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DDoS-Resilient Scheduling to Counter Application
Layer Attacks under Imperfect Detection

S. Ranjan, R. Swaminathan, M. Uysal, and E. Knightly

Abstract— Countering Distributed Denial of Service (DDoS) attacks is
becoming ever more challenging with the vast resources and techniques in-
creasingly available to attackers. In this paper, we consider sophisticated
attacks that are protocol-compliant, non-intrusive, and utilize legitimate
application-layer requests to overwhelm system resources. We characterize
application-layer resource attacks as either request flooding, asymmetric,
or repeated one-shot, on the basis of the application workload parame-
ters that they exploit. To protect servers from these attacks, we propose
a counter-mechanism that consists of a suspicion assignment mechanism
and a DDoS-resilient scheduler,DDoS Shield. In contrast to prior work,
our suspicion mechanism assigns a continuous valued vs. binary measure
to each client session, and the scheduler utilizes these values to determine if
and when to schedule a session’s requests. Using testbed experiments on a
web application, we demonstrate the potency of these resource attacks and
evaluate the efficacy of our counter-mechanism. For instance, we effect an
asymmetric attack which overwhelms the server resources, increasing the
response time of legitimate clients from0.1 seconds to10 seconds. Under
the same attack scenario, DDoS Shield limits the effects of false-negatives
and false-positives and improves the victims’ performanceto 0.8 seconds.

I. I NTRODUCTION

Distributed Denial of Service (DDoS) attacks pose an ever
greater challenge to the Internet with increasing resources at the
hands of the attackers. Recent studies estimate that farms of
compromised hosts, popularly known as “botnets,” are as large
as 60,000 machines [9][21]. Moreover, the SYN flood attack,
the most popular DDoS attack to date, is giving way to sophisti-
cated application-layer (layer-7) attacks. In one instance, an on-
line merchant employed the “DDoS mafia” to launch an HTTP
flood towards his competitors’ web sites by downloading large
image files when a regular SYN flood failed to bring the site
down [11].

Many prior attacks targeted network bandwidth around Inter-
net subsystems such as routers, Domain Name Servers, or web
clusters. However, with increasing computational complexity
in Internet applications as well as larger network bandwidths
in the systems hosting these applications, server resources such
as CPU or I/O bandwidth can become the bottleneck much be-
fore the network [2][22]. Anticipating a future shift in DDoS
attacks from network to server resources, we explore the vulner-
ability of Internet applications to sophisticated layer-7attacks
and develop counter-attack mechanisms. In particular, ourcon-
tributions are (i) classification and experimentation withnew
application-layer attacks, (ii) development of a mechanism to
assign suspicion measures to sessions for scenarios with a poten-
tially small and variable number of requests per session, and (iii)
design and experimental evaluation ofDDoS Shield, a technique
that provides DDoS resilience by using suspicion measures and
server load to determine if and when to schedule requests to a
server.

In studying new classes of attacks, we consider a well-secured
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system that has defenses against both (1) intrusion attacks, i.e.,
attacks which exploit software vulnerabilities such as buffer
overflows and (2) protocol attacks, i.e., attacks that exploit pro-
tocol inconsistencies to render servers inaccessible (e.g., hijack-
ing DNS entries or changing routing). In such a scenario, the
only way to launch a successful attack is for attackers to evade
detection by being non-intrusive and protocol-compliant,and
yet overwhelm the system resources while posing as legitimate
clients of the application service. Hence, the only system at-
tributes available for the attacker to exploit are those forthe ap-
plication workload.

We first explore the entire range of exploitable workload pa-
rameters and characterize layer-7 resource attacks into three
classes: (1)request flooding attacksthat send application-layer
requests at rates higher than for normal sessions; (2)asymmet-
ric attacksthat send high-workload request types; and (3)re-
peated one-shot attacksin which the attacker spreads its work-
load across multiple sessions instead of multiple requestsper
session and initiates sessions at rates higher than normal.For
example, an HTTP flood can stress server resources as an
asymmetric attack if the attack sessions send requests involv-
ing high-computation database queries. We study these classes
via testbed measurements of attacks on servers and their hosted
web applications. We show that dynamic content presents a
substantial heterogeneity in request processing times among re-
quest types which can be exploited to initiate asymmetric at-
tacks. While the above attack classes are known to exist for
HTTP floods, our work is the first to demonstrate vulnerability
to these attack classes for server resources and to implement and
compare them experimentally.

Since the attackers mimic legitimate requests, attack sessions
are indistinguishable from legitimate sessions via sub-layer-7
techniques. For instance, if the attackers use valid IP addresses
from botnets, both server and network attacks would pass unde-
tected by ingress-filtering approaches which check for spoofed
source addresses. Further, the server attacks would pass unde-
tected by mechanisms that only detect network anomalies. Thus,
we design a comprehensive suspicion assignment mechanism to
detect layer-7 misbehavior across the parameters of session ar-
rivals, session request arrivals and session workload profiles. In
contrast to traditional anomaly detectors which output binary
decisions while bounding the detection and false-positiveprob-
abilities, we assign a continuous measure of suspicion to a ses-
sion which is updated after every request. We establish a set
of soundness principlesthat a metric must obey in order to as-
sign suspicion values consistently across workloads with differ-
ing numbers of requests per session.

Next, we design a counter-mechanism,DDoS-Shield, that
uses the suspicion assignment mechanism as an input to a sched-
uler designed to thwart attack sessions before they overwhelm
system resources. The DDoS-resilient scheduler incorporates
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the suspicion assigned to a session and the current system work-
load to decide when and if a session is allowed to forward re-
quests. We develop scheduling policiesLeast Suspicion First
(LSF)andProportional to Suspicion Share (PSS)that incorpo-
rate suspicion into the scheduling decision. As a baseline for
comparison, we implement and study suspicion-agnostic poli-
cies such as per-session Round Robin and First Come First
Serve among all requests. We also demonstrate the importance
of limiting the aggregate rate (over all sessions) at which the
scheduler forwards requests to the application system, andwe
develop an online algorithm to set this rate.

