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Abstract— In this paper, we develop and analyze a low-
complexity cooperative protocol that significantly increases the
average throughput of multi-hop upstream transmissions for
wireless tree networks. We consider a system in which trans-
missions are assigned to nodes in a collision free, spatial time
division fashion. This protocol exploits the broadcast nature of
wireless networks where the communication channel is shared
between multiple adjacent nodes within interference range. For
any upstream end-to-end flow in the tree, each intermediate node
receives information from both one-hop and two-hop neighbors
and transmits only sufficient information such that the next
upstream one-hop neighbor will be able to decode the packet.
This approach can be viewed as the generalization of the classical
three node relay channel for end-to-end flows in which each inter-
mediate node becomes successively source, relay and destination.
We derive the achievable rate and propose an optimal schedule
that realizes this rate for any regular tree network. We showthat
our protocol dramatically outperforms the conventional scheme
where intermediate nodes simply forward the packets hop by
hop. At high signal-to-noise ratio, it yields approximatively 80%
throughput gain.

I. I NTRODUCTION

Emerging architectures for large-scale urban wireless net-
works employ multihop wireless communication over trees.
In particular, while the network’sphysical topology is quite
complex, thelogical topology used for forwarding follows a
tree. For example, IEEE 802.16j mandates tree forwarding and
IEEE 802.11s standardizes a tree-based routing protocol.

In this paper, we develop and analyzeTurbo-Relaying,
a low-complexity cooperative protocol that significantly in-
creases the average throughput of multi-hop upstream trans-
missions for wireless tree networks.1 We consider a system in
which transmissions are assigned to nodes in a collision free,
spatial time division (TD) fashion, e.g., [2],[3]. Moreover, each
node forwards its neighbor’s traffic in addition to its own traffic
with the final destination of all upstream traffic being the root
node. We make the following contributions.

This research was supported by NSF grants ANI-0331620 and ANI-
0325971 and by Intel Corporation.

1The term Turbo-Relaying is not related to the Turbo-codes, [1], but
rather is based on the turbine engine principle: In turbocharged engines, the
combustion air is already pre-compressed before being supplied to the engine.
The engine aspirates the same volume of air, but due to the higher pressure,
more air mass is supplied into the combustion chamber. Consequently, more
fuel can be burnt, so that the engine’s power output increases related to the
same speed and swept volume.

First, we devise the Turbo-Relaying Protocol (TRP) for the
“parking lot” topology which refers to a special case of a 1-
ary tree (linear topology) with a flow originating from each
node and terminating at the outer-most node (cf. Figure 1a).
The principle is as follows: A source noden in the chain
transmits a packet such that the next hop upstream neighbor,
n − 1, is able to decode it, but the next upstream two hop
neighbor,n − 2, cannot, since the distance of two hops is
assumed to be larger than the transmission range. However,
this latter node “eavesdrops” on the transmission and stores
the received signal without attempting to decode it. Then, node
n− 1 transmits to noden− 2, only the necessary information
such that, in addition of the previously stored data, noden−2
will be able to decode the full packet. Noden − 3 in turn
eavesdrops this transmission. Then, noden−2 transmits only
the necessary information such that noden − 3 can decode
the packet. In the same manner the process repeats itself
until the root node is reached where each relay (intermediate
node) receives information from both one-hop and two-hop
neighbors and transmits only sufficient information such that
the next upstream one-hop neighbor will be able to decode the
packet. The strategy involves three neighbor nodes at the time
and can efficiently be implemented based on Turbo-codes [4]
or Low Density Parity Check (LDPC) codes [5].

We compare TRP to the conventional non-cooperative relay
solution. In particular we compare it to the method suggested
in [3] which presents an optimal scheduling among the nodes
in a spatial TD fashion which guarantees collision free trans-
missions. We also compare our scheme to an improved version
of this solution where optimal power allocation is considered.
We show that the optimal power allocation strategy slightly
improves the scheme suggested in [3], however TRP dramat-
ically outperforms both schemes, e.g., for a chain topology,
the asymptotic behavior at high signal-to-noise ratio of the
throughput gains of TRP over the conventional scheme yields
approximately 90% gain for large chains.

Second, we generalize our protocol to them-ary trees.
The larger the connectivity degree of the tree, the higher
the throughput gain. The throughput gain of TRP over the
conventional scheme is above 80% at a signal-to-noise ratio
of 30 decibels for any connectivity degree. Our cooperation
protocol can easily be extended to irregular tree topologies
and downstream or bidirectional transmissions.



Our work contrasts with extensive prior work in cooperative
communication in that no prior work proposes a cooperation
strategy for multiple flows in a collision free, spatial time
division fashion. In particular, study of relaying began with
a classical three-node scenario in which a single relay thatis
dedicated to help the sender in transmitting the information to
the receiver [6], [7]. (Extension to a four nodes network with
two transmitters that cooperate can be found in [8], [9], [10].)
This three-node cooperation can be viewed as a special case
of our approach for a three node chain. More recent works
of study of multiple relays are based on power optimization
[11], [12] for single end-to-end flow. This approach would
have very limited gain since no spatial reuse among the users
can be considered. In [13], the achievable rate for ad hoc
network with optimal node cooperation is found. However, it
is not clear whether such rate can be achieved in tree network
topology with a local cooperative strategy as we propose.
Cross layer optimization is addressed in [14] and in [15], a
efficient multihop routing is proposed for cellular networkin
severe fading environment. However, the throughput gain is
very little if the nodes have no mobility as in our transmission
model.

