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Abstract— Countering Distributed Denial of Service (DDoS) attacks $
becoming ever more challenging with the vast resources anéthniques in-
creasingly available to attackers. In this paper, we consiel sophisticated
attacks that are protocol-compliant, non-intrusive, and uilize legitimate
application-layer requests to overwhelm system resource¥Ve characterize
application-layer resource attacks as either request floadg, asymmetric,
or repeated one-shot, on the basis of the application workkd parame-
ters that they exploit. To protect servers from these attack, we propose
a counter-mechanism that consists of a suspicion assignnmtemechanism
and a DDoS-resilient schedulerDDoS Shield In contrast to prior work,
our suspicion mechanism assigns a continuous valued vs. bty measure
to each client session, and the scheduler utilizes these wa to determine if
and when to schedule a session’s requests. Using testbed exments on a
web application, we demonstrate the potency of these resoee attacks and
evaluate the efficacy of our counter-mechanism. For instarg; we effect an
asymmetric attack which overwhelms the server resourcesncreasing the
response time of legitimate clients from0.1 seconds tol0 seconds. Under
the same attack scenario, DDoS Shield limits the effects o@lse-negatives
and false-positives and improves the victims’ performancéo 0.8 seconds.

I. INTRODUCTION

Distributed Denial of Service (DDoS) attacks pose an e

greater challenge to the Internet with increasing resaaitéhe

compromised hosts, popularly known as “botnets,” are agelar.

system that has defenses against both (1) intrusion attaeks
attacks which exploit software vulnerabilities such asfdauf
overflows and (2) protocol attacks, i.e., attacks that ékplo-
tocol inconsistencies to render servers inaccessible (gjack-
ing DNS entries or changing routing). In such a scenario, the
only way to launch a successful attack is for attackers taeva
detection by being non-intrusive and protocol-compliamtg
yet overwhelm the system resources while posing as legiéima
clients of the application service. Hence, the only systém a
tributes available for the attacker to exploit are thosdtierap-
plication workload.

We first explore the entire range of exploitable workload pa-
rameters and characterize layer-7 resource attacks iné@ th
classes: (1)equest flooding attackhat send application-layer
requests at rates higher than for normal sessiongg@nhmet-
ric attacksthat send high-workload request types; andré3)
peated one-shot attacks which the attacker spreads its work-

Vlgad across multiple sessions instead of multiple requasts
session and initiates sessions at rates higher than noifoal.
§>6ample, an HTTP flood can stress server resources as an
symmetric attack if the attack sessions send requestb/invo

as 60,000 machines [9][21]. Moreover, the SYN flood attack'd high-computation database queries. We study thesseslas

the most popular DDoS attack to date, is giving way to sophisY

cated application-layer (layer-7) attacks. In one instaao on-

line merchant employed the “DDoS mafia” to launch an HTTPH
flood towards his competitors’ web sites by downloadingéar
image files when a regular SYN flood failed to bring the sitH

down [11].

Many prior attacks targeted network bandwidth around nte
net subsystems such as routers, Domain Name Servers, or e
clusters. However, with increasing computational comipfex

ia testbed measurements of attacks on servers and thédhos
web applications. We show that dynamic content presents a
bstantial heterogeneity in request processing timesgme

uest types which can be exploited to initiate asymmetric at
g@acks. While the above attack classes are known to exist for
TTP floods, our work is the first to demonstrate vulnerapilit
tP these attack classes for server resources and to imptamen
[ppare them experimentally.

Since the attackers mimic legitimate requests, attackasess

in Internet applications as well as larger network bandmgdtare indistinguishable from legitimate sessions via sye#&

in the systems hosting these applications, server resostash

techniques. For instance, if the attackers use valid |Pesdeis

as CPU or I/0 bandwidth can become the bottleneck much t&m botnets, both server and network attacks would pass-und
fore the network [2][22]. Anticipating a future shift in DSo tected by ingress-filtering approaches which check for fgubo
attacks from network to server resources, we explore theayul Source addresses. Further, the server attacks would pdes un

ability of Internet applications to sophisticated layeatfacks
and develop counter-attack mechanisms. In particularconyf
tributions are (i) classification and experimentation wriw
application-layer attacks, (ii) development of a mechanie

tected by mechanisms that only detect network anomaliass,Th
we design a comprehensive suspicion assignment mechamism t
detect layer-7 misbehavior across the parameters of seasio
rivals, session request arrivals and session workloadgsofin

assign suspicion measures to sessions for scenarios witera-p contrast to traditional anomaly detectors which outputbin
tially small and variable number of requests per sessian(ign decisions while bounding the detection and false-posftiod-
design and experimental evaluatiorloS Shielda technique abilities, we assign a continuous measure of suspicion &sa s
that provides DDoS resilience by using suspicion measurés $0n Which is updated after every request. We establish a set
server load to determine if and when to schedule requests t8fgoundness principlethat a metric must obey in order to as-

server.

sign suspicion values consistently across workloads witard

In studying new classes of attacks, we consider a well-secufd numbers of requests per session.
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Next, we design a counter-mechanisBDoS-Shield that
uses the suspicion assignment mechanism as an input togx sche
uler designed to thwart attack sessions before they ovémvhe
system resources. The DDoS-resilient scheduler incotp®ra



the suspicion assigned to a session and the current systekn woation interface to issue requests that mimic legitimaentie-

load to decide when and if a session is allowed to forward rguests, but whose only goal is to consume server resourees. W
qguests. We develop scheduling policiesast Suspicion First assume that the application interface presented by therseis/
(LSF)andProportional to Suspicion Share (PSBat incorpo- known (e.g., HTTP, XML, SOAP) or can be readily discovered
rate suspicion into the scheduling decision. As a basebne {e.g., UDDI or WSDL).

comparison, we implement and study suspicion-agnostie pol \we consider session-oriented connections to the server e.g
cies such as per-session Round Robin and First Come Fifstrp/1.1 session on a TCP connection with the server. We as-
Serve among all requests. We also demonstrate the impertagigme that the attacker has commandeered a very large number
of limiting the aggregate rate (over all sessions) at whieh t ;v of machines distributed across a wide-range of geograbhica
scheduler forwards requests to the application systemwend greas, organized into server farms popularly known as teth
develop an online algorithm to set this rate. For initiating a TCP session, an attacker can either usedhe a

Finally, we effect the three classes of attacks on an expafiz| |P address of the machine or spoof an address diffexamt f
mental testbed hosting an online bookstore implementewWushny of the addresses in the botnet. Thus, we do not make any
a web server tier, application tier and database tier. We-endigsumptions regarding the set of IP addresses accessitiie by

late legitimate client workload through an e-commerce bencattacker, and the attacker can potentially use a diffeferatd-
mark [1]. Using this testbed, we perform a number of expefiress for each new session initiated.

ments to characterize the potency of the attack classesvaid e \We assume that the system has sufficient capacity to supporta
uate the efficacy of DDoS-Shield. Our summary findings are the ber of i ; hi iaith
following: number of concurrent client sessions much larger fiafhus,

Workload trv attack tent dt if the attacker were to initiateormalsessions concurrently from
+ VVorkioad asymmetry attacks are more poteént comparea o ferep, of thev machines from the botnet, the system could serve
quest_ﬂoodlng a_ttacks, since they stress the servers signify the sessions within acceptable response times.
more in comparison.

