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Abstract—In this paper, a low-complexity cooperative protocol
that significantly increases the average throughput of multihop
upstream transmissions for wireless tree networks is developed
and analyzed. A system in which transmissions are assigned to
nodes in a collision free, spatial time division fashion is consid-
ered. The suggested protocol exploits the broadcast nature of
wireless networks where the communication channel is shared
between multiple adjacent nodes within interference range. For
any upstream end-to-end flow in the tree, each intermediate node
receives information from both one-hop and two-hop neighbors
and transmits only sufficient information such that the next
upstream one-hop neighbor will be able to decode the packet.
This approach can be viewed as the generalization of the classical
three node relay channel for end-to-end flows in which each
intermediate node becomes successively source, relay and destina-
tion. The achievable rate for any regular tree network is derived
and an optimal schedule that realizes this rate in most cases is
proposed. Our protocol is shown to dramatically outperform the
conventional scheme where intermediate nodes simply forward
the packets hop by hop. At high signal-to-noise ratio (SNR), it
yields approximately 66 % throughput gain for practical scenarios.

Index Terms—Fairness, relay channel, time division multiaccess,
user cooperation, wireless networks.

I. INTRODUCTION

HE demand for widespread Internet access over large
Turban areas draws an emerging interest both by the
industry and the academic communities in designing high
performance Wireless Mesh Networks (WMN) [1], [2]. WMN
are expected to provide a low-cost but yet reliable and resilient
high performance access network in which only few gateway
nodes are connected to the wireline Internet. The rest of the
nodes, the Transit Access Points (TAP), serve as relays which
forward the client traffic (mobile and nonmobile) to/from the
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gateway. This technique allows hundreds of Internet users
spanning large areas to share a single broadband connection.

A typical overlay routing topology of WMN is expected to
look like a tree topology or forest of many trees, where the
TAP’s are the vertices and the gateways are the tree roots. All
traffic that is destined for the wired network is transmitted by
the clients to the nearby TAP. The aggregated traffic is relayed
hop by hop until it reaches one of the gateways. All traffic from
the wireline to any one of the clients follows the reverse path.
Since each TAP is expected to serve many users, the TAPs are
expected to be backlogged most of the time. In order to avoid
contention between the clients and the TAP, it is assumed that
the client-to-TAP transmissions and the TAP-to-TAP transmis-
sions work on orthogonal channels. In this paper we concentrate
only in the backbone formed by the TAP’s which relay the traffic
to the gateway (uplink transmission).

Recently several studies showed that existing Medium Access
Control (MAC) protocols are not designed for multihop topolo-
gies. Deployment of existing protocols such as 802.11 in WMN
can result in severe unfairness and low bandwidth utilization,
i.e., when TAPs are backlogged, the backbone becomes a bot-
tleneck and some of the TAPs get very poor throughput [3]-[6].
Since WMN promise to deliver high throughput to all users and
in order for Internet Service Providers (ISP) to adopt the WMN
as a solution for wide area broadband access network, an inno-
vative solution is required to increase the average throughput.

In [7], the authors propose a scheduling that ensures per-client
fairness and optimizes the bandwidth utilization in WMN. The
solution assigns transmission rights to the links in a Spatial
Time Division Multiple Access (STDMA) fashion and is col-
lision free [8]. Whereas the proposed scheduling based on spa-
tial reuse dramatically improves the average throughput in com-
parison with TDMA scheduling without spatial reuse, a natural
question is whether higher throughput can be achieved by em-
ploying more sophisticated processing techniques.

Since WMN are relay networks, we consider multihop
relaying technologies in order to improve network throughput.
Besides the ‘“classical three node relay channel” [9]-[12]
and its extensions to multiple relays [13] or several sources
[14]-[16], cooperative strategies have recently been considered
for broader networks: 1) the “parking lot” topology which refers
to a special case of a 1-ary tree (linear topology) with a flow
originating from each node and terminating at the outermost
node, [17]-[22]; 2) ad hoc networks with arbitrary or random
topology [23]-[25]. Most of the aforementioned studies relate
to networks where power optimization and interference cance-
lation are two of the main issues. Further, all these studies are
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limited to the gain achieved based on physical layer techniques.
Recently some studies showed that cross layering architecture
that combines the physical layer gain with proper scheduling
and possibly rate control can further increase the throughput
gain [2]; it was studied for mesh networks in downstream
transmission in [26].

The aim of this paper is to develop and analyze low-com-
plexity cooperative protocols that dramatically increase the
average throughput of the upstream transmission for wireless
mesh networks. Our analysis focuses on upstream communica-
tions in wireless mesh networks with a regular tree topology and
can be extended to irregular tree topologies and downstream
or bidirectional transmissions. We constrain the terminals to
employ time-division transmission, i.e., the terminals cannot
transmit and receive simultaneously. Furthermore, although
previous works focused on the achievable rate region and the
order of the throughput as a function of the number of nodes in
the network, we derive the exact achievable rate with respect to
the number of nodes for any regular tree network and propose
deterministic schedules that realize this bound in most cases.
The suggested solution assigns transmission rights to the nodes
in a STDMA fashion and is collision free [7], [8], [27], [28].
In a conventional multi-hop routing each node forward its
neighbors’ traffic in addition to its own traffic [7], [27]-[29]. In
the cooperative mode that we propose, each intermediate node
receives information from both one-hop and two-hop neighbors
and transmits only sufficient information such that the next
upstream one-hop neighbor will be able to decode the packet.
We name this local three-node cooperation “Turbo Relaying
Protocol” (TRP).! Since a single node is transmitting within
the interference range at the time, our strategy requires neither
node synchronization at the sample level nor multiuser detec-
tion and can efficiently be implemented based on distributed
low-density parity-check codes (LDPC) [16], [31], [32], or
turbo-codes [33].

We compare TRP to the conventional noncooperative relay
solution. In particular, we compare it to the method suggested
in [7] which presents an optimal scheduling among the nodes
in a spatial TD fashion which guarantees collision free trans-
missions. We also compare our scheme to an improved version
of this solution where optimal power allocation is considered.
We show that the optimal power allocation strategy slightly im-
proves the scheme suggested in [7], however TRP dramatically
outperforms both schemes; the throughput gains of TRP over
the conventional scheme are above 66% at a signal-to-noise ratio
(SNR) of 15 decibels for any connectivity degree.

The remainder of the paper is organized as follows: Section II
describes the system model for tree network under considera-
tion. In Section III, we derive the achievable rate for the con-
ventional multihop routing, i.e., hop by hop relaying for a chain
topology in a spatial time-division fashion [7] and a feasible
schedule that realizes this rate is proposed. Section IV outlines

I'The term Turbo Relaying is not related to the channel error-correcting code
family, the turbo-codes, invented by Berrou [30], but rather is based on the tur-
bine engine principle. In turbocharged engines, the combustion air is already
precompressed before being supplied to the engine. The engine aspirates the
same volume of air, but due to the higher pressure, more air mass is supplied
into the combustion chamber. Consequently, more fuel can be burnt, so that the
engine’s power output increases in relation to the same speed and swept volume.
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Fig. 1. Regular Tree Topologies. (a) 1-ary tree (connectivity degree of 2) also
known as the parking lot topology. (b) Ternary tree with three levels (connec-
tivity degree  + 1 = 4). A link between two nodes means that these nodes
are within transmission range of each other.

our new node cooperation protocol. Achievable rate and optimal
schedule that realizes this rate are determined. In Section V,
these results are extended to tree networks with arbitrary con-
nectivity degree. Finally, we draw conclusions in Section VI. In
order to keep the flow of the paper all proofs are placed in the
Appendices A-E.

II. SYSTEM MODEL

We model the wireless network as an m-ary tree topology
where m + 1 denotes the connectivity degree of any node. The
root node of the tree represents the gateway and all the other
nodes are TAP’s that have no mobility. We define layer [ as the
set of nodes located [ hops away from the gateway node. A link
between two nodes means that these nodes are within transmis-
sion range of each other. Two examples of tree networks are
depicted in Fig. 1: On the left, the parking lot topology which
refers to the special case of a 1-ary tree (linear topology) with
a flow from each node terminating at the right-most node. For
this particular topology, the indices of the layers and the nodes
coincide. On the right, a ternary tree with three layers where all
nodes have a connectivity of m + 1 = 4.

We utilize a baseband-equivalent, discrete-time channel
model for the continuous-time channel. The distance d is
normalized to the unit and we model the channel as

yjln] = @iln] + zj(n] M

where x;[n] is the transmitted signal by node i, and y;[n] is
the destination received signal at the adjacent node j of node
i. The variable z;[n] captures the effects of receiver noise and
other forms of interference in the system. We model z;[n] as
zero-mean mutually independent, circular symmetric, complex
Gaussian random sequences with variance o2. The SNR of the
transmission is defined as SNR= P/¢? with P transmission
power.

With TRP, we also consider the received signal two hops apart
from the transmitting node. Thus, the received signal two hops
apart at node k can be expressed as

yr[n] = wi[n] /27 + zi[n] )

with v channel pathloss exponent.
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We focus on collision-free STDMA protocols that substan-
tially simplify the signal processing algorithms at the receiver as
in [7]. Moreover we assume that TAPs are placed in such a way
that their transmission and interference ranges are the same for
all TAPs and do not vary over time. In regular topologies such
as in Fig. 1, it is equivalent to consider that the distances be-
tween any two adjacent connected nodes are equal, the channel
attenuation coefficients are equal for all links and all TAPs are
transmitting with equal power.