The remainder of the paper is organized as follows. Sec-
tion II describes our system model for tree network under
consideration. In Section III, the achievable rate is derived for
a chain topology and a feasible schedule that realizes this rate
is proposed. Section IV outlines our new node cooperation
protocol. Achievable rate and optimal schedule that realizes
this rate are determined. In Section V, these results are
extended to tree networks with arbitrary connectivity degree.
Finally, we draw conclusions in Section VI.

II. SYSTEM MODEL

We model the wireless network as am-ary tree topology
wherem + 1 denotes the connectivity degree of any node as
shown in Figure 1. The mesh nodes are access points with no
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Fig. 1. Regular Tree Topologies: a)1-ary tree (connectivity degree of 2) also
known as the parking lot topology; b) ternary tree with3 levels (connectivity
degreem + 1 = 4).

mobility. A link between two nodes means that these nodes are
within transmission range of each other. We assume no time-
selective fading and that the distance between two adjacent
connected nodes,d, is unitary. We focus on collision-free

Spatial Time-Division Multiple Access (STDMA) protocols
that substantially simplify the signal processing algorithms at
the receiver as in [3]. The signal-to-inference-plus-noise ratio
(SINR) at any receiving node should be larger than a threshold
τ :

SINR≥
P

σ2 +
∑

i
P
iγ

(1)

where P is the transmitted power;σ2 is the noise spectral
density andγ the channel pathloss exponent with typical
range: 2 ≤ γ ≤ 4, [16]. The indicesi ∈ {1, . . . , N} represent
the normalized distances between the interfering nodes and
the receiving node. We assume that the interference power is
negligible compare to the noise varianceσ2 if i is greater than
a certain threshold, typically3 or 4. We define the spatial reuse
factor F as this threshold value plus one, which corresponds
to the minimum number of hops between two nodes that can
simultaneously transmit without interfering with each other.
Supposing that all nodes transmit with constant powerP
and have the same transmission and interference ranges,F
is a constant parameter in our model. With TRP, we also
consider the received signal located two hops apart from its
corresponding transmitting node; in order to keep the same
spatial reuse factor as in the non cooperative case, we assume
directional antennas with main beam steering towards the
gateway node.

III. A CHIEVABLE RATE FOR THE PARKING LOT TRAFFIC

MATRIX (m = 1): THE NON COOPERATIVE CASE

We first consider a1-ary tree (m = 1) also known as the
parking lot topology shown in Figure 1a. In this case, the
number of nodesN is equal to the depth of the tree, i.e.,L.
In Section V, we extend our results to the general casem,
m > 1. In Figure 1a, we also depicted the upstream flows for
all nodes. The traffic load heavily depends on the position of
the link in the network and has a significant impact on the
cooperation strategy between the nodes, e.g., in Figure 1a the
final link carries4 times the traffic of the left-most link.

A. No cooperation between the nodes

In this section, we determine the achievable rate, i.e., the
throughput normalized with respect to the bandwidth, per node
of an uplink transmission when “no cooperation” between the
nodes is considered. Nodes are obliged to forward other nodes’
messages on a fair basis share (e.g., round robin); however
by no cooperation between nodes in the sense of [8], we
assume that relaying is permitted only as a repeater’s technique
between neighbors. Furthermore we assume that all nodes
transmit with the same powerP (no global or local power
allocation optimization), according to a pre-determined Time
Division Multiple Access (TDMA) schedule which satisfies
the spatial reuse condition. We also present such a TDMA
schedule which realizes the achievable rate.

A flow achievable rate is measured by the rate granted to the
flow on its bottleneck link, i.e., denoting byRk the achievable



rate of the flow originated from nodek, k = 1, . . . , N to the
gateway, we have:

Rk = sup
tk
i,i−1

min
i,i−1

tki,i−1Ci,i−1 (2)

where Ci,i−1 denotes the capacity of the channel between
two adjacent nodesi and i − 1, i = 1, . . . , N and tki,i−1

the transmission time granted to flowk on this channel. In
our model all physical links have the same capacity, so we
denote in the sequelCi,i−1 simply byC. In our study we are
interested in optimizing bandwidth allocation on a fair share
basis, i.e., the total resources should be distributed suchthat
the end-to-end rates are as equal as possible. Therefore the
achievable rate is determined to the flow that gets the lowest
rate:

R = sup
s∈S

min
k∈{1,...,N}

{Rs
k} (3)

wheres denotes a specific schedule,S the set of all feasible
schedules andRs

k denotes the achievable rate by nodek based
on schedules ∈ S. Our first theorem states the upstream
achievable rate in a non cooperation scheme:

Theorem 1: For the upstream transmission in the parking
lot network with allN nodes fully backlogged, with a spatial
reuse factorF , when all nodes transmit with same powerP
and all links have the same capacityC(P ), the achievable rate
R(m = 1, F, N) is:

R(1, F, N) =
2C(P )

F (2N − F + 1)
(4)

whereC(P ) equals for additive white Gaussian channel with
Gaussian sources [17]:

C(P ) =
1

2
log2(1 + P/σ2); (5)

Proof: The amount of time required to transmit at least
one packet of all nodes to the gateway node is at least
the transmission durationT to transit the packets of all
nodes through the firstF nodes in the chain, i.e, the last
F nodes according to the flows, which are the bottleneck
of the network. Node1 has to forwardN for each packet
transmission of its own, node2 has to forwardN − 1, etc. So
T = N+(N−1)+. . .+(N−F +1) = F (2N−F +1)/2. This
result is an extension of Lemma 3.1 in [18] for arbitrary spatial
reuse factor in the case of fully backlogged nodes. Thus, an
upper bound on the achievable rate isC(P )/T with C(P )
the capacity of a single hop link. Each of the farthestN − F
nodes from the gateway has less packets to forward than any
node of the firstF nodes so they can be scheduled together
within T .