Finally, we effect the three classes of attacks on an experi-
mental testbed hosting an online bookstore implemented using
a web server tier, application tier and database tier. We emu-
late legitimate client workload through an e-commerce bench-
mark [1]. Using this testbed, we perform a number of experi-
ments to characterize the potency of the attack classes and eval-
uate the efficacy of DDoS-Shield. Our summary findings are the
following:
• Workload asymmetry attacks are more potent compared to re-
quest flooding attacks, since they stress the servers significantly
more in comparison.
• The repeated one-shot variant of asymmetric attacks are the
most potent of the three attack classes due to their ability to get
a much larger query flood towards the backend database tier.
• Experimental evaluation of DDoS-Shield indicates that both
the scheduling policy and scheduler service rate are critical for
an effective counter-DDoS mechanism. The best performance
is obtained under the suspicion-aware schedulers, LSF and SPP,
when the scheduler service rate is appropriately limited
• Our experiments indicate that100 legitimate clients that have
an average response time of0.1 seconds under no attack, are
delayed to response times of3, 10 and40 seconds under the
most potent request flooding, asymmetric and repeated one-shot
attacks respectively. Furthermore, the efficacy of DDoS-Shield
is evident in that the performance under each of these attacks is
improved to0.5, 0.8 and1.5 seconds respectively.

The remainder of this paper is organized as follows: In Sec-
tion II, we describe the victim, attacker, and defense models
we use to study layer-7 attacks. In Section III, we describe our
experimental testbed and characterize the performance impact
on legitimate client sessions due to the three attack classes. In
Section IV and V we present the design of the suspicion as-
signment mechanism and DDoS-resilient scheduler respectively
and present their experimental evaluation. Finally, we discuss
related work in Section VI and conclude in Section VII.

II. ATTACKER, V ICTIM AND DEFENSESYSTEM MODELS

In this section, we (i) describe the attacker model for effect-
ing the protocol-compliant, non-intrusive layer-7 attacks, (ii)
present the victim system on which we quantify the perfor-
mance impact of these attacks and (iii) outline a defense model,
DDoS Shield, for detecting and circumventing these new attack
classes.

A. Attacker Model

The goal of the attacker is to overwhelm one or more server
resources so that the legitimate clients experience high delays or
lower throughputs thereby reducing or eliminating the capacity
of the servers to its intended clients. The attacker uses theappli-

cation interface to issue requests that mimic legitimate client re-
quests, but whose only goal is to consume server resources. We
assume that the application interface presented by the servers is
known (e.g., HTTP, XML, SOAP) or can be readily discovered
(e.g., UDDI or WSDL).

We consider session-oriented connections to the server e.g.,
HTTP/1.1 session on a TCP connection with the server. We as-
sume that the attacker has commandeered a very large number
N of machines distributed across a wide-range of geographical
areas, organized into server farms popularly known as “botnets.”
For initiating a TCP session, an attacker can either use the ac-
tual IP address of the machine or spoof an address different from
any of the addresses in the botnet. Thus, we do not make any
assumptions regarding the set of IP addresses accessible bythe
attacker, and the attacker can potentially use a different IP ad-
dress for each new session initiated.

We assume that the system has sufficient capacity to support a
number of concurrent client sessions much larger thanN . Thus,
if the attacker were to initiatenormalsessions concurrently from
each of theN machines from the botnet, the system could serve
the sessions within acceptable response times.

Using the workload parameters that the attacker can exploit
to effect layer-7 attacks, we characterize these attacks into the
following three classes:

• Request Flooding Attack: Each attack session issues re-
quests at an increased rate as compared to a non-attacking ses-
sion.
• Asymmetric Workload Attack: Each attack session sends a
higher proportion of requests that are more taxing for the server
in terms of one or more specific resources. The request rate
within a session is not necessarily higher than normal. Thisat-
tack differs from the request-flooding attack in that it causes
more damage per request by selectively sending heavier re-
quests. Moreover, this attack can be invoked at a lower request
rate, thereby requiring less work of the attacker and makingde-
tection increasingly difficult.
• Repeated One-Shot Attack:This attack class is a degener-
ate case of the asymmetric workload attack, where the attacker
instead of sending multiple heavy requests per session, sends
only one heavy request in a session. Thus, the attacker spreads
its workload across multiple sessions instead of across multiple
requests in a few sessions. The benefits of spreading are thatthe
attacker is able to evade detection and potential service degra-
dation to the session by closing it immediately after sending the
request.

The asymmetric request flooding attack and its variants ex-
ploit the heterogeneity in processing times for different request
types. The attacker can obtain the information about serverre-
sources consumed by different legitimate request types through
monitoring and profiling. For this paper, we assume the worst
case scenario that the attacker knows the full profiling data,
and therefore can select requests such that the amount of server
resources consumed per request is maximized. However, in
general, this type of information can only be obtained through
profiling and timing the server responses from outside. For
instance, to obtain the average server processing time per re-
quested page, the attacker uses a web-crawler to obtain the total
(network+server) delay in processing a request. and averages to
remove the effects of varying loads.
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B. Victim Model

We consider a general victim model consisting of a multi-
resource pool of servers. In experiments, we focus on an e-
commerce application hosted on a web cluster, which consists
of multiple-tiers for processing requests, as shown in Figure 1.
We define an e-commerce session as an HTTP/1.1 session over
a TCP socket connection that is initiated by a client with the
web server tier. HTTP/1.1 sessions are persistent connections
and allow a client to send requests and retrieve responses from
the web-cluster without suffering the overhead of opening anew
TCP connection per request. Each request in a session may gen-
erate additional processing in the application and the database
tiers, depending on the request (or request type). We assume
that a request consumes varying amount of resources from each
tier (possibly none), consisting of CPU, memory, storage, and
network bandwidth. Recall that the goal of the attacker is to
push resource usage in one of the tiers to its maximum limit, so
that the system capacity for serving clients is diminished.