The signal-to-inference-plus-noise ratio (SINR) at any re-
ceiving node should be larger than a threshold 7 depending on
the performance of the receiver

P

R

where i € {1, ..., N} denotes the distance from the interfering
node to the node of interest. For a wide variety of propagation
channels, we have 2 < v < 4, [34], which gives an inter-
ference range of 3-5 times the transmission range. Assuming
the use of omnidirectional antennas, we define the spatial reuse
factor F' as the minimum value of ¢ in (3) plus one, which cor-
responds to the minimum number of hops between two nodes
that can simultaneously transmit without interfering with each
other, i.e., for hop by hop multihop relaying, a receiving node
and an interfering node should be separated by at least F' — 1
hops. Under the assumption that all nodes are transmitting with
fixed power P and have the same transmission and interference
ranges unless mentioned otherwise, the spatial reuse factor I’ is
a constant parameter for the network. With TRP, we also con-
sider the received signal located two hops apart from a transmit-
ting node. Thus, F' should be increased by one from moderate
to high SNR in order to keep the SINR below the threshold 7,
ie., FTRP = F 4 1. Whereas TRP can conceptually be ex-
tended to nodes located more than 2 hops apart from the trans-
mitting node, the SINR is (very) small at these nodes for mod-
erate values of F, F' < 10. In this case, we expect very little
throughput gain versus 2-hop-TRP for two reasons: 1) In order
to keep a reasonably high SINR at nodes located more than
2 hops apart, we must significantly increase the spatial reuse
factor, i.e., FTRY > F 4+ 1. This will cancel the throughput
gain of TRP; 2) Current error-correcting codes such as LDPC
codes or turbo-codes perform poorly at SNR lower than their
theoretical threshold [30]. Therefore, attempting to decode the
message at those nodes would deteriorate the performance in-
stead of helping the transmission. Moreover, their convergence
is very slow in such cases [31] and requires hundreds of itera-
tions; this also reduces the throughput gain.

Finally, we constrain the terminals to employ time-division
transmission, i.e., the terminals cannot transmit and receive si-
multaneously.

III. ACHIEVABLE RATE FOR THE PARKING LOT TRAFFIC
MATRIX (m = 1): THE NONCOOPERATIVE CASE

We first consider a 1-ary tree (m = 1) also known as the
parking lot topology shown in Fig. 1(a). The number of nodes
N is equal to the depth of the tree L. In Section V, we extend our
results to the general case m, m > 1. In Fig. 1(a), we also de-
picted the upstream flows for all nodes. The traffic load heavily
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depends on the position of the link in the network and has a sig-
nificant impact on the cooperation strategy between the nodes,
e.g., in Fig. 1(a) the final link carries four times the traffic of the
left-most link.

A. No Cooperation Between the Nodes

In this section, we determine the achievable rate, i.e., the
throughput per node normalized with respect to the occupied
bandwidth, of an uplink transmission when ‘“no cooperation”
between the nodes is considered. Nodes are obliged to forward
other nodes’ messages on a fair basis share (e.g., round robin);
however by no cooperation between nodes (in the sense of [14]),
we assume that relaying is permitted only as a repeater’s tech-
nique between neighbors. We assume that all nodes transmit
with the same power P. The transmissions are according to
a predetermined STDMA schedule which satisfies the spatial
reuse condition (3), i.e., nodes which are less than F" hops apart
are not scheduled for transmission on the same time slot, how-
ever nodes which are more than F' hops apart are allowed to be
scheduled for transmission simultaneously. This is the common
approach in link layer scheduling [7], [35].

Flow achievable rate Ry, starting at node k is measured by the
rate granted to the flow on its bottleneck link, i.e.

Ry, = sup min t{1(X;; Yi_1) &)

th
i

where t¥ is the transmission time granted to flow & on link (i, i —
1) and I(X;; Y;_1) denotes the channel capacity on this link. All
physical links having the same capacity in our model, we denote
in the sequel I(X;;Y;_1),Vi,i = 1,..., N simply by C.

In our study we are interested in optimizing bandwidth allo-
cation on a fair share basis, i.e., the total resources should be
distributed such that the end-to-end rates are as equal as pos-
sible. Therefore the achievable rate is determined by the flow
that gets the lowest rate

R =sup min

R; 5
s€S kE{l,...,N}{ 3 (5)

where the supremum is taken over all feasible schedules s € S
where S is the set of all feasible schedules. 2} denotes the rate
granted to flow k according to schedule s.

Theorem 1: For the upstream transmission in the parking lot
network with all N nodes fully backlogged, with spatial reuse
factor F', when all nodes transmit with the same power P and all
links have the same capacity C'(P), the achievable rate R(m =
1,F,N) is

_ 20
RLEN) = FaN—F7D) ©
where C(P) equals for Gaussian sources [306]
1
C(P)= 3 log,(1 + P/o?) (7

with o2 noise variance.

The proof of the theorem is given in Appendix A. In the first
part, we prove an upper bound on the achievable rate, i.e., we
suggest a rate and prove that under no circumstances can we
allocate a higher rate to all flows in the network. In the second
part we prove that the suggested bound is tight, i.e., there exists
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Fig. 2. Optimal schedule in a chain topology with spatial reuse factor F* = 4 and N = 8 nodes. The cycle period to transmit one packet of all nodes to the
gateway is equal to F(2N — F' 4 1)/2 = 26 time slots which corresponds to the achievable rate bound given by (6).
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Fig. 3. Optimal schedule for the chain topology with a spatial reuse factor ' = 4 and 8 nodes and with optimum power allocation. In comparison to Fig. 2, all
previous idle time slots are now utilized. In order to avoid the congestion at the closer nodes, the farther the node, the less power it transmits.

a schedule that can realize the rate given by the bound, but there
cannot be any schedule that can achieve a higher rate to all flows
in the network. This result is an extension of [37, Lemma 3.1]
for arbitrary spatial reuse factor in the case of fully backlogged
nodes.

An example of a schedule which realizes the bound for eight
nodes and spatial reuse factor F' = 4 is shown in Fig. 2. On the
horizontal and vertical axes, we show the slotted time and the
node indices, respectively. A square in position (4, ) represents
an active transmission from node % to node 7 — 1 at lag ¢. In order
to locate the path of the messages, the source node number is
plotted in each square.

B. Optimal Power Allocation (OPA)

In the previous section, we assumed that all nodes transmit
with fixed power P. According to the traffic pattern, the closer
to the gateway the nodes, the more time they transmit, e.g., node
1 transmits N/(N — 1) times more than node 2 which trans-
mits (N — 1)/(N — 2) times more than node 3, etc. For node
1+3F, 5 >1,¢0=1,...,F,during a full cycle of the schedule,
there are (j — 1)F + i idle time slots during which it could
potentially transmit additional information without interfering
with the other nodes. However, nodes 1, ..., F would not be
able to forward this additional information to the gateway within
the cycle period because there are no idle slots among the F
closest nodes to the gateway in the optimal schedule. Neverthe-
less, higher throughput might be achieved if the farther nodes
1 > F' transmit also during the idle slots but with lower power
than P. Assume that node i transmits with power P; during t¥
messages to its upstream node ¢ — 1. The farther the nodes are
to the gateway, the lower the transmission power and the longer
the transmission duration, i.e., Py < Py_; < --- < P; and
th. >tk > ... > t¥ In this case, the interference caused

by node ¢ — F' to node 4,2 = F' + 1,..., N is higher than in
the case of fixed transmit power. Thus, in order to maintain the
same SINR (3) at node ¢ as in the fixed power case, we should
use a larger spatial reuse factor F'. However, for sake of sim-
plicity, we keep the same spatial reuse factor F' as in the case
with fixed power allocation and determine the power allocation
Py, ..., P% and the transmission durations t§*, . . ., tk* Vk that
maximize the rate. Since (3) is usually not satisfied for F' for this
case, this rate is an upper bound of the achievable rate in a chain
topology with optimal power allocation.

Theorem 2: For the upstream transmission in a chain
topology of N fully backlogged nodes with spatial reuse factor
F, the rate at any node, R(1, F, N, 3*), is upper bounded by

2(1 + B*)C(P)

R(l’F’N’ﬂ)SF(ZN—F—}—l) (8)
subject to
N &k
S tPr < N(N +1)P/2. )
k=11i=1
where 3* = t1*log(1 + Py /0?)/log(1 + P/o?) — 1. Powers
Pr, ..., Py are determined recursively as: P = Py = --- =

Ppand Pfyp =Alos + el = F+1,.. N,

The proof of the theorem which includes the expressions of
th . ,tﬁ?, k=1,...,N is given in Appendix B.

Note that the achievable rate with fixed transmission power in
(6) is a special case of (8) withf =0,P; = P, =-.--= Py =
Pand th = ... = tk Vk, consequently R(1,F,N,(3*) >
R(1,F,N,0),ie., 8* > 0.

The same example as in Fig. 2 is depicted in Fig. 3 but this
time with optimal power allocations instead of fixed transmis-
sion power. Compared to Fig. 2, all previous idle time slots are
now utilized.



3600
25 T T T T T T T T T
2 -
—~
m
e
-~
[ =
'S 15
()}
o
=z
0 4+
05
0 i i i i i i i i i
0 10 20 30 40 50 60 70 80 90 100
(@) Number of nodes
25 T T T T T T T
P 1000 nodes
L lim G(SNR—+0)=04
— 20 100 nodes I ¢ )
2
~ 24 nodes
£
© 15
(@)
—
>
o
<
D 10
>
o
c 4 nodes \
[ ~—]
5t ]
nb nodes < spatial reuse factor (no gain)
0 = ]
0 5 10 15 20 25 30 35 40 45
(b) SNR (dB)

Fig.4. SNR and throughput improvement with optimal power allocation (OPA)
for the parking lot versus fixed power allocation scheme. The pathloss exponent
equals 2 with spatial reuse factor ' = 4. (a) SNR improvement given by (11)
as a function of the number of nodes in the chain. The noise variance o2 is equal
to 0.1. (b) Throughput improvement given by (10) as a function of SNR.

We illustrate the throughput and the SNR improvement with
optimal power distribution versus fixed power allocation. We
define the throughput gain Gopa (1, F, N, 3) as
R(1,F,N,(3*)— R(1,F,N)

R(1,F,N)

Gopa(1,F,N,3") =
= ﬂ*‘

Because (8) is usually not realizable, (10) is an upper bound of
the theoretical gain. Similarly, the SNR gain Gp, (1, F, N, 5%)
is upper bounded by

(10)

[(1 +Pra?)i - 1]

IOPA(17F7N7ﬂ*)§U2' P

- 1.
(1)

Fig. 4(a) and (b) shows the SNR gain G{,p, (1, F, N, 3*) as a
function of the number of nodes NV in the chain and the upper
bound of the throughput gain Gopa (1, F, N, 5*) as a function
of SNR for different chain sizes, respectively. The throughput
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gain with optimal power allocation becomes negligible at low
and high SNR. For moderate SNR (10-15 dB), the gain is less
than 25% even for a very large chain size (100, 1000 nodes).
Accordingly, the gain in term of signal-to-noise ratio is small.