Figure 2 shows an example of a schedule which realizes the
bound for eight nodesF = 4. On the horizontal and vertical
axes, we show the slotted time and the normalized distance to
the gateway node (which is equivalent to the node indices),
respectively. A square in position(i, t) represents an active
transmission from nodei to nodei − 1 at time t. In order to
locate the path of the messages, the source node number is
shown in each square.
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Fig. 2. Optimal schedule in a chain topology with spatial reuse factorF = 4
andN = 8 nodes. The total duration to transmit one packet of the all nodes to
the gateway is equal to26 time slots= F (2N−F +1)/2 which corresponds
to the bound in (4).

B. Optimal Power allocation (OPA)

In the previous section, we assumed that all nodes transmit
with power P . The optimal schedule has a large number of
idled time slots for the nodesF + 1, F + 2, . . . , N . Higher
average throughput can be achieved if the transmit powerP
is spread over the idle slots.

In [19], we show that for upstream transmission in a chain
topology of N fully backlogged nodes with a spatial reuse
factorF and optimized power allocation, the rate at any node,
R(1, F, N, β∗) is upper bounded by:

R(1, F, N, β∗) ≤
2β∗C(P )

F (2N − F + 1)
(6)

whereβ∗ = η∗
1 log(1+P ∗

1 /σ2)/N log(1+1/σ2) with η∗
1 and

P ∗
1 are the optimal transmission duration and transmission

power of node1, respectively. Whereas the nodes transmit
with different powers depending on their position in the
chain, the interference range increases. However, we keep
the sameF as in the case with fixed power allocation, so
the rate in (6) is usually not achievable. The throughput
gain with optimal power allocation vs. fixed power allocation,
GOPA(1, F, N, β∗), is equal toβ∗.

Figure 3 shows the throughput gain for different chain sizes
as a function of the signal-to-noise ratio SNR= P/σ2. The
throughput gain with optimal power allocation is negligible at
low and high SNR. For moderate SNR (10-15 decibels), the
gain is less than25% even for very large chain size (1000
nodes).

IV. A CHIEVABLE RATE FOR THE PARKING LOT TRAFFIC

MATRIX : THE COOPERATIVE CASE

A. Introduction to multi-hop transmission with Turbo-
Relaying

In the previous section, we determined the achievable rates
for multihop uplink transmission in a chain topology with
spatial reuse factorF . We assumed the common relaying strat-
egy that consists of either transmitting its own information or
repeating, i.e., decoding-and-forwarding the messages received
from the upstream node to the below node.

In this section, we propose a new cooperative relaying
strategy which exploits the broadcast nature of wireless net-
works where the communication channel is shared among
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Fig. 3. Percent throughput improvement with optimal power allocation (OPA)
for the parking lot vs. fixed power allocation scheme as a function of the
signal-to-noise ratio (SNR= P/σ2). Gains with OPA are negligible at low
and high SNRs. For very large chain (100 or 1000 nodes), the throughput
gain does not exceed 25%. The pathloss is equal to2 for all cases with spatial
reuse factorF = 4.

multiple adjacent nodes. Whereas the adjacent node only
is able to decode the message, the other below adjacent
nodes may receive some information but they are not able
to decode it. Throughout the paper, we focus on decode-
and-forward protocol. Whereas there exist other protocols
such as amplify-and-forward and estimate-and-forward [9],
[10], recent implementations of decode-and-forward protocol
based on distributed LDPC codes perform very close to the
theoretical limit [5] with single user computational complexity.
We limit our study to the case for which only the nodes
located one hop and two hops apart of the transmitting
node collect some information from this node. Although this
approach is suboptimal, we motivate this choice by noting that
the SINR at farther nodes is very low. Larger spatial reuse
factor is required which consequently reduces the throughput.
Additionally, implementation of our scheme does not require
phase/symbol synchronization at the sample level contraryto
[5], [8], [13], since only one node within its transmission range
is transmitting at the time. Figure 4 illustrates the strategy that
we call Turbo Relaying as motivated in the introduction. The
arrows represent transmissions for three consecutive timeslots.
Before calculation of the achievable rate with this strategy for
an arbitrary number of nodes, we treat the case of a chain
with 3 nodes, i.e., nodes1 and2 and the gateway. This special
case is similar to the classical “relay channel” in the Time-
Division (TD) mode, see for instance [5], [12], with two main
differences: (i) In the classical relay channel, the relay,i.e.,
node1 with our notations, does not have its own information
to transmit, and (ii) Bounds for the achievable rate usually
require perfect power control. In order to satisfy the spatial
reuse constraint, we assume that all nodes transmit with fixed
powerP .

