate busy time, we essentially measure the portion of time
that is being used for any transmission (i.e., data packets,
control packets). However, by measuring throughput for ex-
ample (or measuring offered load), we are measuring only
transmissions of data packets. Hence, the absolute values of
busy times measured in these three different ways are quite
different, which is the reason theγ’s are different.

• From Figure 15(a) we see that there are instances in which
the congestion control algorithm does not converge to the
correct rates. This is due to the nature of the measured met-
ric in this case. As aforementioned, the congestion control
algorithm in this case calculates the rates utilizing the locally
measured aggregate busy time. The actual assigned rates in
this simulation run for flowsf1, f2 andf3 are 1.15 Mb/sec,
0.63 Mb/sec and 1.15 Mb/sec, respectively. However, due
to the unfair MAC, almost none of the packets from flowf2

are being transmitted, while both of the outer flows achieve
throughput exactly as assigned rates. In terms of aggregate
busy times, this allocation and the correct one (800 kb/sec,
400 kb/sec and 800 kb/sec) are the same. Thus, in some in-
stances the system gets to this “incorrect” stable state and
remains there. We do note that most of the simulation runs
generate performance similar to the one presented in Figure
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Figure 15: Per-Flow Throughput when Different Congestion Metrics are Measured

15(b).

• The convergence time in the case in which throughput is
measured is double the convergence time for the case in which
offered load is measured. The reason is that with the through-
put measurement there is some error introduced by the ran-
dom nature of the system, resulting in more rate oscillation
and longer convergence time.

In general, in topologies with multiple contention neighborhoods,
each sender needs to obtain the busy times for all contentionneigh-
borhoods it belong to in order for the congestion control algorithm
to achieve convergence to the correct rates. Moreover, to ensure
convergence to correct rates, these obtained values for busy times
need to be per-flow rather than aggregate.

6.3 Topology with Multiple Contention Neigh-
borhoods

In this final topology, our goal is to compare the performance
and fairness of TCP and the utility-maximization congestion con-
trol algorithm with collaboration. For the comparison we choose
the topology presented in Figure 16 because it incorporatesmulti-
ple issues and sub-topologies studied throughout the paper. In other
words, the topology is a combination of symmetric, asymmetric,
and flow-in-the-middle topologies.

S1 S2

R2R1

S3

R3

R4 S4
f1 f2 f3

f4

Figure 16: Topology with Multiple Contention Neighborhoods

Figure 16 depicts the throughputs for each flow. In the TCP ex-
periment below, each source generates long-lived TCP-Sacktraf-
fic, with all parameters set to their default values. In the utility-
maximization congestion control algorithm experiments, collabo-
ration is based on the measured throughput, and the efficiency in-
dex is set toγ = 0.6.

Results. Observe that TCP is not able to achieve the full avail-
able bandwidth. This is due to the congestion control of TCP:when
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Figure 17: TCP Performance

a TCP flow experiences a loss, it reduces its window by a factorof
2 and is not able to exploit the full available bandwidth. Next, in all
experiments we observed only two outcomes. Outcome 1 in which
flows 1 and 3 are active while flows 2 and 4 are almost starved, and
outcome 2 in which flows 2 and 4 are active while flows 1 and 3
are almost starved. We performed 50 simulation runs of whichtwo
thirds of the runs yield outcome 1, and one third yield outcome 2.
Observe that although flows 1 and 4 can be active simultaneously,
this outcome never occurs. This is due to the information asymme-
try embedded in the topology. When flow 1 is transmitting, flow
2 cannot since they are in the same contention neighborhood.At
the same time, flows 3 and 4 are both out of the range of flow 1.
However, flows 3 and 4 present the same example described in Sec-
tion 5.1, so that flow 3 obtains almost maximum throughput. We
do point out that TCP’s inability to fully utilize resources, and its
unfairness in wireless networks have been widely studied and ad-
dressed in the literature, and solutions have been proposed[5, 4, 18,
19]. We do not consider any of these proposals, and simply study
TCP as a baseline for comparison.

The ideal fair shares for the Utility Maximization Congestion
Control (UMCC) algorithm withγ = 0.6 are 800 kb/sec, 400
kb/sec, 400 kb/sec and 800 kb/sec for flows 1, 2 ,3 and 4 respec-
tively. Observe that the achieved shares of the utility-maximization



congestion control algorithm with inter-node collaboration are very
close to the ideal ones. Moreover, the congestion control algorithm
achieves throughput up to 17% higher then TCP, most importantly,
without starving any flows.

7. RELATED WORK
Congestion control for wireline networks is a topic of intense

research efforts, including study of the utility-based optimization
framework for Internet congestion control, e.g., [11, 20, 21].

This same framework has been applied to wireless ad hoc net-
works, e.g., [7, 8, 6, 22, 23]. In particular in [7, 8], flow contention
among link-layer flows is used to propose utility based optimiza-
tion to achieve MAC layer fairness. In [23] rate allocation is for-
mulated as a utility maximization problem with time constraints,
and end-to-end and hop-by-hop schemes that provide convergence
to the allocated rates are proposed. In [22], this frameworkis used
to study cross layer design, and a jointly optimal congestion con-
trol and power control algorithm is developed. Cross layer design
is also studied in [6], which considers joint design of optimal con-
gestion control and MAC protocols.

The impact of MAC unfairness and channel inconsistency has
been studied in the context of TCP congestion control. In [24],
simulation and testbed measurements are used to study the per-
formance of TCP over the wired-to-wireless and wireless-to-wired
networks. TCP’s unfairness over multihop wireless networks is
studied in [5, 25]; in [5], neighborhood RED is proposed to improve
TCP fairness in multihop wireless networks. In [26], throughput
analysis of multihop chain networks is presented. Finally,in [4] a
fractional factorial experimental design is employed to identify the
performance factors that lead to unfairness and starvationof TCP
over multihop wireless networks.

This paper differs from such studies in that we study the impact
of CSMA/CA based MAC protocols with consistent and inconsis-
tent channel state on the performance of the utility-maximization
congestion control schemes. In particular, we explore the impact
of the wireless channel, unknown data transmission capacity, un-
known service order and unknown and incorrect system state on the
performance of congestion control algorithm in environments with
and without collaboration. We also demonstrate the requirements
of a wireless network in order for congestion control algorithms to
provide high performance.

8. CONCLUSIONS
In this paper, we studied the utility maximization approachto

congestion control in wireless CSMA-based networks and studied
the fundamental challenges arising in multihop networks. We ex-
plored the impact of channel state consistency, service order, inter-
node collaboration and unknown data transmission capacityon the
performance of the congestion control algorithm. Our work pro-
vides a deeper understanding of the performance of utility maxi-
mization congestion control over CSMA-based networks and yields
new insights that can guide the analysis and design of a distributed
congestion control algorithm for CSMA-based networks.
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