IV. ACHIEVABLE RATE FOR THE PARKING LOT TRAFFIC
MATRIX: THE COOPERATIVE CASE

In the previous section, we determined the achievable rates
for multihop uplink transmission in a chain topology with spa-
tial reuse factor F'. We assumed the common relaying strategy
that consists of either transmitting its own information or re-
peating the messages received from the downstream node to the
next node for both fixed and optimal transmission power.

In this section we propose a new cooperative relaying strategy
which exploits the broadcast nature of wireless networks where
the communication channel is shared among multiple adjacent
nodes.

A. Introduction to Multi-Hop Transmission With
Turbo-Relaying

There exist three main protocols for the classical three-node
relay channel [10], [11], [38]: amplify-and-forward, decode-
and-forward and compress-and-forward also referred to as
quantize-and-forward. Although amplify-and-forward is the
easiest to implement, a drawback of this approach is the noise
amplification which occurs at the intermediate node [39].
Several compress-and-forward strategies based on Wyner-Ziv
coding have been recently proposed in [39]-[41]. Particularly,
those schemes exhibit promising gains when the relay node
is close to the destination. In our channel model, the distance
of all links are assumed to be the same, i.e., any intermediate
node is located in the middle of its downstream node and the
next node. Thus, we limit our study to decode-and-forward
protocol which is the best strategy among the three protocols
in that case. Recent implementations of decode-and-forward
protocol based on LDPC codes perform as close as 0.6 dB to
the theoretical limit [16], [31], [32] with single user compu-
tational complexity. The strategy in [31] is as follows: In the
first time slot, a source n transmits part of the codeword which
includes all information bits plus some redundant bits. Nodes
n — 1 and n — 2 receive it but only node » — 1 can decode
it. Node n — 1 re-encodes it with a high-rate LDPC code and
transmits the redundant bits to node n — 2. The rate of the
LDPC code at the intermediate node is chosen such that node
n — 2 is able to decode the transmitted codeword based on the
data received in both time slots. Perfect channel knowledge is
assumed at the three nodes n,n — 1, and n — 2. Fig. 5 illustrates
the strategy that we call Turbo Relaying. The arrows represent
transmissions for three consecutive time slots.

Whereas this approach does not take full advantage of the
beamforming gain as the source does not transmit together with
the relay, it can be shown [42] that the loss versus the case where
both source and relay transmit, does not exceed 10% for all
configurations presented in this paper. Moreover, in order to
fully benefit from the beamforming gain, both source and relay
nodes have to be perfectly in phase and time synchronized at the
sample level asin [14], [23], [31]. This synchronization task may
introduce significant overhead. In our case, since only the relay
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Fig. 5. Turbo Relaying strategy. Node n sends a packet such that node n — 1 is
able to decode it but node n — 2 is not, since the distance between nodes 7 and
n — 2 is larger than the transmission range. However, node n — 2 “listens” to this
signal and stores it. Then, node n — 1 transmits to node n — 2 only the necessary
information such that in addition to the previously stored received signal, node
n — 2 can decode the full packet. In the same manner, the process repeats itself
until the root node is reached.

X v Y% X X Y Xy vy
0(0‘/,0 e -0 o *—0
Phase 1 Phase 2 Phase 3

Fig. 6. Turbo Relaying strategy in a multihop transmission for a chain of three
nodes (two nodes in addition to the gateway node). The dashed line in phase 2
refers to the classical “three node relay case” in TD fashion [43]. In this case,
there is no phase 3 since the relay does not have to transmit its own data.

node transmits in the second phase, only frame synchronization
is required, i.e., we assume that the relay detects the end of the
transmitted message, decodes the message and starts to forward
it to the destination within one or a few symbol periods. This
delay becomes negligible as the message size tends to infinity.

Before detailing the calculation of the achievable rate based on
this strategy for an arbitrary number of nodes, we treat the case of
achain with three nodes, i.e., nodes 1 and 2 and the gateway. This
special case differs from the classical “three node relay channel”
in the time-division (TD) mode, see for instance [31], [43], in
1) in the classical relay channel, the relay, i.e., node 1 with our
notations, does not have its own information to transmit, and
2) Bounds for the achievable rate usually require perfect power
control. In order to satisfy the spatial reuse constraint (3), we
assume that all nodes transmit with fixed power P.

For a chain with three nodes in TD mode, the upstream trans-
mission schedule is shown in Fig. 6.

In (5) of [31], it was shown that the achievable rate in TD
mode for node 2 to transmit to node O is

R = max min{t;I(Xo; Y1)+ t2I(X5; Yy | X7)
i1,to
tit+ta <1

t11(X2; Yo) + t2I(X5, X1;Yy)}

where X5 is the transmitted signal by node 2 during the first
phase with duration ¢;. Node 1 and the gateway node receive
a noisy version of it, namely Y; and Yy, respectively. X} and
X represent the signals transmitted simultaneously by nodes
2 and 1 during the second phase with duration #5; Y] is the
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X/ = 0. Moreover, node 1 must also transmit its own packet
during a third phase with duration 3. Therefore, the achievable
rate becomes

R = max min{t1I(X2;Y1)/(t1 + t2 + t3)

ty,to,t3
[t 1(X2; Yo) + 2 (X5 Y0)/ (81 + t2 + t3)
tsI(XT5YG')/(t + 2 + 13)}-

The rate R is maximized when the three terms are equal
[43], ie.: tll(XQ;Y]_) = tll(Xg;Y()) + tQI(X{,YOI) =
tsI(X{;Yy"). Assuming fixed transmission power P for all
nodes, we have I(X{;Yy) = I(X3;Y1) = C(P) with
C(P) given by (7) which gives t3 = ¢;. According to
our propagation model, I(X7;Yy) is also equal to C(P)
and I(Xy;Yy) = C(P/27). Therefore, t; can be ex-
pressed as: to = t1[[(X2; Y1) — I[(Xo; Y0)|/I(X1;Yy) =
h(1— C(P/21)/C(P)).

Denote «« = C'(P/27)/C(P). The achievable rate for nodes
1 and 2 becomes: R = t11(X2;Y1)/(t1+t2+1t3) = C(P)/(3—
«). The coefficient « is loosely bounded by: 0 (low SNR) <
a < 1 (high SNR) so the throughput R is bounded by:

C(P)/3 < R < C(P)/2.

For a chain of 2 nodes with single-hop relaying, the achievable
rate is equal to C'(P)/3. Therefore, the achievable rate based on
TRP is always equal to or greater than the single-hop relaying
case and the throughput improvement is up to 50%. This result
is obtained without any power allocation optimization.

B. Turbo-Relaying Protocol (TRP) in a Chain Topology of n
Nodes

In this section we extend the Turbo Relaying strategy to a
chain of any size. Our main results are summarized in the next
two theorems.

Theorem 3: Define the coefficient « as the ratio between the
capacities of a single-hop transmission and a direct two-hop
transmission

_C(P/27) log(l+ P/275?)
~o(P)  log(l+PJo?)

(12)

The rate with Turbo-Relaying Protocol for parking lot topology
is upper bounded by (13) shown at the bottom of the page with

@1(04)

=(F-1D)1-(-a)D1+a)+ 1+ a)(F+1)
—[1 = (=) ()N 2

. - . . and
noisy superposition of those signals received at the gateway. In
order to avoid node synchronization at the sample level, we as- ®5(a)
sume that node 2 does not transmit during the second phase, i.e., =ax(N=F-1D(1+a)(-a)f 71+ [1 = (=a)F*1)).
2(14+a)3C(P)
R(1,F,N,1,0) <  [FFTD0N 3F72)02F (FDIFay 2ati(a)” N>2F+1 (13)
T 2(1+a)°C(P) N<2F+1

(2NF—F?2+4+F+2)(1+a)?4+2N (1+a)a+2a® () ?
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Upper bound of the achievable rate
8 (not feasible in the general case)

Distance to the gateway node

Fig. 7. Example of a schedule with Turbo Relaying Protocol for a chain
topology with spatial reuse /' = 4 and N = 8 nodes. This schedule realizes
the achievable rate given by (14). Note that the transmission durations only
depend on the relative distance between the transmitting nodes and the source
node. For example, t§ = t],4I = t2,17 = 7, etc.

Theorem 4: The rate R(1, F, N, 1, ) with Turbo-Relaying
Protocol for parking lot topology is achievable if

R(1,F,N,1,q)

< 2(1+ «)3C(P)
~ [(F4+ 12N — B))(1+4 a)? + 2aP3(a)

(14)
with

P3=14+a)(F+1)—[1—(—a)f T (~a)NF.

The proofs for both Theorems 3 and 4 are given in Ap-
pendix C.

In the general case there is no schedule that realizes the upper
bound suggested in Theorem 3. Theorem 4 proposes a schedule
that asymptotically with the number of nodes realizes the
bound. In addition we prove that for small or moderate number
of nodes, the achievable rate of the schedule is tight with
the upper bound. Even though other schedules might achieve
slightly better rate, the schedule that we suggest is simple in
the sense that all nodes use the same strategy to forward their
message regardless of their distance from the gateway.

An example of a schedule which realizes the bound for eight
nodes with spatial reuse F' = 4 is shown in Fig. 7.

The schedules in the non cooperative case and the cooperative
case are similar with respect to the node transmission order but
differ in the following two points: 1) the duration of each time
slot differs with TRP depending on the relative distance between
the transmitting node and the source node; 2) the spatial reuse
factor needs to be increased by one unit with TRP in order to
satisfy the spatial reuse constraint (3). Because all links have
the same capacity and nodes do not interfere with each other,
achieving the rate (14) over multiple links simultaneously with
TRP as in the schedule on Fig. 7 is equivalent to independently
achieve several times the rate of three-node relay channel. In-
formation theoretic arguments about how to achieve this rate
including codebook construction can be found in Appendix A
in [43].