Internet

Servers
Web/Application

Servers
Database

Content Distribution Networks
(DNS or Akamai)

Reverse Proxy/

Load Balancers

Web Load Balancers

Database

Fig. 1. Victim system model: web cluster hosting a web application.

A legitimate HTTP/1.1 session consists of multiple requests
sent during the lifetime of the session. Requests are eithersent
in aclosed-loopfashion, i.e., the client sends a request and waits
for the response before sending the next request, or they are
pipelined, i.e., the client could send multiple requests without
waiting for their response and thus have more than one request
outstanding with the server. A page is typically retrieved by
sending onemain requestfor the textual content and severalem-
bedded requestsfor the image-files embedded within the main
page. Main requests are typicallydynamicand involve process-
ing at the database tier while embedded requests arestaticsince
they only involve processing at the web-cluster tier.

A client request is processed as follows: First, the client’s ini-
tial request for a connection is routed by a client-side redirection
mechanism such as DNS Round-Robin or Akamai to a reverse-
proxy server. The reverse proxy server parses the request’sURL
and routes the request to a web server typically according toa
load-balancing policy (e.g., using round robin or more sophisti-
cated policies as in [6]). If the request is for a static web page or
an image file, a server in the web tier serves the requested page.
If the request is for an e-commerce functionality, it is served
by an application script such as PHP, JSP or Javascript. Such
requests typically consist of one or more database queries,the

results of which are collated together to produce the response
page (dynamic requests). Each database query emanating from
a dynamic request is forwarded to a database server using a load-
balancing strategy [3][22].

Each of the tiers in the system consist of multiple resources:
computation, storage and network bandwidth, which are limited
in amount. We assume that all tiers continuously monitor the
resources in the tier and periodically generate resource utiliza-
tion reports as well as overall system statistics at the application
layer such as throughput and response time. The system is said
to be under a resource attack when a surge in a resource usage
is accompanied by reduction in throughput and increase in re-
sponse time without DDoS attack at lower layers.
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Fig. 2. Defense system model: DDoS-Shield

C. Defense Model

In this paper, we introduce a counter-DDoS mechanism to
protect the application from layer-7 DDoS attacks and provide
adequate service to legitimate clients even during an attack.
The defense model consists of aDDoS-Shieldwhich is inte-
grated into the reverse-proxy and thus intercepts attack requests
from reaching the web-cluster tiers behind the reverse-proxy.
The DDoS-Shield examines requests belonging to every ses-
sion, parses them to obtain the request type and maintains the
workload- and arrival-history of requests in the session. Fig-
ure 2 shows the system architecture for DDoS-Shield that con-
sists of: (1) Suspicion assignment mechanism which uses the
session history to assign a suspicion measure to every client ses-
sioni as described in Section IV; and (2) DDoS-resilient sched-
uler that decideswhichsessions are allowed to forward requests
andwhendepending on the scheduling policy and the scheduler
service rate, as discussed further in Section V.

III. V ULNERABILITY TO ATTACKS

In this section, we characterize the effectiveness of the layer-
7 DDoS attacks in overwhelming the server resources on our
e-commerce application. We first quantify the variation in pro-
cessing times for different requests and then mount each of the
three classes of layer-7 DDoS attacks to demonstrate the potency
of each attack class.

A. E-Commerce Testbed

The example e-commerce application that we consider is an
online bookstore hosted on a multi-tiered architecture consisting
of three web servers and one database server. We use Apache to
implement the web server, PHP scripting to implement the ap-
plication logic, and MySQL to implement the database server.
The networking infrastructure consists of100 Mbps links for
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both the access links to the system and for the connections be-
tween tiers. The servers are Intel Pentium IV2.0 GHz processor
machines running Linux 2.4.18 kernel with512 MB SDRAM
and a30 GB ATA-66 disk drive.
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Fig. 3. Heterogeneity in processing times for different dynamic content requests
in online bookstore application.

Recall that the effectiveness of an asymmetric workload at-
tack arises from large differences in processing times of differ-
ent request types. To explore whether this is possible for our on-
line bookstore implementation, we profiled the processing times
of individual request types to identify requests with high re-
source consumption on the server. Figure 3 shows the response
times perceived across different types of requests for the online-
bookstore application on our experimental system. We note that
the most expensive request is about8 times more expensive than
the least. Expensive request types such as “BestSellers” involve
heavy CPU processing on the database server since they initiate
queries that involve table join operations across multipletables
followed by a sort operation to obtain a list of top-selling books.
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Fig. 4. Probability of occurence of a request type in a clientsession for brows-
ing, shopping and ordering sessions. Browsing sessions send only 5% re-
quests for pages that involve write queries to the database server, while shop-
ping and ordering sessions send an increasing percentage ofsuch requests.

Next, we attempt to quantify thepotencyof various layer-7
DoS attacks in our system. We use the following metrics to mea-
sure the potency of an attack: (1) CPU utilization on the web and

database tiers – the main resource being attacked in our exper-
iments; (2) average response time of requests as an indication
of the slow down a legitimate client will experience; and (3)av-
erage throughput in requests/second achieved per normal client
session. We also quantify the ease of mounting a layer-7 DoS
attack at the attacker end point by: (1) the number of unique IP
addresses required and (2) the aggregate bandwidth needed to
launch the attack.