For a chain with three nodes in TD mode, the upstream

t − 1

n − 1 n − 2 n − 3n n − 4

t + 1

t

Fig. 4. Turbo Relaying strategy. Noden sends a coded packet such that node
n−1 is able to decode it. As the distance between nodesn andn−2 is larger
than the transmission range, noden−2 cannot decode it but nevertheless stores
it. Node n − 1 re-encodes the information and transmits to noden − 2 few
additional redundant bits. Noden−2 gathers both parts as a single codeword
and decodes it ([5]). In the same manner, the process repeatsitself until the
root node is reached.

transmission schedule is shown in Figure 5. In Equation (5)

X2 Y1 Y0 X ′
2 X ′

1 Y ′
0 Y ′′

0X ′′
1

Phase1 Phase2 Phase3

Fig. 5. Turbo Relaying strategy in a multihop transmission for a chain of
three nodes (two nodes in addition to the gateway node). The throughput gain
is up to50% compared to the case of single-hop relaying.

of [5] it was shown that the achievable rate in TD mode for
node 2 to transmit to node 0 is:

R = max
t1,t2

t1+t2≤1

min {t1I(X2; Y1) + t2I(X ′
2; Y

′
0 |X

′
1),

t1I(X2; Y0) + t2I(X ′
2, X

′
1; Y

′
0)}

whereX2 is the transmitted signal by node 2 during the first
phase with durationt1. Node 1 and the gateway node receive
a noisy version of it, namelyY1 andY0, respectively.X ′

2 and
X ′

1 represent the signals transmitted simultaneously by nodes
2 and 1 during the second phase with durationt2; Y ′

0 is the
noisy superposition of those signals received by the gateway
node. (The quantityI(X ; Y ) represents the channel capacity
assuming thatX and Y are the transmitted and received
signals, respectively.) In order to avoid node synchronization
at the sample level, we assume that node 2 does not transmit
during the second phase, i.e.,X ′

2 = 0. Moreover, node 1 has to
also transmit its own packet during a third phase with duration
t3. Therefore, the achievable rate becomes:

R = max
t1,t2,t3

min {t1I(X2; Y1)/(t1 + t2 + t3),

[t1I(X2; Y0) + t2I(X ′
1; Y

′
0)] /(t1 + t2 + t3),

t3I(X ′′
1 ; Y ′′

0 )/(t1 + t2 + t3)} .

The rateR is maximized when the three terms are equal
[12], i.e.: t1I(X2; Y1) = t1I(X2; Y0) + t2I(X ′

1; Y
′
0) =

t3I(X ′′
1 ; Y ′′

0 ). Assuming fixed transmission powerP for
all nodes, we haveI(X ′′

1 ; Y ′′
0 ) = I(X2; Y1) = C(P )

with C(P ) given by (5) which givest3 = t1. Accord-
ing to our propagation model,I(X ′

1; Y
′
0) is also equal to

C(P ) and I(X2; Y0) = C(P/2γ). Therefore, t2 can be
expressed as:t2 = t1 [I(X2; Y1) − I(X2; Y0)] /I(X ′

1; Y
′
0) =

t1 (1 − C(P/2γ)/C(P )).
Denote α = C(P/2γ)/C(P ). The achievable rate for

nodes 1 and 2 becomes:R = t1I(X2; Y1)/(t1 + t2 + t3) =



C(P )/(3 − α). SinceC(P/2γ) is loosely bounded as:0 ≤
C(P/2γ) ≤ C(P ), we have0 ≤ α ≤ 1 so that:

C(P )/3 ≤ R ≤ C(P )/2 .

For a chain of2 nodes with single-hop relaying, the achievable
rate is equal toC(P )/3. Therefore, the achievable rate based
on TRP is always equal to or greater than the single-hop relay-
ing case and the throughput improvement is up to50%. This
result is obtained without any power allocation optimization.

B. Turbo-Relaying Protocol (TRP) in a chain topology of N
nodes

Here, we extend the Turbo Relaying strategy to a chain
of any size. Our main result is summarized in the following
theorem.

Theorem 2: Define the coefficientα as the ratio between
the capacities of a direct two-hop transmission and a single-
hop transmission:

α =
C(P/2γ)

C(P )
=

log(1 + P/(2d)γσ2)

log(1 + P/dγσ2)
(7)

The rateR(1, F, N, 1, α) with Turbo-Relaying Protocol for
parking lot topology is achievable if:

R(1, F, N, 1, α)

≤ 2(1 + α)3C(P )/
{

F (2N − F )(1 + α)2+

F (1 + α)(1 + 3α) − 2α2[1 − (−α)F ] ×

[1 + (−α)N − (−α)F ]
}

(8)

Proof: We first determine an upper bound of the achiev-
able rate and then a schedule that realizes this bound.

1) Upper bound of the achievable rate:
In order to accomplish fairness between the nodes, node1
should transmit the information of theN nodes for each own
packet transmission. Node2 should transmit the information
of N − 1 nodes for each own packet, etc. With spatial reuse
F , any two nodes that belong to the firstF nodes cannot
transmit simultaneously. In the best case, the remainingN−F
nodes are scheduled amid the firstF nodes’ transmissions.
In contrast with the non cooperative case, the duration of
the transmission varies with the position in the chain of the
source node. For node1, the normalized time slot for its own
packet is equal to1. For a packet of node2, the normalized
time slot for its own packet to transmit to node1 is also
equal to 1. The information received by the gateway node
amid this transmission is equal toα with α defined by (7).
Therefore, the time slot duration to transmit the necessary
information such that the gateway node can decode the packet
is reduced to1−α with TRP. Following the same procedure,
the duration to transmit the packet of source node3 to the
gateway node with TRP is equal to:1 time slot to transmit
from node 3 to node 2, 1 − α of a time slot to transmit
from node2 to node1 and 1 − α(1 − α) = 1 − α + α2

of a time slot to transmit from node1 to the gateway.
Based on the same reasoning, it can be shown after some
manipulations that the transmission of the messages of

the first F nodes lasts
∑F

l=1

∑l
k=1(−α)k−1(l − k + 1) =

{

F 2(1 + α)2 + F (1 + α)(1 + 3α) + 2α2[1 − (−α)F ]
}

/2(1+
α)3. The transmission duration through the firstF nodes
of the remainingN − F nodes is calculated as follows.
The total slotted duration of the transmission through the
last F nodes for the nodeF + k, k > 1 is equal to
F

∑k
l=0(−α)l +

∑F+k−1
l=k+1 (−α)l(F − l + k). After adding

the durations for transmitting the packets of all nodes
1, 2, . . . , F − 1, F, F + 1, . . . , N , the total duration T
(normalized in term of time slots) can be expressed as:

T =
{

F (2N − F )(1 + α)2 + F (1 + α)(1 + 3α)+

2α2[1 − (−α)F ][1 + (−α)N − (−α)F ]
}

/

2(1 + α)3.