« The repeated one-shot variant of asymmetric attacks are th&/Sing the workload parameters that the attacker can exploit
most potent of the three attack classes due to their aliliget 10 effect layer-7 attack's, we characterize these attadkstire
a much larger query flood towards the backend database tierfollowing three classes:

. EXperimentaI evaluation of DDoS-Shield indicates tha'hbot Request F|Ooding Attack: Each attack session issues re-
the scheduling policy and scheduler service rate are &riti quests at an increased rate as compared to a non-attacking se
an effective counter-DDoS mechanism. The best performanggn.

is obtained under the suspicion-aware schedulers, LSFBRd § Asymmetric Workload Attack: Each attack session sends a
when the scheduler service rate is appropriately limited higher proportion of requests that are more taxing for tieese

« Our experiments indicate thad0 legitimate clients that have jn terms of one or more specific resources. The request rate
an average response time @i seconds under no attack, aryithin a session is not necessarily higher than normal. #his
delayed to response times 8f 10 and40 seconds under thetack differs from the request-flooding attack in that it eesis
most potent request flooding, asymmetric and repeateditote-snore damage per request by selectively sending heavier re-
attacks respectively. Furthermore, the efficacy of DDo®I8h quests. Moreover, this attack can be invoked at a lower stque
is evident in that the performance under each of these atiackrate, thereby requiring less work of the attacker and maéting
improved t00.5, 0.8 and1.5 seconds respectively. tection increasingly difficult.

The remainder of this paper is organized as follows: In Seg-Repeated One-Shot Attack:This attack class is a degener-
tion 1, we describe the victim, attacker, and defense n®delte case of the asymmetric workload attack, where the @ttack
we use to study layer-7 attacks. In Section I, we descrilie dinstead of sending multiple heavy requests per sessionissen
experimental testbed and characterize the performancacimpnly one heavy request in a session. Thus, the attackerdsprea
on legitimate client sessions due to the three attack dadse its workload across multiple sessions instead of acrostipteul
Section IV and V we present the design of the suspicion agquests in a few sessions. The benefits of spreading aréa¢hat
signment mechanism and DDoS-resilient scheduler resécti attacker is able to evade detection and potential servigeade
and present their experimental evaluation. Finally, wewls dation to the session by closing it immediately after seqdire
related work in Section VI and conclude in Section VII. request.

|| ATTACKER, V|CT|M AND DEFENSESYSTEM MODELS The asymmetric requeSt f|00ding attaCk and ItS Variants ex-
ploit the heterogeneity in processing times for differeaguest

In this section, we (i) describe the attacker model for &ffeGyhes. The attacker can obtain the information about seever
ing the protocol-compliant, non-intrusive layer-7 at®ckii) soyrces consumed by different legitimate request typesigir
present the victim system on which we quantify the perfog,onitoring and profiling. For this paper, we assume the worst
mance impact of these attacks and (iii) outline a defenseeoq.5se scenario that the attacker knows the full profiling data
DDosS Shield, for detecting and circumventing these nevekitay g therefore can select requests such that the amounwef ser

classes. resources consumed per request is maximized. However, in
general, this type of information can only be obtained tigtou
A. Attacker Model profiling and timing the server responses from outside. For
The goal of the attacker is to overwhelm one or more senjastance, to obtain the average server processing timeeper r
resources so that the legitimate clients experience hilgtysler quested page, the attacker uses a web-crawler to obtaiottie t
lower throughputs thereby reducing or eliminating the citpa (network+server) delay in processing a request. and agsttag
of the servers to its intended clients. The attacker usegghl: remove the effects of varying loads.



B. Victim Model results of which are collated together to produce the respon
age @ynamic reques}s Each database query emanating from

We consider a general victim model consisting of muItE dynamic request is forwarded to a database server usiaga lo
resource pool of servers. In experiments, we focus on anb%\_lancing strategy [3][22]
0 )

commerce application hosted on a web cluster, which cansi Each of the tiers in the system consist of multiple resources

of multiple-tiers for processing requests, as shown in f&du . . . -
We define an e-commerce session as an HTTP/1.1 session GygpPutation, storage and network bandwidth, which aredieni

a TCP socket connection that is initiated by a client with the amount, we assume that_all_tlers continuously monitor the
web server tier. HTTP/1.1 sessions are persistent commecti o >0urces In the t;ler and pe|r||0d|cally generate reiogubgadt

and allow a client to send requests and retrieve responses f||IIOn reporr:s as r’e aﬁ overadsystem statistics ar:t e'em%]. .
the web-cluster without suffering the overhead of openingwa ayer such as throughput and response t|me..T e systenlis sal
TCP connection per request. Each request in a session may é;%r?e under a resource attack when a surge in a resource usage

erate additional processing in the application and thebdaa accompanied by reduction in throughput and increase-in re

tiers, depending on the request (or request type). We assUiR@"NSe time without DDoS attack at lower layers.

that a request consumes varying amount of resources from eac

. . 7 Suspicion P;
tier (possibly none), consisting of CPU, memory, storagel a (. .. [ ” :
network bandwidth. Recall that the goal of the attacker is to - é £
push resource usage in one of the tiers to its maximum limit, S N sessions :
that the system capacity for serving clients is diminished. VW Scheduler
y P y 9 MU UUH) Service Rate: r
per—session

queue length: 1
Internet
Suspicion
Assignment Mechanism DoS—Resilient Scheduler
Content Distribution Networks
(DNS or Akamai)

— = Reverse Proxy/

@ @ Web Load Balance

Fig. 2. Defense system model: DDoS-Shield
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C. Defense Model

<
— — Web/Application In this paper, we introduce a counter-DDo0S mechanism_ to
@ &) @ Servers protect the application from layer-7 DDoS attacks and ptevi
adequate service to legitimate clients even during an lattac
Database The defense model consists ofdD0S-Shieldwhich is inte-

Load Balancers grated into the reverse-proxy and thus intercepts attapkests

from reaching the web-cluster tiers behind the reverseypro

Database . K .
Servers The DDoS-Shield examines requests belonging to every ses-
_ - ‘ - sion, parses them to obtain the request type and maintagns th
Fig. 1. Victim system model: web cluster hosting a web apyiio. workload- and arrival-history of requests in the sessioig- F

ure 2 shows the system architecture for DDoS-Shield that con

A legitimate HTTP/1.1 session consists of multiple regsiessists of: (1) Suspicion assignment mechanism which uses the
sent during the lifetime of the session. Requests are ejtid@r session history to assign a suspicion measure to every sksn
in aclosed-loodashion, i.e., the client sends a request and wagn: as described in Section IV; and (2) DDoS-resilient sched-
for the response before sending the next request, or they aler that decidewhichsessions are allowed to forward requests
pipelined i.e., the client could send multiple requests withowindwhendepending on the scheduling policy and the scheduler
waiting for their response and thus have more than one requervice rate, as discussed further in Section V.
outstanding with the server. A page is typically retrieved b
sending onenain requestor the textual content and seveegh- [1l. V ULNERABILITY TO ATTACKS
bedded request®r the image-files embedded within the main
page. Main requests are typicallynamicand involve process-
ing at the database tier while embedded requeststatie since
they only involve processing at the web-cluster tier.