We emulate the workload of a legitimate client session us-
ing the session types shown in Figure 4 based on the TPC-W
benchmark [1]. In particular, in each experiment, we use100
HTTP/1.1 sessions,33% in each of browsing, shopping and or-
dering profiles, to represent the legitimate client population. Le-
gitimate clients generate new sessions using an exponential dis-
tribution with mean of 0.2 seconds. Requests are submitted to
the web servers using exponentially distributed think times with
a mean of 7 seconds between receiving a response and issuing
the next request.

We generate each of the three types of attacks as follows:
First, the request flooding attack is mounted by decreasing the
think-times between requests to values lower than the normal 7
seconds. For maximal potency, we decrease the think-times to
0, thereby, generating the requests as fast as possible. Second,
the asymmetric workload attack is generated using one of the
expensive request types, BestSellers. We mount this attackwith
the normal think-time of7 seconds between requests first, and
then combine it with the request flooding attack by reducing the
think-times to0. For each experiment involving request flood-
ing or asymmetric request flooding attacks, we vary the number
of attack sessions from0 to 300 sessions to simulate “no attack”
and “large attack” scenarios respectively. Finally, the repeated
one-shot attack is mounted by repeatedly generating singlere-
quest sessions for the BestSellers script using inter-arrival time
between sessions smaller than the legitimate mean0.2 seconds.
Once the response to the single request is received by the at-
tacker, it closes the session and creates a new one.

B. Attack Potency

Figure 5 shows the results from the experiments designed to
quantify the potency of each type of attack. Our results indicate
that the response time of normal sessions increases from0.1 sec-
onds under no attack to as high as3 and10 seconds when there
are300 attack sessions in the request flooding and asymmetric
request-flooding attacks respectively. Thus, assuming that user
patience for web page download times is5 seconds [7], an asym-
metric attack would also drive legitimate users away from the
web site. Furthermore, the throughput of each normal session in
terms of requests completed per second per session also drops
drastically from0.14 to 0.065 and0.042 under request flood-
ing and asymmetric request-flooding attacks respectively.More-
over, the repeated one-shot attack is much more potent than any
other attack class as seen from Figure 6(c). In the most potent
form of the attack, when the attacker waits0 seconds between
closing and opening another session, the average response time
per normal client session increases to as high as40 seconds.

Both repeated one-shot and asymmetric attacks make the
database server CPU the bottleneck, driving the CPU loads to
almost100%, in their most potent forms. However, the asym-
metric attack is limited in sending a query flood towards the
backend database server since the web server serves only one
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(c) Attacker request bandwidth (Mbps)
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(d) Database CPU load
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(f) Aggregate response traffic (Mbps)

Fig. 5. Effect of most potent request flooding attack (attacker think-time=0 sec) and asymmetric request-flooding attack (attacker uses “BestSellers” script) on100
normal sessions.
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(a) Request-flooding strategies
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(b) Asymmetric attack strategies

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0  0.05  0.1  0.15  0.2  0.25  0.3  0.35  0.4  0.45  0.5

A
ve

ra
ge

 r
es

po
ns

e 
tim

e 
 o

f n
or

m
al

 s
es

si
on

s 
(s

ec
)

Session inter-arrival time of attack sessions (sec)

(c) Repeated one-shot attack strategies

Fig. 6. Variations in attacker strategies. The figures show the performance impact on100 normal sessions. In (a), the attacker uses200 attack sessions to launch a
request flooding (browsing profile) and asymmetric request flooding (BestSellers script) attack, while varying the request inter-arrival times as[0− 7] seconds.
In (b), the attacker uses300 attack sessions sending requests as fast as possible, whilevarying the attack workload. In (c), the attacker uses only one session at
a time, sending one BestSellers request per session and varies the inter-session time from[0 − 0.5] seconds.

request at a time per session. In contrast, the repeated one-
shot attack is successful in sending a larger query flood towards
the database server, since after being blocked on a session,the
attacker opens yet another session and sends another request
which translates into more queries towards the database server.
This query flood leads to much higher queuing delays at the
database server which explains the higher potency for repeated
one-shot attacks. Figure 7 depicts the inter-arrival timesbe-
tween queries received at the database server. The figure shows
that90% of queries arrive within10 msec of the previous query
for the repeated one-shot attack, compared to the80% for the

asymmetric attack. Moreover:

• Asymmetric request-flooding is significantly more potent than
normal request flooding attack since it succeeds in making the
database CPU the bottleneck, as observed from Figure 5(d). In
contrast, the normal request flooding attack never makes the
database CPU the bottleneck and only succeeds in increasingthe
web server CPU loads to as high as70%. Since, in the online-
bookstore implementation, the database server is more sensi-
tive to heavy loads than the web server, the asymmetric request-
flooding attack delays normal sessions significantly more.
• All attacks are server attacks and the network-access link to
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the cluster (100 Mbps) is never overwhelmed as observed from
Figure 5(f). The reason that the aggregate download traffic sat-
urates much before100 Mbps is that the web or database server
CPUs are overwhelmed. Since asymmetric attacks bottleneckat
the database servers, the download traffic is much less at8 Mbps
compared to31 Mbps for request flooding attacks.
• The increase in response times is not caused by the system be-
ing overloaded due to too many client sessions; the slowdowns
are directly attributable to the system doing more work as a re-
sponse to attack requests. Observe that the response times for
the normal sessions are almost constant at100 msec when the
attackers behave exactly like normal sessions, i.e., have the same
workload as well as think-time profiles.
• The asymmetric workload attack is a low-rate attack, since it
requires a lesser number of attack sessions to inflict damageof
similar magnitude. Also, all attacks are quite easy to implement
since (1) they require access to approximately300 unique IP-
addresses, easily obtainable using current-day server farms or
botnets and (2) the maximum aggregate bandwidth needed to
launch an attack is5 Mbps upstream for requests and26 Mbps
downstream for response traffic, easily achievable using current-
day access networks.
• Changing the baseline normal client workload from100 client
sessions causes a corresponding linear change in the numberof
attack sessions needed to cause similar damage.