Since the capacity of each link isC(P ), the achievable rate
per node is upper bounded byR ≤ C(P )/T .

2) Optimal Schedule:
In order to construct a schedule that realizes this upper bound,
we share the timeT between the firstF nodes that cannot
transmit simultaneously as they are in interference range of
each other. Then, we show that during this cycle it is possible
to find a schedule that forwards one message from each of
the nodesF + 1, F + 2, . . . , N to reachF . Since nodesF +
1, 2F +1, 3F +1, etc. can transmit simultaneously with node
1, we schedule them to transmit when node1 is transmitting.
Hence, we scheduleF + 1, 2F + 1, 3F + 1, etc. to transmit
their own packet when node1 is transmitting its own packet
(the transmission duration is1 for all these nodes). Then, they
forward the sufficient information of their respective one-hop
neighbor (F + 2, 2F + 2, 3F + 2, etc.) such that their next
hop neighbor (F, 2F, 3F , etc.) can decode it when node1 is
transmitting the information of node2 to the gateway node.
The transmission duration is(1 − α)-time slot for all these
nodes. We follow the same reasoning to forward the packets of
the nodesj, F + j, 2F + j, 3 ≤ j ≤ N , etc. through the nodes
1, F +1, 2F +1, etc. The same procedure is applied to forward
the packets through the nodesj, F + j, 2F + j, 3F + j, 2 ≤
j < F etc.

An example of a schedule which realizes the bound for
8 nodes with spatial reuseF = 4 is shown in Figure 6.
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Fig. 6. Example of a schedule with Turbo Relaying Protocol for a chain
topology with spatial reuseF = 4 andN = 8 nodes. This schedule realizes
the bound given by (8). We also indicate the transmission durations:t1 = 1,
t2 = 1 − α, t3 = 1 − α + α2, etc.
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SNR, TRP nearly doubles the throughput compare to the conventional case
for a chain of12 nodes. The channel pathloss exponent is equal to2 for all
cases with a spatial reuse factorF = 4.

We illustrate the throughput improvement of TRP. We define
the throughput gainGTRP (1, F, N, 1, α) vs. the single-hop
relaying case as:

GTRP (1, F, N, 1, α) =
R(1, F, N, 1, α) − R(1, F, N)

R(1, F, N)
(9)

The asymptotic gain improvements are summarized as fol-
lows:

lim
N→+∞

GTRP (1, F, N, 1, α) = α (10)

lim
SNR→0,N→+∞

GTRP (1, F, N, 1, α) = 1/2γ (11)

lim
SNR,N→+∞

GTRP (1, F, N, 1, α) = 1 (12)

In the low SNR regime,α ≈ 1/2γ with γ pathloss exponent.
Assumingγ = 2, the throughput gain with TRP is at least25%
for all SNRs for large networks. At high SNR, TRP doubles
the throughput compare to the classical case. Indeed,α = 1
corresponds to the fact that a node located two hops apart from
a transmitting node can directly decode the received packet
without any additional information.

In (5), we considered Gaussian signals. However, it is
interesting to evaluate the performance gains for constella-
tions with finite alphabet, e.g., 4-QAM modulation. As the
achievable rates are proportional to the link capacityC(P ), the
throughput improvement given by (9) can be expressed for any
modulation. In Figure 7, the throughput gain is depicted for
Gaussian and4-QAM signals. The throughput gains are larger
for 4-QAM signals than for Gaussian signals at any SNR,
for any chain size and any channel pathloss exponent. TRP
(with constant power allocation) outperforms the conventional
hop-by-hop relaying scheme with or without optimal power
allocation at any SNR for any chain size.

V. THE GENERAL CASEm > 1: REGULAR TREE NETWORK

WITH CONNECTIVITY DEGREE OFm

In this section, we extend the Turbo-Relaying Protocol to
an arbitrarym-ary tree network. We shall not treat the optimal
power allocation case since we showed that the gains are
modest for chain topology. The main differences with the
parking lot topology are: (i) The spatial reuse is applied not
only through the flow towards the access point but also through
any other path of the tree, and (ii) Several flows converge
simultaneously toward the same node.

A. No cooperation between nodes

We first determine the achievable rate per node when no
cooperation between nodes is considered.

Theorem 3: For upstream transmission in a regular tree
network with connectivity degreem, N fully backlogged
nodes, and spatial reuseF , the rate at any node,R(m, F, N),
is achievable if:

R(m, F, N) =














2C(P )m(m − 1)2/
{

[N(m − 1) + m][m(F − 2) + 2] ×
(m − 1) + 2mF/2(1 − 2m) + 2m2

}

if F is even
(m − 1)2C(P )/ {[N(m − 1) + m](m − 1)(dF/2e − 1)
−mdF/2e + m

}

if F is odd
(13)

Proof: In the first part we give an upper bound to the
achievable rate, and in the second part we present a schedule
that realizes the bound.