In this section, we characterize the effectiveness of therla

7 DDoS attacks in overwhelming the server resources on our
e-commerce application. We first quantify the variation tia-p
cessing times for different requests and then mount eadteof t

t'aﬁrgller;grtig?gi[c:i ﬁég?iis.:(:oastégng szcrgrsltst%ifg'g;] three classes of layer-7 DDoS attacks to demonstrate teappt
: qu lon Is rou yacl : of each attack class.

mechanism such as DNS Round-Robin or Akamai to a reverse-

proxy server. The reverse proxy server parses the requist’s A. E-Commerce Testbed
and routes the request to a web server typically accordirag to”
load-balancing policy (e.g., using round robin or more $sfph ~ The example e-commerce application that we consider is an
cated policies as in [6]). If the request is for a static wehegpar online bookstore hosted on a multi-tiered architecturesistimg

an image file, a server in the web tier serves the requestedl pad three web servers and one database server. We use Apache to
If the request is for an e-commerce functionality, it is serv implement the web server, PHP scripting to implement the ap-
by an application script such as PHP, JSP or Javascript. Sptibation logic, and MySQL to implement the database server
requests typically consist of one or more database quehies, The networking infrastructure consists td0 Mbps links for



both the access links to the system and for the connections Biatabase tiers — the main resource being attacked in our-expe
tween tiers. The servers are Intel Pentiun2ly GHz processor iments; (2) average response time of requests as an iraticati
machines running Linux 2.4.18 kernel wifi2 MB SDRAM of the slow down a legitimate client will experience; and 8)
and a30 GB ATA-66 disk drive. erage throughput in requests/second achieved per noriaat cl

Average response
time for request type (sec)
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session. We also quantify the ease of mounting a layer-7 DoS
attack at the attacker end point by: (1) the number of unigue |
addresses required and (2) the aggregate bandwidth nesded t
launch the attack.

We emulate the workload of a legitimate client session us-
ing the session types shown in Figure 4 based on the TPC-W
benchmark [1]. In particular, in each experiment, we L&
HTTP/1.1 sessions3% in each of browsing, shopping and or-
dering profiles, to represent the legitimate client popaoiatLe-
gitimate clients generate new sessions using an expohdistia
tribution with mean of 0.2 seconds. Requests are submitted t
the web servers using exponentially distributed think smwith
a mean of 7 seconds between receiving a response and issuing

the next request.

We generate each of the three types of attacks as follows:
First, the request flooding attack is mounted by decreasiag t
think-times between requests to values lower than the ndfrma
seconds. For maximal potency, we decrease the think-times t
0, thereby, generating the requests as fast as possiblen&eco

Recall that the effectiveness of an asymmetric workload e asymmetric workload attack is generated using one of the
tack arises from large differences in processing timesftérdi €xpensive request types, BestSellers. We mount this attelek
ent request types. To explore whether this is possible foonu the normal think-time o seconds between requests first, and
line bookstore implementation, we profiled the processings then combine it with the request flooding attack by redudireg t
of individual request types to identify requests with high r think-times to0. For each experiment involving request flood-
source consumption on the server. Figure 3 shows the respdf§ or asymmetric request flooding attacks, we vary the numbe
times perceived across different types of requests forline of attack sessions fromto 300 sessions to simulate “no attack”
bookstore application on our experimental system. We ate tand “large attack” scenarios respectively. Finally, theeated
the most expensive request is ab®times more expensive thanone-shot attack is mounted by repeatedly generating siegle
the least. Expensive request types such as “BestSellemsivin  quest sessions for the BestSellers script using intevedtime
heavy CPU processing on the database server since thegenitPetween sessions smaller than the legitimate ndeaseconds.
queries that involve table join operations across multiptdes Once the response to the single request is received by the at-
followed by a sort operation to obtain a list of top-sellingpls. tacker, it closes the session and creates a new one.

Request type

Fig. 3. Heterogeneity in processing times for differentaiyic content requests
in online bookstore application.

B. Attack Potency

Il \Wkid=Browsing
I WkId=Shopping

Figure 5 shows the results from the experiments designed to
[ 1 wkId=Ordering

guantify the potency of each type of attack. Our resultsdati

that the response time of normal sessions increasefrosec-
onds under no attack to as high3aand10 seconds when there
are 300 attack sessions in the request flooding and asymmetric
request-flooding attacks respectively. Thus, assuminguther
patience for web page download time$§ seconds [7], an asym-
metric attack would also drive legitimate users away from th
web site. Furthermore, the throughput of each normal segsio
terms of requests completed per second per session alse drop
drastically from0.14 to 0.065 and0.042 under request flood-
ing and asymmetric request-flooding attacks respectilédye-
over, the repeated one-shot attack is much more potent thyan a
other attack class as seen from Figure 6(c). In the most poten
form of the attack, when the attacker waitseconds between
closing and opening another session, the average resporese t
per normal client session increases to as higklaseconds.

Both repeated one-shot and asymmetric attacks make the
database server CPU the bottleneck, driving the CPU loads to
Next, we attempt to quantify thpotencyof various layer-7 almost100%, in their most potent forms. However, the asym-

DoS attacks in our system. We use the following metrics to-meaetric attack is limited in sending a query flood towards the
sure the potency of an attack: (1) CPU utilization on the web abackend database server since the web server serves only one

o
N
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Fig. 4. Probability of occurence of a request type in a clsgsion for brows-
ing, shopping and ordering sessions. Browsing sessiorts @y 5% re-
quests for pages that involve write queries to the datal&serswhile shop-
ping and ordering sessions send an increasing percentagelofequests.
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Fig. 6. Variations in attacker strategies. The figures sheperformance impact ar00 normal sessions. In (a), the attacker u2@3 attack sessions to launch a
request flooding (browsing profile) and asymmetric requestlihg (BestSellers script) attack, while varying the esjunter-arrival times & — 7] seconds.
In (b), the attacker use¥)0 attack sessions sending requests as fast as possible vatyileg the attack workload. In (c), the attacker uses only session at
a time, sending one BestSellers request per session aed taei inter-session time frofd — 0.5] seconds.

request at a time per session.

shot attack is successful in sending a larger query floodrtisva
the database server, since after being blocked on a setisione Asymmetric request-flooding is significantly more poteatth
attacker opens yet another session and sends another tredi@¥gnal request flooding attack since it succeeds in makieg th
which translates into more queries towards the databagerserdatabase CPU the bottleneck, as observed from Figure 5(d). |
This query flood leads to much higher queuing delays at tgentrast, the normal request flooding attack never makes the
database server which explains the higher potency for tegesdatabase CPU the bottleneck and only succeeds in increasing
one-shot attacks. Figure 7 depicts the inter-arrival tines Web server CPU loads to as high&s%. Since, in the online-
tween queries received at the database server. The figunes sheookstore implementation, the database server is moré-sens
that90% of queries arrive withinl0 msec of the previous querytive to heavy loads than the web server, the asymmetric stque

for the repeated one-shot attack, compared tosthé for the ~flooding attack delays normal sessions significantly more.
« All attacks are server attacks and the network-accessdink t

In contrast, the repeated ammmmetric attack. Moreover:
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the cluster {00 Mbps) is never overwhelmed as observed from
Figure 5(f). The reason that the aggregate download traffic s
urates much befored0 Mbps is that the web or database server
CPUs are overwhelmed. Since asymmetric attacks bottlesteck ool
the database servers, the download traffic is much lesslaps
compared t31 Mbps for request flooding attacks. w
« Theincrease in response times is not caused by the system be- 5
ing overloaded due to too many client sessions; the slowdown

are directly attributable to the system doing more work as-a r osf
sponse to attack requests. Observe that the response times f

0.8¢

0.7

—¥— No Attack

the normal sessions are almost constantdatmsec when the o —o~ Asymmetric Request flooding Attack

Repeated One-Shot Attack

attackers behave exactly like normal sessions, i.e., In@&ame
workload as well as think-time profiles.