Finally, while it may appear that an attack that pipelines re-
quests without waiting for their responses would cause more
damage than the attack which sends its requests in a closed-loop.
However, Apache web servers only service one request per ses-
sion at a time. Hence, even though an attack session may send
multiple requests, they end up waiting in Apache’s per-session
queue, until Apache has completely serviced the last request,
which may involve sending database queries and receiving their
responses. As a result, attackers that generate requests inan
open-loop without waiting for the responses to arrive are only
slightly more effective than closed-loop attack sessions.More-
over, these open loop attacks are higher rate attacks and hence
easily detectable compared to closed loop attacks. Observefrom
Figure 5(c), than an asymmetric open loop attack sends≈ 4
Mbps of request traffic compared to the much lower0.4 Mbps
by an equivalent closed loop attack, for similar damage.

C. Attacker Strategies

Since the most potent attacks are also the most deviant from
normal behavior and hence most easily detectable, the attacker
may employ lower-potency attacks to evade detection and hence
guarantee success. Next, we assess the damage caused by these
lower-potency attacks.
• Variable request-arrival rate:Instead of sending requests as
fast as possible (attack think-time=0 sec), the attacker decreases
its request-rate. Observe from Figure 6(a), that the asymmetric
request-flooding attack still causes similar damage to the normal
sessions even when the attack sessions send requests at periods
as large as7 seconds. This validates our hypothesis that asym-
metric attacks are more potent due to their workload-asymmetry
rather than rate-asymmetry.
• Variable session workload:Instead of sending only the heav-
iest BestSellers requests in a session, the attacker morphsits
sessions into profiles increasingly similar to the normal profiles.
Thus, with reference to Figure 3, suppose an attacker selects
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Fig. 7. CDF for inter-arrival times for query-arrivals at the database server
for different attacks. The number of normal browsing sessions is100 in
each scenario. The no attack case has0 attackers, while the asymmetric
request-flooding corresponds to300 attack sessions with request think-time
of 0 seconds. The repeated one-shot attack corresponds to an attack session
being opened immediately (0) seconds after closing the previous session.

the following request types in decreasing order of processing
times: BestSellers> NewProducts> Home> ProductDetail
> Search. We investigate the following attacker strategies: (1)
B: 100% BestSellers requests, (2)B-N : equal number of Best-
Sellers and NewProducts requests and similarily, (3)B-N -H ,
(4)B-N -H-P , (5)B-N -H-P -S. Figure 6(b) shows the damage
caused to100 normal sessions by300 attack sessions. In each
experiment, the attack sessions send requests as fast as possi-
ble using one of the workload profiles mentioned above. As
observed, the damage decreases consistently as the attack ses-
sions dilute the proportion of the heaviest BestSellers requests,
approaching the potency of the normal request flooding attacks
which have the same workload profile as the legitimate clients.
• Variable inter-session arrival time:In the repeated one-shot
attack, the attacker may emulate slower inter-session rates by in-
creasing the waiting time between closing and opening the next
session. Figure 6(c) shows that the attack potency decreases
consistently with increasing inter-session time between attack
sessions. Furthermore, when the attack session uses the same
inter-arrival time as normal sessions (0.2 seconds), there is no
performance degradation.

IV. QUANTIFYING ATTACK SUSPICION

Because attackers cannot be distinguished from non-
malicious clients with 100% certitude, our objective is to pro-
vide a mechanism to tag each session with a continuous measure
of suspicion. In our architecture, this value is then used bya re-
quest scheduler to determine when and if to service a particular
request.

We formulate the suspicion-assignment problem by first per-
forming measurements to characterize the set of distributions
that define legitimate behavior. We then calculate the suspicion
of a session on the basis of the probability that it was generated
from one of the legitimate distributions. Recall from Section III
that attacks succeed by altering either of the session parameters
of session inter-arrival time, request inter-arrival timeor ses-
sion workload-profile. Thus, we design suspicion assignment
techniques to assign a suspicion measure to a session with re-
spect to each of these parameters. These individual values are
then combined into one suspicion measure for the session.
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First, we describe an offline phase in which we build legiti-
mate client behavior profiles using system logs, which are as-
sumed to be un-influenced by attacks. Next, we describe suspi-
cion assignment techniques corresponding to each of the three
kinds of deviations from normal behavior, followed by an algo-
rithm to combine their outputs. Finally, we conclude by present-
ing testbed results to evaluate the performance of our suspicion
assignment techniques.

A. Legitimate Client Profiles

In this phase, we extract information from system logs to
build profiles for legitimate client behavior with respect to ses-
sion inter-arrival times, request inter-arrival times, and session
workload profile. The system logs store the number of requests
per session and the resources consumed by a request for each of
the resources: CPU, disk and network bandwidth. We assume
stationarity in the system logs.1
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Fig. 8. Cumulative Distribution Function for request inter-arrival time:
P (Xn ≤ x) with varying session lengths or sample sizes ‘n’.