Define Grrp(1, F, N,1,«) the throughput gain with TRP
versus the single-hop relaying case with fixed transmission
power as

R(1,F,N,a) — R(1,F,N)
R(1,F,N)

GTRP(17F7N717O‘) = (15)
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Fig. 8. Throughput gain for Turbo Relaying Protocol, given by (15). At high
SNR for a chain of 12 nodes, TRP increases the throughput (14) by 66% com-
pared to the noncooperative solution (6). Both strategies assume optimal spatial
reuse. The channel pathloss exponent is equal to 2 for all cases with spatial reuse
factor F' = 5.
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where R(1, F, N) and R(1, F, N, «) are given by (6) and (14).
The asymptotic gain improvements are summarized as follows

NhI-Ii-l GTRP(17F7 N7 ].704) = (OZF - 1)/(F + 1) (16)
. F/27 —1

SNR—>1(},HJ\17—>+OO Grre(1, F, N, 1,0) = CF+1 17

SNR,IJI\/UL-FOOGTRP(LF’N’LOZ) = 1_2/(F+1) (18)

In the low SNR regime, o = 1/27 with « pathloss exponent.
Assuming v = 2, node cooperation gives some gain as long as
the spatial reuse factor F' is equal to or greater than 4 at any SNR
for large networks. At high SNR and large spatial reuse factor
F, TRP nearly doubles the throughput compared to the classical
case. Indeed, a = 1 corresponds to the fact that a node located
two hops away from a transmitting node can directly decode the
received packet without any additional information.

In (7), we considered Gaussian signals. However, it is in-
teresting to evaluate the performance gains for constellations
with finite alphabet. As the achievable rates are proportional to
the link capacity C'(P), the throughput improvement given by
(15) can be expressed for any modulation. In Fig. 8, we com-
pare the throughput gain for Gaussian signal and quadrature
amplitude modulated signal with four levels (4-QAM) between
the three schemes: 1) conventional hop-by-hop relaying scheme
with optimal scheduling (6), 2) hop-by-hop relaying scheme
with optimal scheduling and optimal power allocation (8), and
3) TRP (14). Since « in (12) is larger for QAM-sources than for
Gaussian signaling, the throughput gains are greater for 4-QAM
signals than for Gaussian signals at any SNR, for any chain
size and any channel pathloss exponent. Clearly, TRP with fixed
transmission power outperforms both conventional hop-by-hop
relaying schemes (6) with fixed power allocation or (8) with op-
timal power allocation at any SNR for any chain size. We also
plotted the throughput gain based on the achievable rate upper
bound given in (13). When the number of nodes in the chain is
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smaller than the spatial reuse factor, e.g., 2 nodes with spatial
reuse factor /' = 5 in Fig. 8, the upper bound (13) matches the
achievable rate. For larger chain, e.g., 12 nodes in Fig. 8, the
upper bound is tight and the gap between (14) and (13) does not
exceed 6%.

V. THE GENERAL CASE m > 1: REGULAR TREE NETWORK
WITH CONNECTIVITY DEGREE OF m

In this section, we extend the Turbo-Relaying Protocol to an
arbitrary m-ary tree network with m > 1. The main differ-
ences with the parking lot topology are 1) spatial reuse can be
exploited not only within a single flow’s path but also through
any other path of the tree, and 2) several nodes have to forward
data toward to the same node in rm-ary tree topology. As in the
parking lot topology we first derive the achievable rate for the
noncooperative case, and then proceed with the cooperative case
(TRP).

A. No Cooperation Between Nodes

We first determine the achievable rate per node of an uplink
transmission for an m-ary tree network when no cooperation
between nodes is considered.

Theorem 5: For upstream transmission in a regular tree net-
work with connectivity degree m, N fully backlogged nodes,
spatial reuse F' and fixed transmission power P, the rate at any
node, R(m, F, N), is achievable if (see (19) at the bottom of the
page).

The proof is given in Appendix D. It has the same structure
as the proof of Theorem 1, i.e., we first prove an upper bound
to the achievable rate, and subsequently we present a schedule
that realizes the bound.

B. Multihop Transmission With Turbo-Relaying

In this section, we extend the Turbo-Relaying Protocol to
an m-ary tree network. We present the achievable rate based
on the TRP strategy for any regular m-ary tree for upstream
traffic, and suggest a schedule that realizes this rate. We focus
on schedules that are simple to implement, in the sense that all
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nodes are using the same strategy. Although some schedules
might achieve higher by exploiting idle slots, we expect modest
gain as we showed for parking lot topology. Therefore, we omit
the discussion about the achievable rate upper bound. We show
that even if we use a simple schedule which is not optimal, the
gain over the common hop-by-hop transmission is above 70%
in most practical scenarios. The main result is summarized in
the following theorem.

Theorem 6: For the upstream transmission in a regular m-ary
tree network with depth L, all N nodes fully backlogged, and
spatial reuse /', when all nodes transmit with the same power P
and all single-hop links have the same capacity C(P), the rate
with TRP is achievable with (20) at the bottom of the page.

In order to prove that the rate presented in (20) is achievable
with TRP, we suggest a schedule that attains this rate. We also
show that using TRP without any modification (such modifica-
tions were proposed for the parking lot topology in Section C.A
in order to determine an upper bound of the rate), the suggested
schedule is optimal, i.e., we cannot increase the rate by sched-
uling the nodes or the flows differently. The proof is given in
Appendix E.

C. Simulation Results

In this section, we illustrate the throughput improvement
with TRP. For an m-ary tree with spatial reuse factor I’ and NV
nodes, the analytical throughput gain of TRP versus single-hop
relaying is given by
R(m,F,N,a) — R(m,F,N)

R(m,F,N)

GTRp(m7F, J\/v7 Oz) = (21)
where R(m,F,N) and R(m,F, N, «) are given in (19) and
(20), respectively. Fig. 9 shows Grrp(m, F, N, «) as a func-
tion of the noise level for several connectivity degrees. In all
cases, the tree depth is 8 with spatial reuse F' = 5 and channel
pathloss exponent vy = 2.

The throughput gain with TRP is greater than 50% at SNR =
12 dB for 4-QAM signaling. We also observe at high SNR
the same asymptotic gain for Gaussian sources at high SNRs.

2C(P)m(m
R(m, F,N) =

“mlF2 Ly,

—1)2/{[N(m — 1) + m][m(F —2) + 2]
x(m — 1) 4+ 2m*/2(1 — 2m) + 2m?},

(m = 1)2C(P)/{[N(m = 1) + m](m — 1)([F/2] = 1)

if F'is even
(19)

if F'is odd.

~N

m(m

R(m7F,N,a) <

r

- 1)2(1 + a)?(1 + ma)C(P)/{[N(m — 1)
+m][(m|F/2] + 1)(1 + «)(1 + am)

x(m —1) 4+ (—a)FH 2 (m — 1)2[1 + o — ma
X(1 = (=a)F2H] = (14 a)?

x[mF/21+ 1 (2m — 1) —
(m —1)2(1 + a)?(1 + ma)C(P)/{[N(m
+m][(F/2)(1 + a)(1 + am)(m — 1)
+(—a) 22— (—a) /2] (m - 1)?]
—(14a)*(mf/? = 1)},

m2]}, if F'is odd (20)

~1)

if F'is even.
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Fig. 9. Throughput improvement in (21) for Turbo Relaying Protocol (20)
versus conventional hop by hop relaying (19) as a function of the signal-to-noise
ratio for several connectivity degrees 12. Both strategies assume optimal spatial
reuse. The throughput gain with TRP is greater than 50% at SNR = 12 dB.
We observe the same asymptotic gain with Gaussian sources for high SNR.
Throughput improvement is higher as the connectivity degree of the tree
increases for 4-QAM and Gaussian sources. For m = 5, the gain approaches
100% for 4-QAM signaling for SNR greater than 15 dB. In all cases, the
channel pathloss exponent is equal to 2 with spatial reuse F' = 5.

Throughput improvement is higher as the connectivity degree of
the tree increases for 4-QAM and Gaussian sources. This is due
to better spatial reuse within the layers and the subtrees if m is
large as discussed in Theorem 6. For . = 5, the gain approaches
100% for 4-QAM signaling for SNR greater than 15 dB.

VI. CONCLUSION

We proposed the Turbo-Relaying Protocol to increase each
node’s throughput of upstream transmission in tree topologies.
We determined the achievable rate for any regular tree networks
based in this protocol. Whereas power optimization leads to a
near-zero throughput gain compared to the basic case of mul-
tihop hop-by-hop transmission with fixed power allocation, we
showed that our approach can achieve over 66% throughput gain
for any regular tree with any connectivity degree. For large con-
nectivity degree and sufficient SNR, the gain approaches 100%.
Whereas the cooperative strategy that we propose can be ex-
tended to different transmission ranges and/or the interference
ranges, theoretical analysis depends heavily on the choice of
topology and the propagation model. In the case of time-varying
channel, it might be interesting to follow the approachin [11] for
single relay or in [44] for multiple relays where the outage prob-
ability behavior is analyzed in Rayleigh fading environment.

APPENDIX A
PROOF OF THEOREM 1

First we show an upper bound on the achievable rate, i.e., we
suggest a rate and prove that under no circumstances can we al-
locate a higher rate to all flows in the network. In the second
step we prove that the suggested bound is tight and can be real-
ized, i.e., a lower upper bound cannot be found.
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A. Upper Bound of the Achievable Rate

A flow achievable rate is based on the minimum rate granted
to the flow over all links. By taking the minimum over only
a partial set of the links which includes only the first F' hops
(closest to the gateway), flow k achievable rate is upper bounded
by
mln{t?I(XF, YF_]_), t];‘_ll(XF—l; YF_Q), ceey
#I(X1;Y0)}, F<k<N
min{t],:I(Xk; Yk—l)-, tﬁ_ll(Xk_l; Yk_g), ceey

Ry < (22)

Since the achievable rate is determined by the flow that
gets the lowest rate, and since I(X;;Y;—1) = C(P)Vi €
{1,2,..., F}, the achievable rate upper bound is determined
according to miny ;< p{ t#}. Denote T as the total time granted
to all flows on the first F' nodes (nodes 1,2,...,F), ie,
=N sominth gk Recall that the spatial reuse factor is
F, i.e., two nodes that are separated by less than F' hops cannot
transmit simultaneously. Accordingly, based on (22) the rate
upper bound is obtained by splitting 7 equally between all ¢¥,
ie.

T

ConEEth

B 2T k=1,...,N
 F@N-F+1) i=1,...,min(k,F).

Since all t¥ and 1(X;;Y;_1) are equal, R}, according to (22)
is the same for all k. Note that this maximization guarantees a
total fairness among the flows. We normalize the total schedule
duration to one time unit. Since 7 is the transmission duration of
a partial set of nodes for which no spatial reuse can be exploited,
it cannot exceed the complete schedule duration, i.e., 7 < 1.
Accordingly, the achievable rate is upper bounded by

pe_ 20(P)

SFEN - F 1) @y

This completes the proof of the first part. It is important to note
that without suggesting a schedule that can realize this bound,
it is not clear that the bound is tight. Next we present a schedule
that realizes the bound.