« The asymmetric workload attack is a low-rate attack, sihce i
requires a lesser number of attack sessions to inflict damiagéig. 7. CDF for inter-arrival times for query-arrivals atethlatabase server

s ; ; -"l@ for different attacks. The number of normal browsing sessis 100 in
similar magthde' Also, all attacks are quite easy to | Bt each scenario. The no attack case bastackers, while the asymmetric

since (1) they reqUire access to_approxima&ﬂg unique IP- request-flooding correspondsa60 attack sessions with request think-time
addresses, easily obtainable using current-day serveisfar of 0 seconds. The repeated one-shot attack corresponds t@ek sgsion

botnets and (2) the maximum aggregate bandwidth needed tcpeing opened immediatelp) seconds after closing the previous session.
launch an attack i Mbps upstream for requests a2@l Mbps
downstream for response traffic, easily achievable usingot
day access networks.

« Changing the baseline normal client workload frod0 client
sessions causes a corresponding linear change in the nob
attack sessions needed to cause similar damage.

04 L L L L L L L L L
[ 100 200 300 400 500 600 700 800 900 1000

Query Inter-Arrival Time (msec)

the following request types in decreasing order of proogssi

times: BestSellers> NewProducts> Home > ProductDetalil
Search. We investigate the following attacker strategié}: (
: 100% BestSellers requests, (B-N: equal number of Best-

. L o Sellers and NewProducts requests and similarily, §3N-H,

Finally, while it may appear that an attack that pipelines r 4) B-N-H-P, (5) B-N-H-P-S. Figure 6(b) shows the damage

quests without waiting for.their responses WOUl.d cause Mg ;sed tal00 normal sessions by00 attack sessions. In each
damage than the attack which sends its requests in a clospd-l o, heriment, the attack sessions send requests as fastsis pos

However, Apache web servers only service one request per ol using one of the workload profiles mentioned above. As

sion at a time. Hence, even though an attack session may sgfidyeq, the damage decreases consistently as the agack s
multiple requests, they end up waiting in Apache’s perisass

" he h letel iced the | sions dilute the proportion of the heaviest BestSellersiests,
queue, until Apache has completely serviced the |ast remlu%{"?)proaching the potency of the normal request flooding lettac

which may involve sending database queries and receivieig tr\Nhich have the same workload profile as the legitimate dient
responses. .AS a resg!t, attackers that generate requests I y/ariaple inter-session arrival timetn the repeated one-shot
open-loop without waiting for the responses to arrive ary Oy, ek the attacker may emulate slower inter-sessios btén-
slightly more effective than cIosed-I(_)op attack sessidviere- creasing the waiting time between closing and opening tike ne
OVe, these open loop attacks are higher rate attacks ane hefl i Figure 6(c) shows that the attack potency deease
easily detectable compared to closed loop attacks. Ob&eme ., jstently with increasing inter-session time betwettach

Flgure ?(C)' than ar;f_asymmetrlg operr: loop ﬁtltaCk S&tgds sessions. Furthermore, when the attack session uses tlee sam
Mbps of request traffic compared to the much lower Mbps  jnier_arrival time as normal sessionsZ seconds), there is no
by an equivalent closed loop attack, for similar damage. performance degradation

C. Attacker Strategies IV. QUANTIFYING ATTACK SUSPICION

Since the most potent attacks are also the most deviant fronBecause attackers cannot be distinguished from non-
normal behavior and hence most easily detectable, thekattagnalicious clients with 100% certitude, our objective is T
may employ lower-potency attacks to evade detection anceheRide a mechanism to tag each session with a continuous nesasur
guarantee success. Next, we assess the damage causeceby ¢he@spicion. In our architecture, this value is then used by-
lower-potency attacks. quest scheduler to determine when and if to service a péaticu
« Variable request-arrival ratelnstead of sending requests asequest.
fast as possible (attack think-tim@ésec), the attacker decreases We formulate the suspicion-assignment problem by first per-
its request-rate. Observe from Figure 6(a), that the asytnomeforming measurements to characterize the set of distabati
request-flooding attack still causes similar damage todhmal that define legitimate behavior. We then calculate the sicapi
sessions even when the attack sessions send requestodspert a session on the basis of the probability that it was geedra
as large a§ seconds. This validates our hypothesis that asyritem one of the legitimate distributions. Recall from Sentll|
metric attacks are more potent due to their workload-asytmrymethat attacks succeed by altering either of the session peam
rather than rate-asymmetry. of session inter-arrival timerequest inter-arrival timeor ses-

« Variable session workloadnstead of sending only the heavsion workload-profile Thus, we design suspicion assignment
iest BestSellers requests in a session, the attacker magphgechniques to assign a suspicion measure to a session with re
sessions into profiles increasingly similar to the normefifrs. spect to each of these parameters. These individual vatees a
Thus, with reference to Figure 3, suppose an attacker seldben combined into one suspicion measure for the session.



First, we describe an offline phase in which we build legitieluster requests with similar CPU utilization. Startingtwall
mate client behavior profiles using system logs, which are dke requests from the logs, each defining its own cluster, we
sumed to be un-influenced by attacks. Next, we describe-sugpibup requests with similar CPU utilization at every iteratto
cion assignment techniques corresponding to each of tee thobtain a decreasing number of clusters. This is done untira n
kinds of deviations from normal behavior, followed by analg malized ratio between the inter- and intra-cluster distan8]
rithm to combine their outputs. Finally, we conclude by pres reaches a local maxima, thus obtaining a set idquest types:
ing testbed results to evaluate the performance of our siespi U!_, {a;}; identified by their average CPU utilization. Similarly,

assignment techniques. sessions defined as a histogram on the_get{a;} of request
classes, are clustered to obtain an optimal setsafssion types:
A. Legitimate Client Profiles U§:1{G7‘}-

In this phase, we extract information from system logs # our example online-bookstore implementation, the eltisg
build profiles for legitimate client behavior with respeatses- algorithm groups requests intd request classes. Incidentally,
sion inter-arrival times, request inter-arrival timesgaession €ach of these request classes also corresponds to a particul
workload profile. The system logs store the number of regue&P€ Of page that was being requested, e-pmeand Best-
per session and the resources consumed by a request forfeactfliers Sessions are clustered intosession types, identified
the resources: CPU, disk and network bandwidth. We assu@feProwsing shoppingandordering(see Figure 4).

stationarity in the system logs. B. Detection of Session Arrival Misbehavior

1 ‘ P ORI Recall that a repeated one-shot attack’s potency is dueesto th
7 higher than normal session arrival rates. Hence, detection
these attacks is based on detecting increases in sess@rn int
arrival times. Upon the arrival of a new sessignve first cal-
culate the difference between its arrival time and that efléist
session:a;. Then, using the distributiod for legitimate ses-
sion arrival times, we assign it a seed suspigiQs;.. (i) as the
probability that we would have observed a session intevarr
time less thamy;: fsession (i) =1 — P(A < ;).
This method has high false positives since a legitimate ses-
sion that arrives in between two consecutive one-shot@essi
e would also be assigned a high seed suspicion. However, in the
s 10 5 2 2 latter half of this section, we present an algorithm to rexiine
Sample Mean Inter-Arrival Time (x) . .
performance impact due to these false positives.
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Fig. 8.  Cumulative Distribution Function for request ingerival time: . ) . .
P(X, < ) with varying session lengths or sample sizes ‘n’. C. Detection of Request Arrival Misbehavior