1

2

34

5

6 6

7

Sodd

S’

Fig. 8. Illustration of the setsSodd, S′ andSeven (= Sodd ∪ S′) for ternary
tree. Two cases: a) The spatial reuse factorF is odd (= 7). The number of
hops between any two nodes in the setSodd is 6 at most which is strictly
smaller thanF , i.e., there is no transmission spatial reuse within nodes in the
set Sodd. b) The spatial reuse factorF is even (= 8). The number of hops
between any two nodes in the setSeven is 7 at most which is also strictly
smaller thanF , i.e., there is no transmission spatial reuse within nodes in the
setSeven as well.

1) Upper bound of the achievable rate:
We define the following notation: The gateway node is denoted
as node 0. The remaining nodes are numbered using two in-
dices, the first referring to the depth of the node in the tree,i.e.,
its distance from the gateway and the second to the position of
the node within the layer. The numbering within layers starts
always from node1 and continues counterclockwise within
the layer. Node 1 in the first layer is chosen arbitrarily; in the
other layers, node 1 is defined as the left-most descendant of
node 1 from the previous layer. The set of nodesn(i,:) denotes
all the nodes in thei-th layer, i.e., all nodesi hops away from
the gateway node.



We distinguish between the cases thatF is even or odd,
starting with F odd. Define the set of nodesSodd as the
set of all nodes belonging to the first(dF

2 e − 1) layers, i.e.
Sodd = {n(i,:)|1 ≤ i ≤ dF

2 e − 1}. In this set, the number of
hops between any potential transmitter and receiver is smaller
thanF − 1, i.e., there is no transmission spatial reuse within
nodes as illustrated in Figure 8 forF = 7. Assuming fair rate
allocation as defined in (3), each node inSodd forwards one
packet of each of its descendants for each own packet. The
minimum number of packets that should be transmitted by the
nodes inSodd is hence:

Kodd = N + (N − m) + · · · + (N −

dF/2e−2
∑

j=1

mj)

=
(dF/2e − 1) ((m − 1)N + m) (m − 1) + m − mdF/2e

(m − 1)2

In the case of evenF , define the setS′ as the group of nodes
belonging to layerF2 and which are descendants of noden1,1,
i.e.,S′ = {nF

2
,j |1 ≤ j ≤ m

F
2 }, and denoteSeven = S′∪Sodd.

The distance between any two nodes inS′ is smaller than or
equal to twice the number of hops to noden1,1, i.e.,2(F

2 −1),
and the distance between a node inS′ to the farthest node
in Sodd is the distance from nodei ∈ S′ to node 0 plus the
distance from node 0 to a node in layerF

2 −1, i.e., F
2 + F

2 −1.
Therefore there is no spatial reuse in setSeven. An example
with F = 8 is shown in Figure 8.

The number of packets that should be transmitted by the
nodes in S′ such that each of their descendants transmit
one packet is

∑L
j= F

2

mj−1 = mL−m
F
2

−1

m−1 . Using the relation

mL = (m−1)N+m
m with N the total number of nodes in the

tree with depthL, the total number of packets that should

be transmitted sequentially by nodes inS′ is (m−1)N+m−m
F
2

m(m−1)
which gives:

Keven = Kodd +
(m − 1)N + m − mF/2

m(m − 1)

=
{

(m − 1) ((m − 1)N + m) (m(F/2 − 1) + 1)

+mF/2(1 − 2m) + m2
}

·
1

m(m − 1)2

Since the capacity of each link isC(P ) and there is no
spatial reuse within setS, the achievable rate is upper bounded
by: R ≤ C(P )/Keven or odd.

This completes the first part of the proof in which we
determined an achievable rate upper bound. Next, we presenta
schedule that can realize the bound. By suggesting a schedule
that achieves the rateC(P )/K, we only lower bound the rate
since we have not shown that there cannot be a schedule that
attains a higher rate. However, since the upper bound matches
the lower bound, the rate is exactlyR = C(P )/Keven or odd.

2) Lower bound of the achievable rate:
Here, we present a feasible schedule that bounds the achiev-
able rate from below and shows that the rate is attainable.
Since the achievable rate is determined based on the maximum

rate over all feasible schedules, a rate corresponding to any
specific schedule is a lower bound.

Denote byB(j,k) the subtree rooted at noden(j,k), i.e.,
noden(j,k) itself and all of its descendants in the tree; e.g.,
B0 is the complete tree andB(1,1) is the subtree with root
noden(1,1). Denote byB(j,k)(l) the set of nodes belonging
to subtreeB(j,k) that arel hops from noden(j,k). Note that
B(j,k)(l) defines the intersection between the subtreeB(j,k)

and the set of all nodes in layerj + l on the original tree,
i.e., B(j,k)(l) ≡ B(j,k) ∩ n(j+l,:). Finally denote by|Bj,k| the
number of packets transmitted by all nodes in setBj,k.

Next we describe the schedule and show that in each cycle
period a packet from each node in the network is delivered to
the gateway and the distance between any two transmitters is
greater or equal toF (no collisions). As in the first part we
distinguish between odd and evenF .

Suggested Schedule for odd F :
{

B(1,k)(l + iF )
∣

∣

0≤i≤b(L−l)/Fc
,

B(1,k+1)((i + 1)F − l − 2)
∣

∣

0≤i≤b(L−F+l+2)/Fc
,

B(1,k−1)((i + 1)F − 1)
∣

∣

0≤i≤b(L−F+1)/Fc
if l = 0,

1 ≤ k ≤ m , 0 ≤ l ≤ dF/2e − 2

}

(14)

with the following conventions:k + 1 = 1 if k = m and
k − 1 = m if k = 1. An example optimal schedule is given
in Figure 9 for a ternary tree with depthL = 11 and spatial
reuseF = 5.