B. Lower Bound on the Achievable Rate

Since the achievable rate is determined based on the schedule
that yields the highest rate in (5), a rate corresponding to any
specific schedule is a lower bound to the achievable rate. We
describe the schedule and determine its rate.

Due to spatial reuse all nodes which are F' hops apart can
transmit simultaneously without interference but nodes which
are less than F' hops apart cannot transmit simultaneously.
Hence, it takes F' time slots to forward each packet by exactly
one hop, i.e., forward one packet from node N to node N — 1,
one packet from node N — 1 to node N — 2, ..., one packet
from node 2 to node 1 and one packet from node 1 to the
gateway. Thus it takes N — F' time slots to forward one packet
fromnodes NN —1,...,N—F+1tonodes F, FF—1,...,1
respectively, and one packet from the rest of the nodes to the
gateway. Since there is no spatial reuse, the time needed to
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forward the remaining packets from nodes F, F' — 1, ..., 1to

the gateway is F, F' — 1,...,1 time slots, respectively. Hence
the total time required to bring one packet from each node to
the gateway is (N — F) - F' + (FJ;})'F = F(2N;F+1). This
process can repeat itself cyclically.

Assuming that all messages carry C'(P) information bits per
channel use, and since each flow transmits at least one message
to the gateway, the achievable rate realized by the schedule per
flow is greater than m, ie., Ry > (Fi;]?igpm.
Accordingly the achievable rate is bounded from below (5), i.e.

2C(P)
(F(2N — F + 1))’

R>

Since the lower bound matches the upper bound in (22), the
suggested schedule attained the achievable rate.

Remark: In [45] it was shown that in a network in which the
attenuation between any two nodes is strictly positive, i.e., every
node is within interference range of any other node in the net-
work, max-min fairness yields equal rates to all flows. However,
note that the difference in our model is that nodes which are F’
hops apart can simultaneously transmit without interfering with
each other, i.e., neither of two transmitters which are /"4 1 hops
apart and scheduled for transmission on the same time slot, will
have any rate gain by the decrease of the other transmitter’s rate.

APPENDIX B
PROOF OF THEOREM 2

We first determine the achievable rate per node for arbitrary
power allocation and arbitrary coefficient (3 defined as

thC(P)F(2N — F + 1)

i -1
2C(P)

(24)

where t¥ and P; satisfy (9).

Proposition 1: For the upstream transmission in a chain
topology of N fully backlogged nodes with spatial reuse factor
F and given power allocation {P;, Ps,..., Py} subject to
constraint (9), the rate at any node, R(1, F, N, ), is achievable
if

2(1+B)C(P)

R(1,F,N,0) < ———F—"—F—~. 25
(LF, ’B)_F(ZN—F+1) @)
Proof: According to (4), the flow rate is defined as
— min +¢ .
Ry = onin, t;C(P;). (26)

For fixed power scheme, we found in Theorem 1 that the flow
rate Ry, is achievable if R, < 2C(P)/F(2N — F +1).1In (24),
the coefficient 3 is defined as the ratio between the achievable
rate for flow k£ given by (26) and the achievable rate without
power allocation optimization (6). By taking the minimum flow
rate over all values of k,k = 1,..., N, we obtain (25).

We wish now to determine the optimal transmission powers
Py, ..., Py and the optimal transmission durations th* .,
tﬁ*, k = 1,..., N that maximize the achievable rate (26). Our
main result is summarized in the following proposition.
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Proposition 2 (Optimal Power Allocation): Define n;,i =
1,...,F as

N N
7= maX{th./ Z tf_i_F,...,

k=1 k=i+F
N

>

k=it [(N—i)/FJ(F~1)

triv—irir @D

with normalization: Zf;l 1; = 1. Consider an upstream trans-
mission of the unitary tree network with power and time-sharing
allocated among the relays in such a way that the throughput per
node is optimal subject to (9). Then, the power allocation/time-
sharing optimization problem is equivalent to the following op-
timization problem:

{(Py,...,P% th=, ...

= arg

AR k=1,...,N}
%1 log(1+ P1/o®) (28)

min
N1sM25--Me, Py
subject to (9) and the following constraint:
_m1

F m(NZi4D) | P En
Z nin " ’ ! g
i=1 1— Wl_ Nn;
< N(@2N - F+1)/24+ N(N +1)P/20> (29)
where we define: Wi = 1+ P /o2
Powers P5 ..., Py are derived from P and n7,...,n} as
follows:
v]ik(N.—i+1)
Pr=0o*(1+P;/o?) ¥ —1, i=1,...,F
(30)
and
fpai = 0214+ Py o) TR
ji=1...,[(N=-49)/F|-1i=1,....,F. (31
Proof: By keeping the same spatial reuse con-

straint as in the fixed transmission power case, all nodes
i+ F,....i+ F|(N —4)/F],i = 1,...,F can transmit
simultaneously but not with nodes ’,i' + F,...,i + F|[(N —
i)/F|,i = 1,...,F,7 # 4. Node i + jF has to transmit
the information of the N — ¢ — jF nodes located below itself
in addition to its own information and is given at most the
duration 7; to do so. Based on Jensen’s inequality [10], the
rate at node ¢ + jF' is maximized if the power is spread as
much as possible, i.e., if node ¢+ 4+ jF is transmitting during
7. Therefore, we have: (N — i — jF + 1)t5, ip = mii =
1,...,Fj =0,....,[(N —9)/F|,k = i,...,N. The total
power constraint becomes

m(Pr+ Pry1+ -+ Pryn—1)/F)41) + -
+np(Pr + Poap + -+ Pp|n/F))

< N(N +1)P/2. (32)

’l;che relations.hip 'between th iF ind th +;F can be .expressed as:
tip(N —i=jF+1)/n; =t g (N =@ = j'F +1)/n.
Achievable flow rate R, of node k is maximized if all terms in
(4) are equal, i.e., if t*C(P;) = t;‘?C(Pj),z' =1,...,N,j =
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1,..., N with OPA. By combining the two latest expressions,
we have
ny(N—i41)
W, =w, "% i=1,...,F
N—i—jF+1

Wi+jF:WL' N ) J:07|_(N_L>/FJ

that are equivalent to (30) and (31), respectively with W; =
1 + P;/o?,Vi. By combining them with (32) we obtain (29).
Note that we reduce the number of parameters from N+ N (N +
1)/2 = O(N?) in the initial optimization problem to F + 1
parameters, P; and 71,...,nr. Therefore, the computational
complexity of the power optimization does not depend on the
number of nodes. To the best of our knowledge, there is no an-
alytical solution to (28) subject to (29) for general case. A nu-
merical solution can be found with Matlab for example.

The upper bound given by (25) of the achievable rate becomes

2(1+ B*)C(P)

R(1,F. L.3%) <
LELS) S goN—Fa 1)

(33)
where * = 1} log(1 + Py /0?)/Nlog(1l + 1/0?) — 1.

APPENDIX C
PROOFS OF THEOREMS 3 AND 4

We first determine an upper bound of the achievable rate as
for the non cooperative case (Theorem 3). Contrary to the non
cooperative case, there is generally no schedule that realizes this
bound over TRP. Here, we propose a simplified schedule for
practical considerations that asymptotically with the number of
nodes realizes the bound. We also show that the achievable rate
of the schedule is tight with the upper bound for small or mod-
erate number of nodes.

A. Upper Bound of the Achievable Rate

Since TRP is based on decode-and-forward scheme, each
intermediate node has to decode the message wj, of node k.
Accordingly, node £ — 1 can decode the message reliably as
long as the length of the coded sequence X (wy) is large and
RF < t¥I(Xy; Yy—1). Based on the same arguments suggested
for the three-node relay case e.g., Appendix A in [43]), node
7 — 1,5 < k can decode the message reliably as long as all
previous nodes are able to decode the message and in addition
it receives enough information from its previous one and two
hop neighbors, hence

Rf < min {Rﬁ,ng_l, ey
Ry pq 51 H(X 03 Y1) + 5 1(X53 Y1) )
Therefore, according to (4), the flow k achievable rate Ry, is
Ry = min {t{1(Xy; Yi_1),

pmin ARG 6 T(X5 40 Y5) + 1Y) - G
In order to derive an achievable rate upper bound for TRP, we
determine a lower bound on the cycle duration of any feasible
schedule, where a cycle is defined as the minimum time needed
to transmit at least one unit of information from each node to
the gateway. We lower bound the cycle duration by considering
the minimum transmission time needed only over the first F'4 1
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hops instead of F' hops in the non cooperative case in order to
verify the interference model in (3). Part of the information orig-
inally sent by nodes that are located farther than F'41 hops away
from the gateway, reaches node F’ directly with TRP when node
F' + 2 transmits. Theoretically, node F' can receive all informa-
tion directly from node F' + 2 without node F' + 1 transmitting
even one bit. Hence, in order to compute the minimum duration
over the first F' 4+ 1 hops, we have to take into account the in-
formation already received by node F’ directly from node F' + 2
when F' + 2 was transmitting to node F' + 1.