. . R A request flooding attack succeeds by sending requests at
» Session Inter-Arrival Distribution: We extract the aggre- rates higher than normal. Hence, detection of these atiacks
gate session inter-arrival times to obtain the empiricsiriu-  based on detecting decreases in inter-arrival time between
tion A. Due to our workload generatad is exponential with cessive requests in a session.
mean).2 seconds. o _ On observing theth request in a session, we assign its suspi-
« Request Inter-Arrival Distribution:  First, we extract ses- cjon as follows: (1) calculate the mean inter-arrival timever
sions of length equal ta requests. Next, we use the request requests seen in the session so far; (2) use sample distribu-
inter-arrival times of these sessions and obtain an engplis-  tion X,, shown in Figure 8 to assign suspicion ds:quest (i) =
tribution of request inter-arrival timesX,,. This is done for ;| _ p(X, < ;). Thus, the suspicion measure for an attack-
all values ofn = [2,60] as shown in Figure 8. With increas-session which sends requests once evesgconds would be

ing sample size:, X, tends to an exponential distribution withy g after5 observations, quickly increasing 6002 after 10 ob-
mean of7 seconds, corresponding to the distribution used in Ogg yations.

workload generator.
« Session Workload Profile: Using the resource consumptiorD. Detection of Session Workload Misbehavior
for a request for each resource type (CPU, disk, network), we

use a standard centroid-clustering algorithm [8][19] tdagb eneity in the server processing times of requests anctiselgc
workload profiles for legitimate sessions as follows: First 9 y P 9 d
sends more requests towards the heavy request classes.aThus

guests with similar resource consumption for a resource are . ) X
. . System under attack would see sessions with a higher than nor
grouped into severakquest-resource classedNext, sessions

: L ; mal proportion of requests for certain request classes.célen
with a similar proportion of requests per request-resoulass . . : oo
. . detection of asymmetric attacks is based on detecting tiewsa
are grouped into severagssion types

Recall that in our system, the attacks overwhelm the CPU r|2_th.e Workloadcproﬂle of sessions. . .
, Given, a set)s_, {G;} of c ideal session types, detection of
sources on the database tier. Hence, we extract the databas S J=11"7] ) ) .
workload misbehavior is formulated as anline estimatiorof

CPU clock cycles consumed by each request from the logs FHe probability that the requests belonging to a sessioiisis d

L This assumption can be relaxed and time-or-day effects eandorporated t_r'bUted as one of the Ie_gltlmate Or_|dea| Sess_|0n t)@?sm"
using standard techniques from time-series analysis. tially, we assume there is only one ideal session-typ®ue to

Recall that in asymmetric attacks, the attacker exploitsroe



the discrete number of request types, an equivalent proldem Observe that both KL-distance and RF-distance have the
observing a series of throws of a dice witiaces and generat- properties desirable in a distance metric. We illustratin \&in
ing distribution, and estimating whether the observed seriexample on two request classes:= {0,1} and a Bernoulli
is generated from the distributi@r. ideal distributionG having probabilities (0.5,0.5). If a sessien
Given an ideal session tyg&, a suspicion measure assigngas the same type as the most likely realizatiot’pthen both
suspicion numbers to a sessioty using (1) the length of the distance metrics assign distaneIn contrast, sessions origi-
sessiom and (2) the deviatiod of the session from ideal be-nating from a Bernoull{0.8, 0.2) distribution and having types
havior as captured bydistance metribetween the session typesuch as(4,1), (8,2)...k(0.8,0.2) are assigned KL-distance of
and the ideal type. Next, we develop a frameworksmundness 0.193 and RF-distance af.5, irrespective of length. Moreover,
of a workload suspicion measure to ensure consistency in tHwir distance is less (on average) than that assignedsmass
signment of suspicions across workload deviations. originating from Bernoull{0.9, 0.1) distributions, in which case
A desirable distance metric disassociates session leogth ( the average KL-distance is 0.368 and RF-distance is 4.
responding to the number of request observations) fromadevi
tion and assigns sessions which have the same deviation fidd Soundness
ideal type, an equal distance, irrespective of their lengithe A suspicion measur¢ is said to besound and hence con-
other properties that we desire in a distance metric arediBat sistent in assigning suspicion across workload misbehafio
tance grows with deviation from the ideal type and distar@e bobeys the following properties:
tween a type and itself i&. In this paper, we consider two can- Zero-Distance Property. A sessions with the same type as
didate distance metrics to illustrate the properties:Kiblback the ideal session type is always assigned a suspicion numhber
Leibler (KL) distance metric [10] and a metric we developed), irrespective of its length.
which we call theResidue Factor (RRnetric.
Leto = U"_, {a;} denote the set of request classes. Denote T(s)=G = f(s)=0 Vne€[l,00) ©)
a session as a histogram on the number of requesis;) seen
per request class: = U_, {n(a;)}. Similarly, define a session
typeT'(s) as a histogram on the fraction of requeatéa;) =

@) seen per request typ@:(s) = U, {N(a;)}; wheren is

That is, if a session has the same type as the ideal, its @@viat

from the ideal type i9, and hence its suspicionls

« Distance-Proportionality Property: Amongst all sessions of

the same length, a session which deviates more from the ideal

the total number of requests seen in the session: 3" n(a,;). S€Ssion type is assigned a higher suspicion. Thus, given two
i=1 sessionsg; andss of lengthsn; andns and distances from ideal

Further, define the ideal session ty@e= U, {G(a;)}, where typed, andd, respectively:

G(a;) denotes the fraction of requests of request typand

=1

n

ny=no, di >dy = f(Sl) > f(SQ) (4)

That is, greater deviation from the ideal type signifies tpea

D.1 Distance Metrics suspicion. o )

o ] ] « Length-Proportionality Property : If two sessions have the
Definition 1: The KL distance between the session tyf{8) same type which is different from the ideal type, then theises
characterizing a sessiarand the ideal distributiotv is defined \yith greater length is assigned higher suspicion. Thusrgiv
as: two sessions; ands, of lengthsn; andn, and distances from
N(as) ideal typed; andd, respectively:

a;

(
G(a;) T(s1) =T(s2) #G, n1>na = f(s1) > f(s2) (5)

, . , That is, with an increased number of observations, the siospi
Next, we define a Residue Factor (RF) distance by eXtraﬁPbbability converges towards its true value.

ing the greatestcommonfactor (gcf) of G present in session” There are several possible measyfeshich satisfy the prop-

KL(T(s)||G) = ) N(a;)log

a; €0

1)

st gef = min|n(a;)/G(a;)]. Now, define residuees = erties of soundness. We next consider a class of suspician me
r G sures which are derived directly from the properties of sbun
;1{71(@1') —gef Glai)}- ness, and hence correct, while also being computationtiily e

" Definition 2: The RF-distance metric between a sessiand  cient.
\dealtypeGz is defined as: D.3 Length Distance Product (LDP) Measure

Tres
RE(s]|G) = gcf (2) Definition 3: Define a Length Distance Product (LDP) mea-
sure as one which assigns suspicion to a sessirtypeT'(s)

Intuitively, the greatest common factor and residue regethe  @s the product of its length and distance from the ideal type
subtypes within sessionthat are good and bad with respect té7- Substituting by the two distances of KL-distance and RF-
the typeG. Hence, the RF-distance penalizes a type for devi&tistance considered in this paper, we have the followingvegu
ing away fromG (as captured by the residue) while rewardintfnt measure definitions:
it in proportion to the length for which it was well-behaves ( KL
captured byycf). We handle the case where there is no good L (s) =nKL((T(s)]|G)

n
_ . ®)
subtype, i.e.gcf = 0 separately. " (s) =nRF(S||G)



« Asdiscussed earlier, there is a high false-alarm rate is¢ke
If there are multiple ideal distributions or types!;_,{G,}, sion arrival misbehavior detector, and hence legitimassisas
each of them equally likely then the LDP measure is defingdich get caught between successive one-shot attack 8sssio
with respect to the distribution which is the closest in terof may be flagged with a high seed suspicion. Hence, if the ses-

distance: sion was really legitimate, then it would obey the workload a
request-arrival profiles and hence would get a chance tooivepr
77 (s) = n min(KL((T(s)||G5) )) its suspicion. In contrast, if the session is part of a regmbane-
RE J. (7) shot attack then it will be given a high seed suspicion engbli
L (s)=n mjln(RF( (sllG5))) the system to service it with lower priority.