Time (t)
B(1,1)(0)

2

3

4

5

6

7

8

1

9

10

11

B(1,1)(1) B(1,2)(1) B(1,3)(1)

B(1,2)(0) B(1,3)(0)

B(1,2)(2) B(1,3)(2) B(1,1)(2)

B(1,2)(3) B(1,3)(3) B(1,1)(3)

B(1,3)(4)

B(1,1)(5)

B(1,1)(4)

B(1,2)(5)

B(1,2)(4)

B(1,3)(5)

B(1,1)(6) B(1,2)(6) B(1,3)(6)

B(1,2)(7) B(1,3)(6) B(1,1)(7)

B(1,2)(8) B(1,3)(8) B(1,1)(8)

B(1,2)(9)B(1,1)(9)

B(1,1)(10) B(1,2)(10)

B(1,3)(9)

B(1,3)(10)

la
ye

r

Fig. 9. An example of optimal schedule for ternary tree as determined in
(14). The depth of the tree isL = 11 and the spatial reuse5.

We schedule all groups fori = 0 sequentially starting with
l = 0 cyclically going over allk and gradually increasingl
until l = dF

2 e− 2. Groups that share the samek, l indices but
differ in i are scheduled simultaneously. The number of packet
transmission time slots each node is assigned coincides with
the number of packets it has to forward such that it forwards
one packet of its own and one for each of its tree successors,
i.e., noden(i,j) receives|B(i,j)| packets.

Next we show that in the suggested schedule a packet from
each node arrives to the gateway. Since each node is assigned
exactly the number of time slots as the number of packets it has



to forward, it is sufficient to show that all nodes are scheduled
for transmission. The set{B(1,k)(l)|1 ≤ k ≤ m , 0 ≤ l ≤
dF

2 e − 2} covers all nodes in the firstdF
2 e − 1 layers. The

set {B(1,k+1)((F − l) − 2)|1 ≤ k ≤ m 0 ≤ l ≤ dF
2 e − 2}

covers all nodes in layersdF
2 e until layer F − 1 and the set

{B(1,k−1)(F − 1)|1 ≤ k ≤ m} covers the nodes in layerF ;
all nodes in the firstF layers are covered. Since each set is
scheduled to transmit with all sets that areiF layers away
from it 0 ≤ i ≤ L

F , all nodes in the network are scheduled for
transmission.

The set{B(1,k)(l)| ≤ k ≤ m , 0 ≤ l ≤ dF
2 e−2} which cor-

responds to the setSodd is scheduled sequentially (no spatial
reuse). Subgroups{B(1,k+1)((F − l)−2), B(1,k−1)(F −1)| ≤
k ≤ m , 0 ≤ l ≤ dF

2 e − 2} are scheduled simultaneously
with {B(1,k)(l)}, all belonging to different main branches of
the tree. Hence the distance between any two nodes belonging
to different subgroups is greater thanF hops. The rest of the
nodes scheduled at the same time are keptiF i ≥ 1 hops apart.
Consequently the distance between any two nodes transmitting
simultaneously is greater than or equal toF .

The set of flows forwarded byB(1,k)(l + h) is only a
subset of the flows forwarded byB(1,k)(l) hence|B(1,k)(l)| >
|B(1,k)(l + h)| ∀h ≥ 1. In addition, due to symmetry
|B(1,k)(l)| = |B(1,k+e)(l)| ∀e, (k + e) (mod )m. There-
fore, the duration of the schedule is determined by the set
{B(1,k)(l)| ≤ k ≤ m , 0 ≤ l ≤ dF

2 e − 2}. Thus, the duration
of the schedule is equal to the sum of|B(1,k)(l)|, 1 ≤ k ≤
m , 0 ≤ l ≤ dF

2 e − 2 which is exactlyKodd. Hence the
schedule rate isC(P )/Kodd as in (13). Since the upper and
lower bounds coincide, the achievable rate isC(P )/Kodd.

For the even case we use the same schedule as suggested
in (14), adding one additional group scheduled subsequently
to the other groups. The added group is:

B1,k (F/2 + iF )|1≤k≤m, 0≤i≤b( 2L−F
2F

)c

It is important to note that all main branches,1 ≤ k ≤ m are
scheduled simultaneously. Moreover the distance between the
nodes that belong to different subgroups is at leastF hops,
hence they can transmit without interfering with each other.
The rest of the proof follows the same procedure as in the
odd case whereSeven replacesSodd; it is omitted due to space
limitations.

Remark: the schedule for the binary tree is slightly different
than the other cases since fork = 1 both indicesk + 1 and
k − 1 equal2. Both corresponding subgroups in the schedule
coincide and cannot be scheduled simultaneously. In [19], we
suggest a slightly different schedule which also achieves (13)
for m = 2.

B. Multi-hop transmission with turbo-relaying

We now extend the Turbo-Relaying Protocol to anm-ary
tree. The main result is summarized in the following theorem.