In order to determine the amount of information that node
F + 2 already transmitted to node F', we define the two sets
of flows ¢1 and ¢ as ¢ = {1,2,...,(N — F — 1)} and
¢2 = {(F +2),(F + 3),...,N}, respectively. Additionally,
denote 7; and 7o as the minimum time needed to transmit the
information of the set of nodes ¢; all the way to the gateway
and the minimum time needed to transmit the information of
the set of nodes ¢ to node F' + 1 respectively. For symmetry
reason, 7y = To, i.e., the minimum time required to transmit
one unit of information from each flow in ¢, all the way to the
gateway is the same as the minimum time required to transmit
one unit of information from each flow in ¢ all the way to node
F + 1. Furthermore, node F' + 2 transmits the same amount of
information as node 1 during 7;. Assuming optimal schedule,
there are no extra idle time slots available for node F' + 2 to
transmit extra information to node F' during 7;. However 7 is
only the amount of time needed to forward the flows in set ¢
to the gateway and the flows in set ¢ to node F' + 1. The in-
formation from flows {N — F+1,N — F+2,..., N} thatdo
not belong to ®; still needs to be forwarded from node F'+ 1 to
the gateway. As mentioned above, some of the information al-
ready reached node F' over TRP after 7. However, since we are
considering an optimal schedule, no information that belongs to
these flows has reached beyond node F), i.e., during 71 nodes
{1,2,...,F + 1} did not transmit any information belonging
to flows {N — F +1,N — F +2,..., N}. Denote 73 as the
minimum amount of time needed to forward these latter flows
to the gateway. Assuming that during 71, node F' + 1 receives
all information which belongs to flows in set ¢, node F' + 2
can further exploit during 73 any additional time it can transmit
without interfering with node 1 while the latter node is transmit-
ting. Indeed, node F' + 2 can transmit to node F' additional in-
formation that belong to flows {N — F+1,N—F+2,...,N}
that node F' has not received during 7;. Therefore, the dura-
tion of 73 can be (slightly) shortened. Nevertheless, the time that
node F' 4 2 can transmit the additional information without in-
terfering with the other nodes is limited to the time that node
1 is transmitting to the gateway. Hence, the first time that node
F + 2 can transmit this information to node F' is when node
1 is transmitting flow N — F' to the gateway, the next time is
when node one is transmitting flow NV — F' + 1, etc. Moreover,
the capacity of the link between node 1 and the gateway is sig-
nificantly higher than the capacity between node F' + 2 and F'.
Therefore, for practical scenarios, node F' 4 2 does not have
sufficient time to transmit all information to node F'. Neverthe-
less, in order to provide a lower bound on the duration of 73, we
shall assume that node F' receives all the information of flows
N—-—F+1,N—-F+2,..., N directly from node F' + 2, i.e.,

during 73 node F'+ 1 does not need to transmit any information
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to node F'. As previously explained for realistic scenarios, no
schedule can realize this bound in the general case.

In (35) (shown at the bottom of the page) we summarize the
upper bound of the transmission rates. We consider only the first
F'+1 layers where no spatial reuse can be used. Therefore, these
terms are the dominant terms in (34) that determine the cycle
period

Forflow k,1 < k < F, we count all transmissions since there
is no spatial reuse. For flow k, FF < k < N — F, we consider
only transmissions over the last F' + 1 hops as they belong to
set ¢1, and for flow k, N — F 4+ 1 < k < N, which belongs to
set ¢o we consider only the transmissions over the last F' hops.

In order to determine an upper bound on the achievable rate,
i.e., a lower bound on a full cycle period, we determine the du-
rations t;? that minimize (35), 1 < 57 < F+ 1,1 < k <
N. We start by computing the minimum duration fﬁ needed
for node k,k = 1,...,N to send its own information, i.e.,
the minimum duration to sustain a rate RY of at least C(P)
per time slot normalized to the unit. Thus, each term in the
minimization in (34) should be greater than or equal to C'(P).
Then, we have: t*C(P) > C(P), ie., t¥ > 1. The second
term tRI(Xp; Vi o) + th_ I(Xy_1;Yy o) = thC(P/27) +
tk C(P) should also be greater than C(P) to guarantee a flow
rate of C(P). Hence, t’g_l > 1 — o, where a denotes the ratio
between the achievable rate of one hop and two hop transmis-

. . P/27 .. . .
sions, i.e., o« = C(C(é) ) | Continuing in the same manner with

the other terms in (34), we get t% > SF 7 (—1)iai.
In order to bound 71 from below, we sum the time needed to
transmit the information from flows in set ¢; through the last
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of flows that can benefit from the “extra” idle slots is smaller
than F' — 1, and depends on N. In the latter case, the number
of flows that “push” extra information over TRP to node F' is
constant and is equal to /' — 1. Also note that for completeness
we should have also differentiated the case where N < F +
1, where no flows can facilitate any extra idle slots, i.e., the
upper index in the first sum should have been: min{max{N —
F + 1,F + 1}, N}. However, since in the latter TRP and the
optimal case coincide, we omit this term for simplicity and the
achievable is given by (4).

Next we determine a lower bound on 73. Assuming that all
messages N — F; N — F 4+ 1,..., N already reached node F’
during 7, the minimum amount of time needed to forward flows
N—-F+1,N-F+2,..., N from node F' to the gateway, is

’ ’

N F F—j

)SREND ) et

k=max{N—F+2,F+2} j=1 i=0
(F-1)F a(F-1)(1—(—a))

T3 2>

_ TFa T (1+a)? - N>zl
(N—F-1)F | a(N—-F-1)(1—(—a)")
—— + o) , N<2F+1.

For the same reason as above, we omitted the case where
N < F + 1 which coincides with TRP. Combining both lower
bounds on 7; and 73, the total time 7 needed to achieve a rate
of C(P) per hop between any node and the gateway is lower
bounded by (36) also shown at the bottom of the page. Hence,
the achievable rate is upper bounded by

F + 1 hops. Based on the previous calculations of t;“ j—1,T1 18 C(P)
lower bounded by the second equation at the bottom of the page. R < - (37
Note that we distinguished in the first sum between the cases
N <2F+1and N > 2F +1, since in the first case the number ~ where 7 is given by (36).
( min {téI(Xk, Yk_1)7 téI(Xk, Yk_g)
+th I Xp—1; Yi—2), ...
t5I( X0 Vo) +t51(X1; )} 1<k<F,
min {t%+1I(XF+1; YF—I) + t];‘I(XF, YF—I)
R, < thI(Xp;Yp_o) +th  I(Xp_1;YF_2),..., (35)
min {t%I(XF; Yr_1)
t’;](XF; YF_Q) + t’;}s_ll(XF_l; YF_Q), ey
max{N—F+1,F+1} min{F+1,k} k—j (F+1)(2N—3F+2) | o(1+a)(F+1)+(1—(—a)" T (—a)¥ 721'T?)
Tz Z Z Z(_O‘)i = (F 1;&?3; [(—1}_+ )(F+1)+ (1 ( (1;rFa+)f)] SR
k=1 j=1 i=0 2(01a) + 4y , N <2F + 1.
(F+1)(2N—3F+2)+2F(F-1) + a(F=1)(1—(=a)")
2(14a) ] (1v+o¢)2
+a(l+a)(F+l)+(1(_1(_|__:)); +1)(_Q)N—2F+27 N>oF+41
T=1T1+ T3 S INF_F24{F42 + (N— _1)(_0)F+1 (36)
2(14a) i (1;!—31)2
_|_04N(1+04)-|('104+£1);(—a) )7 N < 2F + 1.



3608

B. Achievable Rate

We consider a schedule for which all flows are forwarding
the messages in a similar fashion, and all nodes are using the
same strategy regardless of their distance from the gateway.
Contrary to the approach that we considered to determine the
upper bound, we do not exploit the idle slots in layer F' + 2
during 73 to transmit extra information to node F'. We show that
even so, the rate of the suggested schedule is very close to the
achievable rate upper bound. As pointed out in the previous sub-
section, no schedule can realize the upper bound (14) even if the
idle slots are exploited.

The schedule is based on the time sharing of the full cycle
duration among the first F' + 1 nodes (nodes 1,2,..., F + 1)
such that any of these nodes has sufficient time to forward to the
gateway one message from all nodes located below in the chain.
We show that during this cycle, by exploiting spatial reuse, it is
possible to schedule the forwarding of one message from each
of the nodes F' + 2,..., N to reach node F' + 1.

With spatial reuse factor F' + 1, nodes

. ) N
E+i(F+1), 1<kE<F+4+1,0<i< {F-ﬁ-lJ

can transmit simultaneously without interfering with each other
hence they are scheduled to transmit simultaneously. The trans-
mission duration of the forwarded information with TRP de-
pends on the distance (in term of hops) between the source
node and the transmitting node. In order to maximize the spatial
reuse, nodes that are scheduled to transmit simultaneously are
coordinated with each other such that they transmit simultane-
ously information which belongs to nodes that are the same hop
distance from them, i.e., nodes k+i(F+1),1 < k < F+1, 0 <
i< LA

tonodes k + i(F 4+ 1)+ h,0 < h < N —i(F +1)— k: Nodes
i(F+1)+1,i=0,..., (N —1)/(F + 1)] are scheduled to
transmit their own messages simultaneously; they also transmit
simultaneously the message of their one-hop neighbor, etc. The
time granted to each transmission is determined according to
the transmission durations t¥.i,k < F + 1 that have been
computed in the previous subsection, i.e., node k,k < F + 1
is granted ZN t* time units. Accordingly, the cycle duration
is ZFH Ziv k tf time units. The transmission duration tz:"'k
needed by node i + k to forward the information originally sent
by node i + k is Z(7+k "(—a)! = Zfzo(—a)l and depends
only on the difference between ¢ and ¢ + k. In this schedule, all
nodes transmit and are allocated sufficient time to forward the
information from all nodes located below in the chain. More-
over, any two nodes that transmit simultaneously are at least
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APPENDIX D
PROOF OF THEOREM 5

The proof of Theorem 1 follows the same guideline as the
proof of Theorem 1 for chain topology. In the first part we give
an upper bound to the achievable rate, and in the second part we
present a schedule that realizes the bound.

A. Upper Bound of the Achievable Rate

We adopt the following notations: The gateway node is de-
noted as node 0. The remaining nodes are numbered using two
indices, the first referring to the depth of the node in the tree,
i.e., its distance from the gateway, and the second to the position
of the node within the layer. The numbering within layers al-
ways starts from node 1 and continues counterclockwise within
the layer. Node 1 in the first layer is chosen arbitrarily; in the
other layers, node 1 is defined as the left-most descendant of
node 1 from the previous layer. The set of nodes n(; .y denotes
all nodes in the ¢th layer, i.e., all nodes ¢ hops away from the
gateway node. We denote t¥ the time per cycle granted to node
¢ for transmitting the information belonging to flow k. Occa-
sionally we use a single index to specify a node (we keep the
index which refers to the layers omitting the index within a
layer). Since we focus on the upstream traffic with a tree overlay
routing topology, it is not necessary to also refer the index of
the upper layer. Indeed, the flow of any node k passes through
a unique node per layer before to reach the gateway. Accord-
ingly, X% denotes the message of node k which is forwarded
by node F during time t%.. Y| denotes the corresponding re-
ceived signal received by the neighbor node in layer F' — 1.