i _ . « The suspicion of a session with respect to workload- or
Since by definition the LDP measures are proportional to d'r%‘quest-arrival suspicion is weighted by the parameters <

tance and length, itis easy to see that they obey all the piepe | \yich is set depending on which of the two suspicion mea-
of soundness. The suspicion values assigned by LDP measy{g8s has potential for greater damage to the system. Vie illu
are no longer contained W|th[nan<_:11. However, itis relatively {ate with an example: consider two sessioaad; with suspi-
straightforward to do so by choosing a very large numemd  gn, probabilities{ £, frequest) as(0.2,0.8) and (0.8, 0.2) re-

normalizing such that spectively. If workload-misbehavior is considered moréept
then weighing them witls > 0.5 would consider sessiarmore
< = . ) ) . _— .
fu(s) SN = fr(s) = fuls)/N suspicious. Similarly, if request misbehavior is consédiemore
fu(s) >N = fr(s)=1.0 potent, then setting < 0.5 would consider sessiohas more

suspicious. We chose to weigh both misbehaviors equalty, an
hences = 0.5 in our system.
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bkt D.5 Performance of Suspicion Assignment
2L —— mean (ordering)_ 4 . .
_ _ _ std-devn (browsing) We next provide numerical results for the performance of the

suspicion assignment techniques on attacks launchedsagfaén
online-bookstore implementation. Figure 10 shows the ieha

of suspicion measure with an increasing number of requests i
session. Notice that the scheme obeys the properties ofisoun
ness in that the suspicion of a session either convergé®to

1 with more observations, depending on whether the session is
legitimate or malicious. We make the following observasion

« In either request flooding or asymmetric attacks, the at-

KL distance
-
&)
T

-
T

0.5-

vvvvvvvv

o5 10 15 2 _ 2 % 3B 4 tack sessions can be distinguished from normal sessioes aft
Number of requests in session . .
4 requests on average enabling counter-DDoS mechanisms to

Fig. 9. Mean of KL-distance of “browsing”, “shopping” andratering” sessions quickly punish attack sessions.

with increasing sample-sizes « Normal sessions converge to suspicionOofvith respect to

) ) ) ) _request-arrival and workload afté” and 57 requests respec-

Our online bookstore implementation consists of threelldqﬁ,dy as seen from Figure 10(a),(b).
distributions: Gyrowsing: Gshopping @NAGordering @S ShoWnin ;- A ‘request flooding attack session sending requests at think-
Figure 4. Figure 9 shows the average KL-distance of a braywsifimes of 0 seconds is detected with certitude of 1.0 aftes-
session with respect 8;owsing With increasing number of re- g,ests on an average. Moreover, the lower the attack rage i.e
questsz. Note that the KL-distance of a legitimate session wite higher the value of think-time used by an attack sessien,
its ideal distribution converges towith increasing number of ,ore observations needed to detect it with certainty.
requests. « An asymmetric attack session sending BestSeller requests i
detected with suspicion probability0 after8 requests on av-
erage. Moreover, if the attacker morphs its identity by mgxi

We next describe an algorithm to aggregate the suspicigther request types in an attack session, then the numbér of o
measures across the various misbehaviors into one suspigiervations needed to detect the attack session with cgrtain
measure per session. Given a sessipndenote the seed creases.
suspicion that was assigned to this session on its arrival byattack sessions involved in repeated one-shot attack di-hig
Jsession(s). As the session proceeds in sending requests, gt potency (inter-session timg=are assigned seed suspicion
ter observing: requests, it is assigned a suspicion measure b%0.95 on an average. Normal sessions also start with similar
each of the request arrival and workload misbehavior detectseed suspicions but the effect of high initial suspicionilisteld
as: f .est(s) and f7(s). Thus, using a suspicion weightingby the lower suspicions assigned to them by the requesthrri
parametel0 < § < 1, we define the net suspicion measurand workload suspicion assignments.
f™(s) as follows:

D.4 Assignment of Net Suspicion

V. SCHEDULERDESIGN FORDDOS-SHIELD

F(8) = fsession(s) * (B FL(s) + (1 = B) frequest(s)  (8) |1 this section, we present the DDoS-resilient schedulisig p
Note that net suspicion is withihmand1, and has the following icy of DDoS-Shieldwhich combines the continuous measure of
desirable features: suspicion assigned by our suspicion mechanism with the cur-
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Fig. 10. Average suspicion probability of a normal or attaeksion with increasing number of requests seen in theosessi

rent system workload to decide whether and when a sessioffoisbeing scheduled again, by changing its stat@ltow All, af-
allowed to forward requests (see Figure 2). The DDoS-ggtili ter which the HoL main request in this session’s queue can be
scheduler is integrated into the reverse proxy, and carnititers  forwarded when the session is scheduled again.

cept requests belonging to malicious sessions before ey o .

whelm system resources. Send Main=Request Send Embedded—Requests

Allow
Embedded—Only

Receive response for Main—Request

A. Aggregate Scheduling Rate and Eligibility

The maximum aggregate rate at which the scheduler forwards
requests to the web cluster is a configurable parameter ¢terme
thescheduler service rate- requests/second. We will show that
a wide range of rates yields high performance. Howeveinggett Scheded

the rate too low results in an under-utilized backend wherea Eligible for @
Scheduler

setting it too high results in all requests (including mialics
ones) being sent to the backend.

Each session has a backlog queue for requests which haven't Fig. 11. State Diagram for a session in scheduler queue
been forwarded to the web cluster, and requests are drogped u
ing a Drop-Tail policy when the length of the queue exceeds a
configurable parametgrer-session queue length At rater, B. Scheduling Policies
the scheduler picks a session from amongst the eligibléos&ss e introduce the following scheduling policies to protdwt t
and forwards its Head-of-Line (HoL) request to the web @ust gy siem from DDoS attack:

We determine the eligibility criterion for a session by alio , | owest Suspicion First (LSF) Scheduler:The cost-optimal
ing only one outstandingain requesper session. Recall thatscheduler is one which obtains a schedule such that foithe
main requests are typically requests for the dynamic pade aligible sessions in the system at any time, each with sigspic

are followed by embedded requests for static content, aylgic probability asp;, their average response tinigrealizes the fol-
image files that are embedded in the page. Thus, a sessioging objective function:

considered eligible for scheduling only if its last main wegt

mbedded—Requests

has been serviced by the web cluster and the response sent to N

the client. This is in agreement with the behavior of the Amac min Z(l —pi)(d;) (9)
web server, which also services only request per sessiamyat a i=1

time.

I&Egitively, this objective function maximizes the sumabbf
suspicion probabilitiesp() for requests queued at the DDoS
scheduler so that those with low suspicion are forwardeteo t
web cluster. Thus, the cost-optimal scheduler is a striciFipy
ﬁcheduler which selects the top sessions after sorting them
decreasing orderagl —p1) > (1 —p2)--- > (1 — pn).