Theorem 4: For the upstream transmission in a regular tree
network with connectivity degreem and depthL with all
N nodes fully backlogged, with a spatial reuseF , when all
nodes transmit with the same powerP and all single-hop links

have the same capacityC(P ), the rate with turbo-relaying is
achievable if:

R(m, F, N, α) =






















































m(m − 1)2(1 + α)2(1 + mα)C(P )/
{

[N(m − 1) + m] [(mF/2 − m + 1)(1 + α)(1 + αm)×

(m − 1) + (−α)L+2−F/2(m − 1)2[1 + α − mα×
(1 − (−α)F/2−1)]

]

−(1 + α)2
[

mF/2(2m − 1) − m2
]}

if F is even
(m − 1)2(1 + α)2(1 + mα)C(P )/

{

[N(m − 1) + m] [(dF/2e − 1)(1 + α)(1 + αm)(m − 1)+

(−α)L+3−dF/2e[1 − (−α)dF/2e−1](m − 1)2
]

−(1 + α)2(mdF/2e−1 − 1)
}

if F is odd

Proof: First we give an upper bound to the achievable
rate, and second we present a schedule that realizes the bound.

1) Upper bound of the achievable rate:
As in Theorem 3, we consider the setSodd as the set of all
nodes belonging to the first(dF

2 e − 1) layers for oddF and
for F even, the setSeven as the union of the setSodd and
B(1,1)(F/2 − 1). In both cases,F even or odd, two nodes
that belong toSodd (resp.Seven) can simultaneously transmit
since they are at mostF − 1 hops apart (cf. Figure 8). As in
the hop by hop relaying case, an upper bound of the rate of
any node in the tree is determined by the total transmission
duration needed to transmit at least one packet of all nodes of
the tree through the nodes inSeven or odd. We first determine
the transmission duration of one node which belongs toS in
layer l. The transmission for a source node inl + k layer to
its upstream one hop neighbor in layerl + k − 1 is equal
to one time slot as it is without TRP. From the latter node
to his neighbor in layerl + k − 2, only (1 − α) time slot is
necessary with TRP,α being defined in (7); from the latter
node to his neighbor in layerl + k − 3, only (1 − α + α2)
time slot is necessary, etc. Based on the same reasoning, the
transmission duration to transmit the necessary information of
a node that belongs to layerl + k from node in layerl to
its one-hop neighbor in layerl − 1 is equal to

∑k
i=0(−α)i.

A node in layerl hasmk descendant nodes in layerk + l.
Therefore, in order to transmit the information of all its
descendant nodes in addition to its own information, a node
in layer l requires

(

∑L−l
k=0 mk

∑k
i=0(−α)i

)

time slots. Since
two nodes that belong toS cannot transmit simultaneously,
the total durationK to transmit one packet per node for
all nodes in the tree to the gateway node is at least:K =
∑

l∈S

∑L−l
k=0 mk

∑k
i=0(−α)i, i.e.:

Keven = 1
m(m−1)2(1+α)2(1+mα)×

{[N(m − 1) + m] [(mF/2 − m + 1)(1 + α)(1 + αm)×

(m − 1) + (−α)L+2−F/2(m − 1)2[1 + α − mα×
(1 − (−α)F/2−1)]

]

−(1 + α)2
[

mF/2(2m − 1) − m2
]}

if F is even

Kodd = 1
(m−1)2(1+α)2(1+mα)×

{[N(m − 1) + m] [(dF/2e − 1)(1 + α)(1 + αm)(m − 1)+

(−α)L+3−dF/2e[1 − (−α)dF/2e−1](m − 1)2
]

−(1 + α)2(mdF/2e−1 − 1)
}

if F is odd
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Fig. 10. Throughput improvement with Turbo-Relaying givenby (15) vs.
conventional hop by hop relaying as a function of the signal-to-noise ratio
for several connectivity degreesm. The throughput gain with TRP is greater
than 50% at SNR= 10 dB and greater than80% at 30 dB for any m ≥

2. Throughput improvement is higher as the connectivity degree of the tree
increases. In all cases, the channel pathloss exponent is equal to2 with spatial
reuseF = 4.

Since the capacity of each link isC(P ), the achievable rate is
upper bounded by:R ≤ C(P )/Kodd or even. This completes
the first part of the proof in which we determined an upper
bound of the achievable rate. Next, we present a schedule that
can realize the bound.

2) Lower bound of the achievable rate:
We adopt the same basic schedule given by (14) and described
in Figure 9 to provide the achievable rate lower bound which
coincides with the upper bound. The basic difference between
both schedules is that in the non cooperative case, we could
schedule the nodes in each subgroupB1,k(l) ∀l sequentially
and still realize the upper bound. For the cooperative case,
in order to realize the achievable rate upper bound we have
to further exploit the spatial reuse within the subgroups
B1,k(l) l > dF

2 e. In [19], we propose a schedule that realizes
the achievable rate upper bound.

C. Simulation Results

Here, we illustrate the throughput improvement with turbo-
relaying. For the parking lot, the TRP throughput gain over
single-hop relaying is given by:

GTRP (m, F, N, α) =
R(m, F, N, α) − R(m, F, N)

R(m, F, N)
(15)

Figure 10 showsGTRP (m, F, N, α) as a function of the noise
level for several connectivity degrees. In all cases, the tree
depth is8 with spatial reuseF = 4. The larger the connectivity
degree of the tree, the higher the throughput improvement. The
gap between the parking lot and the cases with connectivity
degree greater than or equal to2 is due to better spatial
reuse between the subtrees in the latter cases as discussed
in Theorem 4. The throughput gain with TRP is larger than

50% at SNR= 10 dB and more than80% at 30 dB for any
m ≥ 2.

VI. CONCLUSION

We proposed the Turbo-Relaying Protocol to increase each
node’s throughput of upstream transmission in tree topologies.
Whereas power optimization leads to a near-zero throughput
gain compared to the basic case of multihop hop-by-hop
transmission with fixed power allocation, we showed that our
approach can achieve80% throughput gain for any regular tree
with any connectivity degree.
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