• Session Inter-Arrival Distribution: We extract the aggre-
gate session inter-arrival times to obtain the empirical distribu-
tion A. Due to our workload generator,A is exponential with
mean0.2 seconds.
• Request Inter-Arrival Distribution: First, we extract ses-
sions of length equal ton requests. Next, we use the request
inter-arrival times of these sessions and obtain an empirical dis-
tribution of request inter-arrival times:Xn. This is done for
all values ofn = [2, 60] as shown in Figure 8. With increas-
ing sample sizen, Xn tends to an exponential distribution with
mean of7 seconds, corresponding to the distribution used in our
workload generator.
• Session Workload Profile:Using the resource consumption
for a request for each resource type (CPU, disk, network), we
use a standard centroid-clustering algorithm [8][19] to obtain
workload profiles for legitimate sessions as follows: First, re-
quests with similar resource consumption for a resource are
grouped into severalrequest-resource classes. Next, sessions
with a similar proportion of requests per request-resourceclass
are grouped into severalsession types.
Recall that in our system, the attacks overwhelm the CPU re-
sources on the database tier. Hence, we extract the database
CPU clock cycles consumed by each request from the logs and

1This assumption can be relaxed and time-or-day effects can be incorporated
using standard techniques from time-series analysis.

cluster requests with similar CPU utilization. Starting with all
the requests from the logs, each defining its own cluster, we
group requests with similar CPU utilization at every iteration to
obtain a decreasing number of clusters. This is done until a nor-
malized ratio between the inter- and intra-cluster distances [8]
reaches a local maxima, thus obtaining a set ofr request types:
∪r

i=1{ai}; identified by their average CPU utilization. Similarly,
sessions defined as a histogram on the set∪r

i=1{ai} of request
classes, are clustered to obtain an optimal set ofc session types:
∪c

j=1{Gj}.
In our example online-bookstore implementation, the clustering
algorithm groups requests into14 request classes. Incidentally,
each of these request classes also corresponds to a particular
type of page that was being requested, e.g.,Homeand Best-
Sellers. Sessions are clustered into3 session types, identified
as:browsing, shoppingandordering(see Figure 4).

B. Detection of Session Arrival Misbehavior

Recall that a repeated one-shot attack’s potency is due to the
higher than normal session arrival rates. Hence, detectionof
these attacks is based on detecting increases in session inter-
arrival times. Upon the arrival of a new sessioni, we first cal-
culate the difference between its arrival time and that of the last
session:αi. Then, using the distributionA for legitimate ses-
sion arrival times, we assign it a seed suspicionfsession(i) as the
probability that we would have observed a session inter-arrival
time less thanαi: fsession(i) = 1 − P (A ≤ αi).

This method has high false positives since a legitimate ses-
sion that arrives in between two consecutive one-shot sessions
would also be assigned a high seed suspicion. However, in the
latter half of this section, we present an algorithm to reduce the
performance impact due to these false positives.

C. Detection of Request Arrival Misbehavior

A request flooding attack succeeds by sending requests at
rates higher than normal. Hence, detection of these attacksis
based on detecting decreases in inter-arrival time betweensuc-
cessive requests in a session.

On observing thenth request in a session, we assign its suspi-
cion as follows: (1) calculate the mean inter-arrival timeµ over
n requests seen in the session so far; (2) use sample distribu-
tion Xn shown in Figure 8 to assign suspicion as:frequest(i) =

1 − P (Xn ≤ µ). Thus, the suspicion measure for an attack-
session which sends requests once every1 seconds would be
0.8 after5 observations, quickly increasing to0.92 after10 ob-
servations.

D. Detection of Session Workload Misbehavior

Recall that in asymmetric attacks, the attacker exploits hetero-
geneity in the server processing times of requests and selectively
sends more requests towards the heavy request classes. Thus, a
system under attack would see sessions with a higher than nor-
mal proportion of requests for certain request classes. Hence,
detection of asymmetric attacks is based on detecting deviations
in the workload profile of sessions.

Given, a set∪c
j=1{Gj} of c ideal session types, detection of

workload misbehavior is formulated as anonline estimationof
the probability that the requests belonging to a session is dis-
tributed as one of the legitimate or ideal session typesGj . Ini-
tially, we assume there is only one ideal session-typeG. Due to
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the discrete number of request types, an equivalent problemis
observing a series of throws of a dice withr faces and generat-
ing distributionG, and estimating whether the observed series
is generated from the distributionG.

Given an ideal session typeG, a suspicion measure assigns
suspicion numbers to a sessions by using (1) the length of the
sessionn and (2) the deviationd of the session from ideal be-
havior as captured by adistance metricbetween the session type
and the ideal type. Next, we develop a framework forsoundness
of a workload suspicion measure to ensure consistency in as-
signment of suspicions across workload deviations.

A desirable distance metric disassociates session length (cor-
responding to the number of request observations) from devia-
tion and assigns sessions which have the same deviation from
ideal type, an equal distance, irrespective of their lengths. The
other properties that we desire in a distance metric are thatdis-
tance grows with deviation from the ideal type and distance be-
tween a type and itself is0. In this paper, we consider two can-
didate distance metrics to illustrate the properties: theKullback
Leibler (KL) distance metric [10] and a metric we developed,
which we call theResidue Factor (RF)metric.

Let σ = ∪r
i=1{ai} denote the set ofr request classes. Denote

a sessions as a histogram on the number of requestsn(ai) seen
per request class:s = ∪r

i=1{n(ai)}. Similarly, define a session
typeT (s) as a histogram on the fraction of requestsN(ai) =
n(ai)

n
seen per request type:T (s) = ∪r

i=1{N(ai)}; wheren is

the total number of requests seen in the session:n =
r∑

i=1

n(ai).

Further, define the ideal session typeG = ∪m
i=1{G(ai)}, where

G(ai) denotes the fraction of requests of request typeai and
r∑

i=1

G(ai) = 1.

D.1 Distance Metrics

Definition 1: The KL distance between the session typeT (s)
characterizing a sessions and the ideal distributionG is defined
as:

KL(T (s)||G) =
∑

ai∈σ

N(ai) log
N(ai)

G(ai)
. (1)

Next, we define a Residue Factor (RF) distance by extract-
ing the greatestcommon factor (gcf) ofG present in session
s: gcf = min

i
bn(ai)/G(ai)c. Now, define residueres =

r∑
i=1

{n(ai) − gcf G(ai)}.