Figure 11 shows the state diagram for a session in the sch
uler queue. A new session starts in the stdtew All and once
it is scheduled by the scheduler, its main request is foragtd
the web tier, after which the session’s state is changédltov
Embedded-Onlyin accordance with the HTTP/1.1 specificatio

for pipelining, any embedded requests sent by the clierfare « Proportional to Suspicion Share (PSS) Scheduler:The

warded to the web tier, irrespective of whether the mainestju ost-optimal scheduler may result in starving sessioris high
has been serviced or not. However, if we receive another maie 0P iy Y 9 e

o e : o suspicion probability);. Hence we also designraax-min fair
request, it is kept waiting in the session quéuén receiving

the response for the main request, the session is madeIcPeIigléEgorlthm W'th. the _falrness QbJeCt'Ve .Of assigning fO”’“ag?'_ .
ratesr; to sessions in proportion to their confidence probabilities

2Hence, w.r.t. a client which sends pipelined main requests,are still 1 =pi: r 1— s
HTTP/1.1 compliant, in that requests now wait in the reversay server queue o Di (10)
instead of Apache queue. T 1—p,
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Fig. 12. Effect of various scheduling policies and schedségvice rates on00 normal sessions. (a) shows performance under most-pg@request flooding
sessions while (b),(c) shows performance under most-p8@ghasymmetric attack sessions.

As a baseline for comparison, we also implement two schader with scheduler service rate set in the range of 15 to 50 re
ulers that are agnostic to suspicion measures: (i) First€oquests/second.
First-Serve (FCFS) which schedules the session with tHe eas DDoS-Shield is effective in thwarting the request floodittg a
est arrived HoL request from amongst all the eligible sewssiotack, as evident from the fact that performance improvesio
and (ii) Round Robin which schedules requests one per sesseconds from th& seconds under no defense. Further, note
in round-robin order only among eligible sessions. that there is minimal penalty due to false positives (leggtie
Next, we propose an online algorithm to set #wheduler sessions being delayed) or, false negatives (maliciousoses
service rater of the scheduler as a function of the sum of corbeing admitted).
fidence probabilities of the active sessions at any timeutgs « The LSF and PSS schedulers perform the best, with LSF
there areN eligible sessions at the scheduler at timeDe- slightly better. The Round-Robin and FCFS schedulers are ag
note the95%ile of the throughput in terms of completed renostic to suspicion probabilities and still admit many rialiis
guests/second achieved by a legitimate session underauksitt sessions leading to significantly lower performance. Reund
asro.05. The scheduler service ratds adjusted everypdate- Robin is still better than FCFS since in comparison it schesiu
interval using an Exponential Weighted Moving Average funonore non-attacking sessions in every round.
tion: r = a* 7+ (1 — ) * Tpew. The rater,e, is the sum of the « Performance is non-monotonic with the scheduler servige ra
individual session-rates:,,..,, = ZN r;, each of which is ob- as discussed above. Moreover, all scheduling algorithms co

K3

tained as a linear function of the session’s suspicion (hitiba Verge to an average response time afseconds at service rates

as follows:r; = (1 — p;)r0.05- greater tharl00 requests/second. Even then, limiting session
gueues improves performance as compared to without lignitin
C. Performance Evaluation session queues.

) ) ) _« When the online rate-setting algorithm is used along with th
First, we establish through experiments that to be effecti Sk scheduling policy, we obtain similar performance inyero
a counter-DDoS mechanism needs both scheduling and a prigints at approximately.5 seconds. The average service rate
erly set aggregate service rate. We compare the suspieiarea set py online rate setting wag requests/second when= 0.3

scheduling policies, LSF and PSS against the suspicionsign ang the rate is updated evelrty seconds.
policies, Round Robin and FCFS. The per-session queuehlengt

is fixed atl00 requests. We also compare the performance of ttB2 Asymmetric Attack
scheduling algorithms against two baseline scenariodN@14t-
tackwhen there ar@ attack sessions; and (Rp Defensavhen
all the attack sessions are present but no defense strateggd,
i.e., the scheduler is FCFS with per-session queue lengtlis s
infinity.

Figure 12 depicts the average response time for normal s
sions as a function of the maximum rate that the scheduler fi
wards the aggregate. Performance for the two attacks (é?s'sgu&
12(a) and 12(b)) is discussed below.

DDoS-Shield improves the performance under the most-
potent asymmetric attack frof) seconds td).8 seconds, as
seen from Figure 12(b). Note that under asymmetric attacks,
the performance of DDoS-Shield is much more sensitive to ad-
mittance of attack sessions. At service rates higher tare-
dests/sec, the response times increase sharply for evbesh
Eheduling algorithms (LSF, PSS), with their performanee b
oming similar to that of the baseline schedulers. The re&so
that at high service rates, a slight increase in admittafheg-o
tack sessions drives the server CPU loads to as high(s, as
depicted in Figure 13.

We first consider the most potent request-flooding attack us-
ing 300 attack sessions ard0 normal sessions in Figure 12(a).C-3 Repeated One-shot Attack
« The strategy of using both scheduling and limiting the aggre Similarly, for repeated one-shot attacks, DDoS-Shield im-
gate service rate is critical to achieving DDoS resilientee proves the performance under the most-potent attack {inter
best performance is obtained on using a LSF or PSS scheession time& seconds) froml0 seconds td.5 seconds. The

C.1 Request-flooding Attack
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A. Detecting DDoS attacks

100 [ —=—="Atack (LSE) _mhrrrrreers
Attack (PSSY”
Attack (RBund Robin
Attack{FCFS)
No gftack (LSF)

N; Gefensd The first step in thwarting a DDoS attack is to detect it. Exist
ing detection mechanisms operate at the network level &ctlet
DDoS floods in the network [4], [17], [18], [23]. For exam-
ple, the anomaly detection system in [17] assigns everygiack
a score based on the probability of it being a legitimate pack
given the attribute values it carries. The attacks we arediog
in this paper cannot be detected by these tools as they do not
necessarily flood the network with high volumes of traffic.

Other detection mechanisms attempt to catch intrusiors bot

80 i e

60 -

40

20 -

Average CPU load on database-tier

e

° s 2 - at the network and the host level [24]. While the attacks ig th
Aggregate output rate (requests/sec) paper do not rely on intrusions at the victim, effective untr
Fig. 13. Database CPU load under asymmetric attack sion detection makes it difficult for the attackers to comdear

client machines, and hence could only act as a first-stemdefe
with reference to our attacks.

best.performance is ac.hieved using LSF scheduler at saredul Distinguishing a DDoS attack from a flash crowd has also
service rates of approximately requests/second. proven difficult. Two properties to make the distinction ilen-
tified in [13]: (1) a DoS eventis due to an increase in the regjue
rates for a small group of clients while flash crowds are due

Recall from our discussions in Section IV that lower potendyp increase in the number of clients; and (2) DoS clientsi-orig
attacks are more difficult to detect than high potency attaclkate from new client clustetas compared to flash crowd clients
Hence, to demonstrate the efficacy of DDoS-Shield in thwgrti which originate from clusters that had been seen beforedhk fl
moderate potency attacks, we evaluate the performance urglent. These characteristics may not help distinguishttheles
varying request flooding and varying asymmetric attacketradiscussed in this paper since (1) it is difficult to assocthte
gies. Using the scheduling policy LSF and the service rdte senount of resources consumed to a client machine and (2) bot-
at 15 requests/second, DDoS-Shield maintains the performames consisting of geographically wide-spread machinesmar
of normal sessions 418 seconds, even when the attack ratereasingly likely to belong to known client clusters. In trast,
was varied by changing the think-time ov{er— 7] seconds. our suspicion assignment mechanism observesdhaviorof
Similarly, DDoS-Shield maintains the performance of ndrmé#he clients to detect suspicious activity.
sessions afl.5 seconds, even whed00 attack sessions morph Our suspicion assignment mechanism relies on statistical
their workload profile by employing lighter requests alddgs methods. However, our problem formulation differs from sim
the heavy BestSellers requests. Finally, DDoS-Shield tagis ilar techniques, such as sequential hypothesis testingj2[@d4
performance at.5 seconds, even when the repeated one-shottwo respects: First, we define only one hypothesis fottilegi
attack is varied by changing the attacker inter-sessioagim  mate behavior, and the hypothesis for malicious behaviiris