As in the parking lot topology, in order to determine an upper
bound on the achievable rate we examine the achievable rate
over a subset of links noticing that the achievable rate for the
whole network can only be equal or smaller. We distinguish
between the cases with F' even and F' odd.

In the case of odd F', we define the set of nodes S, qq as the set
of all nodes belonging to the first ([£7] — 1) layers, i.e., Soaa =
{nayll < < [£7] — 1}. The number of hops between any
two nodes in the set is less than F, i.e., there is no spatial reuse
within nodes in set S, 44 as illustrated in Fig. 10 for F = 7.

Accordingly, the achievable rate per node is upper bounded
by (38a) at the bottom of the page.

Denote K,qq as the total number of time slots in (38a), i.e.,
the sumof all {t¥ |1 <k < N,1 < i < min[k, [F/2] — 1]}.
K odd

[F/2]-1

=N+ >

=2

-1
N — E m’!
i=1

F + 1 hops apart, which means that they are out of interfer- ~([F/2] = 1D)((m = 1)N + m)(m — 1) + m — m[F/?]
ence range. = (m — 1)2
k k vk
min {1 1 (Xyq_ erFw )
Rp<{ freo! (Xrﬁ Vigg) oot I(XI’YO )}k Soaa (382)

) th 1I(Xk ka 2)

ke Sodd-
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Fig. 10. Tustration of the sets S,qq and S’ for a ternary tree. The set Seyen i equal to Soaq U S”. Two cases: a) The spatial reuse factor F' is odd (= 7). The
number of hops between any two nodes in the set S,qq is 6 at most which is strictly less than F, i.e., there is no transmission spatial reuse within nodes in the set
Soda- b) The spatial reuse factor F' is even (: 8). The number of hops between any two nodes in the set Seven is 7 at most which is also strictly less than F, i.e.,

there is no transmission spatial reuse within nodes in the set Seyen either.

Denote t,qq as the minimum time slot duration per flow received
by any node in Sqq

. k T
min t;y < )
1<k<N,i€Soaa Koaa

todd =

where 7 denotes the total duration of a schedule cycle. The cycle
duration is greater than or equal to the aggregate time granted to
the nodes in set Kqq (no spatial reuse within S,qq). Since the
rate is determined by the flow with the minimum rate, we bound
the achievable rate by

R <toqq-C < -C.

odd

In the case of even F', define the set S’ as the group of nodes
belonging to layer g and which are descendants of node n4 1,
ie, S = {ng’]- [1<j< m%},anddenote Seven = S'USodd.
The distance between any two nodes in S’ is smaller than or
equal to twice the number of hops to node n4 1, i.e., 2(% - 1),
and the distance between a node in S’ to the farthest node in
Sodq 18 the distance from node i € S’ to node 0 plus the distance
from node O to a node in layer 5 —Llie, 5 —|— = — 1. Therefore
there is no spatial reuse in Seve,1 An example with F' = 8 is
shown in Fig. 10.

Denote by B(j, k) the subtree rooted at node N k) i.e., node
(k) itself and all of its descendants in the tree; e.g., By is the
complete tree and By 1) is the subtree with root node n(y 1.
Denote by B(; 1y([) the set of nodes belonging to subtree B; x)
that are / hops from node n(; ). B(j,x(/) defines the intersec-
tion between the subtree B; ) and the set of all nodes in layer
J + [ on the original tree, i.e., B(; »)(I) = B(j r) N n(j41,:)- Fi-
nally denote by | B, x| the total number of messages transmitted
by all nodes in set Bj ;. Therefore, we get (38b) shown at the
bottom of the page, where érep, ,, equals one if node k is a
descendant of node (1, 1) and zero otherwise.

The additional number of time slots to add to K,qq in order
to get Keven is the number of messages that pass through the

nodes in S’, which is Z
_ (m— 1)N+m

mL—’mZ_

j—1 _
Fm = 1

. Using the
relation mL W1th N the total number of nodes in

the tree with depth L the number of time slots that should be
F
(m=1)N4+m—m=

added to K, qq is hence =T and
—1)N —mF/?
Keven = Kodd + (m ) +m m
m(m —1)
={(m—-1)((m—-1)N+m)(m(F/2-1)+1)
1

Fl2(1 -9 L S —
+m 4 m) + m*} m(m =172

Using the same reasoning as with odd F' and by replacing odd
with even in the notations, t..., and the achievable rate R be-
come

-
toven = min tf <
1<E<N,i€Seven @~ Keven
and
r
Rgteven'cg -C.
Keven

Normalizing the total schedule duration to one time unit 7 = 1,
the achievable rate is upper bounded by
c(pr)

even/odd <
Keven/odd

R<CO(P)-t

This completes the first part of the proof in which we de-
termined an achievable rate upper bound. Next, we present a
schedule that can realize the bound. Note that by suggesting a
schedule that achieves the rate C(P)/ K, we only bound the rate
from below (achievable rate lower bound) since we have not
shown that there cannot be a schedule that attains a higher rate.
However, since the upper bound matches the lower bound, the
rate is exactly R = C(P)/K.

min {‘5"’€B<1 Sy (XF £

G

Re<d el (Ve V) TRV L B¢ S (38)
min {1 (X VE ) 8 T(XF ;YR ,) ..,
t]{I (Xf’YOk)} ’ k S Seven
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Fig. 11. An example of optimal schedule for ternary tree with odd spatial reuse factor as determined in (39). The depth of the tree is L = 11 and the spatial reuse

F =5.

B. Lower Bound of the Achievable Rate

In this paragraph we present a feasible schedule that bounds
the achievable rate from below and show that the rate is attain-
able. We first describe the schedule and show that in each cycle
a message from each node in the network is delivered to the
gateway and the distance between any two transmitters is greater
than or equal to F'. We distinguish between odd and even F'
cases.

Schedule for odd F':

{Bax( +iF) o<i<|(-1)/F]
B ey (i + DF =1 = 2) lo<i<|(L—F+142)/F)
B e—1)((i + DF = 1) lo<i<|(L-r41y/p) i1 =0,

1<k<m,0<I<[F/2]-2} (39)

with the following conventions: k+1 = 1ifk = mand k—1 =
mifk = 1.

We schedule all groups for ¢ = 0 sequentially starting with
I = 0 cyclically going over all k£ and gradually increasing [
until [ = [£7 — 2. Groups that share the same k, [ indices but
differ in ¢ are scheduled simultaneously. The number of message
transmission time slots each node is assigned coincides with the
number of messages it must forward such that it forward one
message of its own and one for each of its tree successors, i.e.,
node n(; ;) receives |B(; j)| messages. An example of optimal
schedule is given in Fig. 11 for a ternary tree with depth L = 11
and spatial reuse F' = 5.

Next we show that in this schedule, a message from each node
arrives to the gateway. Since the number of time slots assigned
to each node is exactly the number of messages the node has
to forward, it is sufficient to show that all nodes are scheduled
for transmission. The set {B(1 1)()|1 < &k < m,0 <1 <
[£7 — 2} covers all nodes in the first [£] — 1 layers. The set
{Bapsn(F=1)—=2)|1 <k <m0 <1< [£] -2} covers
all nodes in layers [£7,..., F — 1 and the set {B(y j_1)(F —
1)|1 < k < m} covers the nodes in layer F'; all nodes in the
first F' layers are covered. Since each set is scheduled to transmit
with all sets that are i F' layers away fromit 0 < 7 < L all nodes
in the network are scheduled for transmission.

The set {B(1,1y(1)] < k < m,0 <1 < [5] -2} which
corresponds to the set S,qq is scheduled sequentially (no spatial

reuse). Subgroups { By j4+1)((F'=1)—2), B r—1)(F=1)| <
k < m,0 <1 < [£] -2} are scheduled simultaneously
with {B(; xy(1)}, all belonging to different main branches of
the tree; hence the distance between any two nodes belonging
to different subgroups is equal to the sum of their respective dis-
tance to the gateway, and is greater than F' hops. The rest of the
nodes scheduled at the same time are kept ¢ F" ¢ > 1 hops apart.
Consequently, the distance between any two nodes transmitting
simultaneously is greater than or equal to F'. Therefore, spatial
reuse is always satisfied.

The set of flows forwarded by By )(l+h) is only a subset of
the flows forwarded by By ,x(1) hence, | B i) (1) > | B(1,k (I+
h)| Vh > 1. Due to symmetry | By xy(1)| = |B@,k+e)(l)| Ve,
(k+e) mod m, which gives | B(1 xy(1)| > | B(1, k1) (#-h)|. There-
fore, the transmission duration of each set of flows scheduled si-
multaneously is determined by the transmission duration of the
subset of flows that belongs to the lowest layer. Accordingly
the transmission duration of the schedule complete cycle is de-
termined by the transmission duration of set { B(1 1) ({)| < k <
m,0 < I < [£]—2}. Thus, the duration of the schedule is equal
to the sum of [B(1 ) (1)],1 < k < m,0 <1 < [£]—2 whichis
exactly K,qq; hence the schedule rate is C'(P)/Kyqq as in (19).
Since the upper and lower bounds coincide, the achievable rate
is C(P)/Kodd.

For the even case, we use the schedule given in (39), adding
the following additional group scheduled subsequently to the
other groups:

Baw(F/2 +1F)|y cpam oi<|(2455)) - (40)
All main branches 1 < k& < m in this group are scheduled
simultaneously. Moreover the distance between the nodes that
belong to different subgroups is at least F' hops, hence they
can transmit without interfering with each other. The rest of the
proof follows the same procedure as the odd case where Seven
replaces S,qq4. An example of an optimal schedule is given in
Fig. 12 for a ternary tree with depth I = 13 and spatial reuse
F =6.