Definition 2: The RF-distance metric between a sessions and
ideal typeG is defined as:

RF (s||G) =
res

gcf
(2)

Intuitively, the greatest common factor and residue represent the
subtypes within sessions that are good and bad with respect to
the typeG. Hence, the RF-distance penalizes a type for deviat-
ing away fromG (as captured by the residue) while rewarding
it in proportion to the length for which it was well-behaved (as
captured bygcf ). We handle the case where there is no good
subtype, i.e.,gcf = 0 separately.

Observe that both KL-distance and RF-distance have the
properties desirable in a distance metric. We illustrate with an
example on two request classes:σ = {0, 1} and a Bernoulli
ideal distributionG having probabilities (0.5,0.5). If a sessions
has the same type as the most likely realization ofG, then both
distance metrics assign distance0. In contrast, sessions origi-
nating from a Bernoulli(0.8, 0.2) distribution and having types
such as(4, 1), (8, 2)...k(0.8, 0.2) are assigned KL-distance of
0.193 and RF-distance of1.5, irrespective of length. Moreover,
their distance is less (on average) than that assigned to sessions
originating from Bernoulli(0.9, 0.1) distributions, in which case
the average KL-distance is 0.368 and RF-distance is 4.

D.2 Soundness

A suspicion measuref is said to besound, and hence con-
sistent in assigning suspicion across workload misbehavior, if it
obeys the following properties:
• Zero-Distance Property: A sessions with the same type as
the ideal session type is always assigned a suspicion numberof
0, irrespective of its lengthn.

T (s) = G =⇒ f(s) = 0 ∀n ∈ [1,∞) (3)

That is, if a session has the same type as the ideal, its deviation
from the ideal type is0, and hence its suspicion is0.
• Distance-ProportionalityProperty: Amongst all sessions of
the same lengthn, a session which deviates more from the ideal
session type is assigned a higher suspicion. Thus, given two
sessionss1 ands2 of lengthsn1 andn2 and distances from ideal
typed1 andd2 respectively:

n1 = n2, d1 > d2 =⇒ f(s1) > f(s2) (4)

That is, greater deviation from the ideal type signifies greater
suspicion.
• Length-Proportionality Property : If two sessions have the
same type which is different from the ideal type, then the session
with greater length is assigned higher suspicion. Thus, given
two sessionss1 ands2 of lengthsn1 andn2 and distances from
ideal typed1 andd2 respectively:

T (s1) = T (s2) 6= G, n1 > n2 =⇒ f(s1) > f(s2) (5)

That is, with an increased number of observations, the suspicion
probability converges towards its true value.

There are several possible measuresf which satisfy the prop-
erties of soundness. We next consider a class of suspicion mea-
sures which are derived directly from the properties of sound-
ness, and hence correct, while also being computationally effi-
cient.

D.3 Length Distance Product (LDP) Measure

Definition 3: Define a Length Distance Product (LDP) mea-
sure as one which assigns suspicion to a sessions of typeT (s)
as the product of its length and distance from the ideal type
G. Substituting by the two distances of KL-distance and RF-
distance considered in this paper, we have the following equiva-
lent measure definitions:

fKL
L (s) = n KL((T (s)||G)

fRF
L (s) = n RF (S||G)

(6)
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If there are multiple ideal distributions or types:∪c
j=1{Gj},

each of them equally likely then the LDP measure is defined
with respect to the distribution which is the closest in terms of
distance:

fKL
L (s) = n min

j
(KL( (T (s)||Gj) ))

fRF
L (s) = n min

j
(RF ( (s||Gj) ))

(7)

Since by definition the LDP measures are proportional to dis-
tance and length, it is easy to see that they obey all the properties
of soundness. The suspicion values assigned by LDP measures
are no longer contained within0 and1. However, it is relatively
straightforward to do so by choosing a very large numberN and
normalizing such that

fL(s) ≤ N =⇒ fL(s) = fL(s)/N

fL(s) > N =⇒ fL(s) = 1.0

0 5 10 15 20 25 30 35 40
0

0.5

1

1.5

2

2.5

Number of requests in session

K
L 

di
st

an
ce

mean (browsing)   
mean (shopping)   
mean (ordering)   
std−devn (browsing)

Fig. 9. Mean of KL-distance of “browsing”, “shopping” and “ordering” sessions
with increasing sample-sizesn.

Our online bookstore implementation consists of three ideal
distributions:Gbrowsing, Gshopping andGordering as shown in
Figure 4. Figure 9 shows the average KL-distance of a browsing
session with respect toGbrowsing with increasing number of re-
questsn. Note that the KL-distance of a legitimate session with
its ideal distribution converges to0 with increasing number of
requestsn.

D.4 Assignment of Net Suspicion

We next describe an algorithm to aggregate the suspicion
measures across the various misbehaviors into one suspicion
measure per session. Given a sessions, denote the seed
suspicion that was assigned to this session on its arrival by
fsession(s). As the session proceeds in sending requests, af-
ter observingn requests, it is assigned a suspicion measure by
each of the request arrival and workload misbehavior detectors
as: fn

request(s) andfn
L(s). Thus, using a suspicion weighting

parameter0 ≤ β ≤ 1, we define the net suspicion measure
fn(s) as follows:

fn(s) = fsession(s) ∗ (β fn
L(s) + (1 − β) fn

request(s)) (8)

Note that net suspicion is within0 and1, and has the following
desirable features:

• As discussed earlier, there is a high false-alarm rate in theses-
sion arrival misbehavior detector, and hence legitimate sessions
which get caught between successive one-shot attack sessions
may be flagged with a high seed suspicion. Hence, if the ses-
sion was really legitimate, then it would obey the workload and
request-arrival profiles and hence would get a chance to improve
its suspicion. In contrast, if the session is part of a repeated one-
shot attack then it will be given a high seed suspicion enabling
the system to service it with lower priority.
• The suspicion of a session with respect to workload- or
request-arrival suspicion is weighted by the parameter0 ≤ β ≤
1, which is set depending on which of the two suspicion mea-
sures has potential for greater damage to the system. We illus-
trate with an example: consider two sessionsi andj with suspi-
cion probabilities(fL, frequest) as(0.2, 0.8) and(0.8, 0.2) re-
spectively. If workload-misbehavior is considered more potent,
then weighing them withβ > 0.5 would consider sessioni more
suspicious. Similarly, if request misbehavior is considered more
potent, then settingβ < 0.5 would consider sessionj as more
suspicious. We chose to weigh both misbehaviors equally, and
henceβ = 0.5 in our system.