The success of DDoS-Shield in thwarting moderate poten@ypreted as anything which does not follow the legitimate h
attacks as well as high potency ones, is due to the suspisionothesis. Thus, not relying on an alternate hypothesisher t
signment mechanism being able to differentiate betwedti-legattackers gives our scheme the ability to detect misbe hamimt
mate and malicious sessions rapidly. Recall from Figur@)l06een yet. Second, unlike sequential tests which outputybitea
that even though lower-rate or lower-intensity attacks dge cisions of legitimate or malicious while bounding detentand
tected with certitude much later than their high potencynters  false-positive probabilities, we output a continuous rea®f
parts, on average they are assigned higher suspicion tmaraho suspicion. This gives our scheme the ability to start peiraji
sessions after only requests. Hence, they are quickly givemisbehaving sessions as soon as their suspicion becomes dis
lower priority service by the LSF scheduler compared to &e Itinct from that of legitimate sessions.
gitimate sessions.

C.4 Moderate Potency Attacker Strategies

B. Counter-DDoS Mechanisms

VI. RELATED WORK .
In[15], Kandula et al. design a system to protect a web cluste

CERT classifies denial of service attacks in three broad catgom DDoS attacks by (1) designing a probabilistic authemnti
gories: 1) attacks aimed at consumption of scarce resosucts tion mechanism using CAPTCHAS (acronym for “Completely
as network bandwidth or CPU; 2) attacks aimed at destruotionAutomated Public Turing test to tell Computers and Humans
alteration of configuration information; and 3) attacks @hat Apart”) and (2) designing a framework that optimally divide
physical destruction or alteration of network componeffitsis  the time spent in authenticating new clients and servingent
paper focuses on a class of attacks in the first category,lgamgated clients. Unfortunately, requiring all users toveofjraph
attacks mounted at the application layer (layer-7) with@kers puzzles has the possibility of annoying users and introduci
posing as legitimate clients of the service. The attackselas additional service delays for legitimate users. This akss the
we consider overwhelm server resources in the web cluster affect of denying web crawlers access to the site and as & resu
hence are distinct from earlier attacks that have primaaty search engines may not be able to index the content. Finally,
geted network connectivity. Most recent examples of netwonew techniques may render the graphical puzzles solvalvlg us
attacks mimicked flash crowds using zombie clients [11][15]

4A Client cluster is defined as a group of topologically clokents, identified
3http://www.cert.org via BGP routing tables.
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automated methods [20]. The DDoS-Shield does not dependan California Central District. United states vs jay eahéni et al. (operation

i - i isti - cyberslam). www.usdoj.gov/criminal/fraud/websnaré.pd
Tu”ngc}eSts' llnStead’ Ilt. U§§S StﬁtlSthﬁll methods tﬁ %a"?m:k [12] A. Garg and A. L. N. Reddy. Mitigating denial of servicdtaaks using
ers and employs rate-limiting through request sche ulsnne gos regulation. IrProceedings of International Workshop on Quality of
primary defense mechanism. Service (IWQoSR002.

The technique of rate-limiting unwanted or hostile traffi€3] J. Jung, B. Krishnamurthy, and M. Rabinovich. Flashwis and denial
of service attacks: Characterization and implicationsG@Ns and web

has often been used as a counter-measure again_St_ DDoS at-sjtes. InProceedings of the International World Wide Web Conference
tacks. For example, network packets deemed suspicioud coul pages 252-262. IEEE, May 2002.

limi _ :[14] J. Jung, V. Paxson, A. W. Berger, and H. Balakrishnarst partscan de-
be dropped [17] or rate-limited [12]' The class-based qugul tection using sequential hypothesis testingPloceedings of IEEE Sym-

scheme used in [16] uses a load balancer to block or limifeerv posium on Security and Privac@akland, May 2004.
to client IP addresses depending on their bandwidth consurfig] S. Kandula, D. Katabi, M. Jacob, and A. W. Berger. Botzale: Sur-

: P ot : ; viving organized ddos attacks that mimic flash crowds.Ptceedings
tion patterns. Similarly, the probabilistic queuing scleam[25] of S)?mpgsium on Networked Systems Design and |mp|emermﬁzD|9)]

uses a randomized LRU cache to regulate bandwidth consump- Boston, May 2005.

tion to malicious clients. At the infrastructure level, sates for [16] g- K_arlglyf J. Maier, ?tndkM- Vw\(/eﬁzr-v\i’éotk\?ﬁtigg web g(lez\fﬂggl4d§égtiuted
. e - enial of service attacks. ori ide Weppages —, y .
routers to cooperatively block malicious traffic were progd [17] Y. Kim, W. C. Lau, M. C. Chuah, and H. J. Chao. Packetsc6tatistics-

in [5]. Such techniques are all geared towards counterigh hi. ~ based overload control against distributed denial-ofiserattacks. In
bandwidth flows reminiscent of today’s DDoS attacks. In con-  Proceedings of InfocontongKong, 2004.

L [18] Mazu profiler. http://www.mazunetworks.com, 2005.
trast, by rate limiting the work a server cluster performs,can 19] G. W. Milligan and M. C. Cooper. An examination of procees for

prevent attacks on both network bandwidth as well as thaae t determining the number of clusters in a data $atschometrika50:159—
i 179, 1985.
are aimed at other types of system resources, such as CPL[JZ(ﬂrG. Mori and J. Malik. Recognizing objects in advershktiatter: Breaking
storage. a visual captchalEEE Computer Vision and Pattern Recogniti@®03.
[21] The Honeynet Project and Research Alliance. Know yoaeney: Track-
VIlI. CONCLUSIONS ing botnets. http://www.honeynet.org.
[22] S. Ranjan, R. Karrer, and E. Knightly. Wide area redicet of dynamic
In this paper, we explored the vulnerability of systems to content in internet data centers.Rmceedings of IEEE INFOCOMHong

A~ _ _ ; Kong, 2004.
sophisticated layer-7 DDoS-attacks which are both prdioc 3] L. Ricciulli, P. Lincoln, and P. Kakkar. TCP SYN floodirdefense. In

compliant as well as non-intrusive. These attacks mimittiteg Proceedings of CNDS.999.
mate clients and overwhelm the system resources, therdby 4@4] Tripwire enterprise. http://www.tripwire.com, 2005

; ; ; ; e . [25] S. Voorhies, H. Lee, and A. Klappenecker. A probahdistefense mech-
stantially delaying or denying service to the legitimaterds. anism against distributed denial of service attacks.

We developed a framework to classify these resource at&ek$zs] A. Wald. Sequential Analysis). Wiley and sons, New York, 1947.
one of request flooding, asymmetric workload, repeated one-
shot attacks or combinations there-of, on the basis of thé-ap
cation workload parameters that they exploit. Since these r
source attacks are un-detectable via sub-layer-7 tecasjque
developed DDoS-Shield, a counter-mechanism which assigns
a suspicion measure to a session in proportion to its dewiati
from legitimate behavior and uses a DDoS-resilient scherdal
decide whether and when the session is serviced. Using a web
application hosted on an experimental testbed, we denadedtr

the potency of these attacks as well as the efficacy of DDoS-
Shield in mitigating their performance impact.
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