Remark 1: The schedule for the binary tree is different from
the other cases since for £k = 1, both indices k¥ + 1 and k —
1 equal 2. Therefore, it corresponds to two subgroups in the
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Fig. 12. An example of optimal schedule for ternary tree with even spatial reuse factor as determined in (39) and (40). The depth of the tree is L = 13 and the
spatial reuse F = 6. In each block, we indicate the subset of messages B(1,x)(1) that are scheduled to transmit sequentially in arbitrary order. For the messages that
belong to the same layer but to different subsets, e.g., B(l_l)(Z),B(lrg)(Z) and B(l_g)(i)), we superimpose their corresponding boxes to show that they transmit

simultaneously.

same main branch in (39) that interfere with each other and thus
cannot be scheduled simultaneously. For example, in Fig. 11,
B1,3)(4) corresponds to By1 1y(4) according to the schedule
described by (39) and therefore cannot be scheduled simultane-
ously with B(; 1)(5). However, we show that a schedule which
realizes the rate lower bound exists for the binary case. The
main idea behind this result is to utilize spatial reuse inside
the layers of a main subtree. Indeed, in order to achieve the
lower bound, all messages B(1 x)(1),l = [F/2],..., F have to
be scheduled within the transmlssmn duration of the messages
Bgy(l),l = 1,...,[F/2] =1 for F odd and all messages
Bay(),l=F / 2 —|— 1 ..... , F within the transmission duration
of the messages B(1,k)( ),l =1,...,F/2 —1for F even. De-
note F\) (1) as the spatial reuse factor within the nodes in layer /
of the main branch k; due to the symmetry of the considered net-
work topology, F1)(l) = F(2)(l),VI. According to the spatial
reuse constraint such that any receiving node has to be at least
F — 1 hops apart of an interfering node, it can be shown that
Fy(l) = m!=1/2max(0I=TF/21) ‘j e forlayers 1,..., [F/2],
only one node among the nodes that belong to layer [ in branch &
can transmit at a time; in layer [ F'//2] 41, two nodes can transmit
simultaneously; in layer [F'/2] + 2, four nodes can transmit
simultaneously, etc. Therefore, the total duration to transmit
the | B(1,1) (/)| messages becomes (|B(Lk)(l)|/2max(0*l*[F/2]))
time slots if spatial reuse inside the layers ¢ £, ¢F' + 1,2 > 11is
exploited. Since | B(; 1)(F —2)| and |B(1 k) (F'—1)| are smaller
than |B(1 k) ( )| and 2max(0 F—[F/2] 2max(0 F-1-[F/2]) >
2,B1,2)(F = 2) and By 2y(F — 1) (resp. B,y (F — 2) and
B(1,1)(F — 1)) can be scheduled simultaneously with By 1y(0)
(resp. B(1,2)(0)). An example of optimal schedule is given in
Fig. 13 for a binary tree with depth L = 11 and spatial reuse
F =5.

Remark 2: This approach is valid in the binary case with spa-
tial reuse factor /' > 3 (we assume throughout the paper that
F > 2).For F' = 3, it needs further modifications. If F' = 3, the
challenge is to schedule B(; 2)(F' =2 = 1) and By o) (F —1 =
2) simultaneously with B(; 1)(0). However, according to the
spatial reuse inside layer, two nodes can be scheduled simul-
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Fig. 13. An example of optimal schedule for binary tree as determined in Re-
mark 1. The depth of the tree is L = 11 and the spatial reuse 5. For the sake of
clarity, we use the same spatial reuse factor inside the layers 4 and 4 + F = 9,
and inside the layers 5 and 5+ F* = 10. In order to achieve (19), some messages
inside subsets By ; (1) have to be scheduled simultaneously. For example, two
messages inside By 2) ( 3) and four messages inside B(1,2) (4) have to transmit
simultaneously.

taneously inside layer 3 but not inside layer 2. In that case,
even with spatial reuse inside layer 3, we have |B(y 2)(1)| +
1B(1,2)(2)|/2 > [B(1,1)(0)| and [B(1,1)(1)| + [B(,1)(2)/2 >
|B(1,2)(0)|. However, a node that belongs to B(; ;)(1) can be
scheduled with a node that belongs to By 1y(2),k = 1,2 ac-
cording to the spatial reuse policy. This schedule realizes the
bound if max(|B(1,1)(1)], [B(1,1)(2)]) > |B(1,2)(0)| and vice
versa. It is verified since B(1 1y(0) > By 1y(1) > B1,1)(2).
An example of an optimal schedule is given in Fig. 14 for bi-
nary tree with depth L = 6 and spatial reuse is F' = 3.

APPENDIX E
PROOF OF THEOREM 6

We extend the basic schedule structure suggested for the non
cooperative case as presented by (39) and described in Fig. 11
to TRP. The main two differences between both schedules are
1) for spatial reuse factor F', the distance between two sources
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Fig. 14. An example of optimal schedule for binary tree with spatial reuse F =
3 as determined in Remark 2. The depth of the tree is L = 6.

transmitting simultaneously should be at least £’ + 1 hops with
TRP, e.g., The set of nodes S,qq that cannot transmit simul-
taneously in Fig. 10 corresponds now to a spatial reuse factor
F = 6 instead of 7 in the noncooperative case. Similarly, the
set S’ corresponds to F' = 7 with TRP instead of F' =
The schedule in (39) should also be modified accordingly: The
spatial reuse factor F' is replaced by F' 4 1 along the schedule
and the schedule for even F' corresponds to odd F' in TRP and
vice versa; 2) in the noncooperative case, we could schedule the
nodes in each subgroup B (1), VI sequentially and still realize
the achievable rate. By scheduling the nodes that belong to each
group sequentially, it is not necessarily true that the groups be-
longing in the first F'/2 first layers dominate the cycle duration
with TRP. We show next that these groups dominate the cycle
duration only if we further exploit spatial reuse within the sub-
groups By (1)l > [£].

Denote Ty xy(l) as the duration to transmit all messages
which belong to the set of nodes By i (). In the noncooperative
case, we had: T(y ) (1) = | B1,x([)| time slots. In order to deter-
mine the duration of 7y 1) (/) for TRP, we first determine the
transmission duration of any node in layer /. The transmission
duration for a source node in layer [ + k to its upstream one hop
neighbor in layer [ + k — 1 is equal to one time slot as it is in
the non cooperative case. From the latter node to his neighbor
in layer [ + k — 2, only (1 — «) time slot is needed with TRP,
« being defined in (12); from the latter node to his neighbor
in layer [ + k — 3, only (1 — a + «?) time slot is necessary,
etc. Continuing the same reasoning, the transmission duration
to transmit the necessary information of a node that belongs
to layer [ + k from a node in layer [ to its one-hop neighbor
in layer [ — 1 with TRP is equal to Y.5_,(—)’. A node in
layer [ has m” descendant nodes in layer k + [. Therefore, in
order to transmit the information of all its descendant nodes
in add1t10n to its own information, a node in layer / requires
(Zk o Lk Zfzo(—a)i) time slots. Hence, with TRP, T{1 1)(/)
is equal to

L1

!
Ta,m( mH Z(_a)

k=0 1=0

The main challenge to determine an optimal schedule in the
cooperative case comes from the fact that T(; 1)(/) might be
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greater than T(y j)(I") with [ < I’. Therefore, the use of spatial
reuse within layer [ is essential. The total duration to transmit
the information of all nodes B, () becomes

L—1 k
T(llk)(l) = [Z mk-H—l Z(_a)L] /mmax(O,l—[F/2'|).
k=0 =0

For odd F, we show that the schedule depicted in Fig. 12
is also valid for the cooperative case with F' = 5. This
is equivalent to showing that the transmission duration for
the messages of the first [F/2] layers is dominant, i.e.,
T(/1,k)(0) > max(T(Lk (i(F+1)-2),T )('(F+1) 1)),i>
17T(Il,k)(1) > T(’Lk)(igF—i- 1)—-3),7> 1 ..... T(1 k) ([F/2] -
2) 2 T(I1,k)(|-F/2-| +i(F +1)),i>0.

Lemma 1: The total duration T(, ;\(I) to transmit all mes-
sages B(1 x)(l) when full spatial reuse is exploited within layer
[ is greater than T(/1,k)(ll)7l/ > [ as long as the number of
nodes that can transmit simultaneously without interference in

set B(1,1)(I) is at least m times greater than in set By 1((),
i.e., T(l,k) (l) — T(lk)(l')/m > 0.

Tam(l) = Ta (') /m
_ [Z k1 Z _a)i]
[ lmk+l’—2 Z ]

=0

m2(1 + a)(m (1 +am)
x (a+ (=) 7) +m H (m 1)
X (1= (=a)"+271)
+(L+a)(m —m).
All terms in the numerator are positive for any «,0 < a < 1
with m > 1 and I’ > [ which completes the Proof of Lemma 1.

From Lemma 1, the schedule presented in Fig. 12 is also valid
for the non cooperative case with F' odd (F' = 5).

For F' even, by applying Lemma 1, we have T' (1 k)( ) —
T(Lk)(F 1-1) >0,l =1,...F/2 — 1. However, it can
be shown that the quantity 7{, , (F/2 — 1) = T(, , (F/2) is
not always positive even if all T{; ,, (¥/2) simultaneously
transmit with 7(; , (F/2 — 1) with K =1,...,mk # k. In
the latter case, it can be negative only for marglnal scenarios,
i.e., very large values of SNR and for an even number of layers
in the tree; for this reason, we omit the analysis of this extreme
case in the paper. Otherwise, it is positive and it is possible
to find a schedule which realizes the achievable rate (20). An
example of optimal schedule is given in Fig. 15 for a ternary
tree with spatial reuse F' = 4. In order to realize the TRP
achievable rate, we exploit the spatial reuse within the layers
3 and 4. Indeed, nodes that belong to B(; 1)(3), B(1,2)(3) and
B1,3)(3) are scheduled to transmit simultaneously. In layer 4,
higher spatial reuse can be used among the nodes. however, for
the sake of simplicity, we also assume that three nodes within
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Fig. 15. An example of optimal schedule for ternary tree as determined in (20) with Turbo Relaying Protocol. The spatial reuse is F' = 4. In order to achieve (20),
spatial reuse inside subsets B(1,x)(1) needs to be exploited; e.g., three messages that belong to B(; 2y(3) are simultaneously scheduled. Additionally, messages
that belong to the same layer but different subsets By 1) (l ) have to be scheduled simultaneously, e.g., half of the messages in By 2) (2) are scheduled with half
of the messages in B(1,3)(2); half of the messages in B(;,3)(2) are scheduled with half of the messages in B(1,1)(2); and half of the messages in B(y,1)(2) are

scheduled with half of the messages in By1,2)(2).

layer 4 transmit simultaneously. According to Lemma 1, it is
sufficient to guarantee that the transmission duration of nodes
B(1,1)(0), B(1,2)(0) and By 3y(0) dominates the transmission
duration of nodes By ;y(3) and By ;y(4),i = 1,2,3 in order
to achieve (20).
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