D.5 Performance of Suspicion Assignment

We next provide numerical results for the performance of the
suspicion assignment techniques on attacks launched against the
online-bookstore implementation. Figure 10 shows the behavior
of suspicion measure with an increasing number of requests in a
session. Notice that the scheme obeys the properties of sound-
ness in that the suspicion of a session either converges to0 or
1 with more observations, depending on whether the session is
legitimate or malicious. We make the following observations:
• In either request flooding or asymmetric attacks, the at-
tack sessions can be distinguished from normal sessions after
4 requests on average enabling counter-DDoS mechanisms to
quickly punish attack sessions.
• Normal sessions converge to suspicion of0 with respect to
request-arrival and workload after17 and 57 requests respec-
tively as seen from Figure 10(a),(b).
• A request flooding attack session sending requests at think-
times of 0 seconds is detected with certitude of 1.0 after5 re-
quests on an average. Moreover, the lower the attack rate i.e.,
the higher the value of think-time used by an attack session,the
more observations needed to detect it with certainty.
• An asymmetric attack session sending BestSeller requests is
detected with suspicion probability1.0 after 8 requests on av-
erage. Moreover, if the attacker morphs its identity by mixing
other request types in an attack session, then the number of ob-
servations needed to detect the attack session with certainty in-
creases.
• Attack sessions involved in repeated one-shot attack of high-
est potency (inter-session time=0) are assigned seed suspicion
of 0.95 on an average. Normal sessions also start with similar
seed suspicions but the effect of high initial suspicion is diluted
by the lower suspicions assigned to them by the request-arrival
and workload suspicion assignments.

V. SCHEDULER DESIGN FORDDOS-SHIELD

In this section, we present the DDoS-resilient scheduling pol-
icy of DDoS-Shield, which combines the continuous measure of
suspicion assigned by our suspicion mechanism with the cur-
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Fig. 10. Average suspicion probability of a normal or attacksession with increasing number of requests seen in the session.

rent system workload to decide whether and when a session is
allowed to forward requests (see Figure 2). The DDoS-resilient
scheduler is integrated into the reverse proxy, and can thusinter-
cept requests belonging to malicious sessions before they over-
whelm system resources.

A. Aggregate Scheduling Rate and Eligibility

The maximum aggregate rate at which the scheduler forwards
requests to the web cluster is a configurable parameter termed
thescheduler service rate: r requests/second. We will show that
a wide range of rates yields high performance. However, setting
the rate too low results in an under-utilized backend whereas
setting it too high results in all requests (including malicious
ones) being sent to the backend.

Each session has a backlog queue for requests which haven’t
been forwarded to the web cluster, and requests are dropped us-
ing a Drop-Tail policy when the length of the queue exceeds a
configurable parameterper-session queue length: l. At rater,
the scheduler picks a session from amongst the eligible sessions
and forwards its Head-of-Line (HoL) request to the web cluster.

We determine the eligibility criterion for a session by allow-
ing only one outstandingmain requestper session. Recall that
main requests are typically requests for the dynamic page and
are followed by embedded requests for static content, typically
image files that are embedded in the page. Thus, a session is
considered eligible for scheduling only if its last main request
has been serviced by the web cluster and the response sent to
the client. This is in agreement with the behavior of the Apache
web server, which also services only request per session at any
time.

Figure 11 shows the state diagram for a session in the sched-
uler queue. A new session starts in the stateAllow All and once
it is scheduled by the scheduler, its main request is forwarded to
the web tier, after which the session’s state is changed toAllow
Embedded-Only. In accordance with the HTTP/1.1 specification
for pipelining, any embedded requests sent by the client arefor-
warded to the web tier, irrespective of whether the main request
has been serviced or not. However, if we receive another main
request, it is kept waiting in the session queue.2 On receiving
the response for the main request, the session is made eligible

2Hence, w.r.t. a client which sends pipelined main requests,we are still
HTTP/1.1 compliant, in that requests now wait in the reverseproxy server queue
instead of Apache queue.

for being scheduled again, by changing its state toAllow All, af-
ter which the HoL main request in this session’s queue can be
forwarded when the session is scheduled again.

Scheduled

Send Embedded−Requests

Receive response for Main−Request

Send Embedded−Requests

Scheduler
Eligible for

Send Main−Request

All Embedded−Only
Allow Allow

Fig. 11. State Diagram for a session in scheduler queue

B. Scheduling Policies

We introduce the following scheduling policies to protect the
system from DDoS attack:
• Lowest Suspicion First (LSF) Scheduler:Thecost-optimal
scheduler is one which obtains a schedule such that for theN
eligible sessions in the system at any time, each with suspicion
probability aspi, their average response timedi realizes the fol-
lowing objective function:

min

N∑

i=1

(1 − pi)(di) (9)

Intuitively, this objective function maximizes the sum total of
suspicion probabilities (pi) for requests queued at the DDoS
scheduler so that those with low suspicion are forwarded to the
web cluster. Thus, the cost-optimal scheduler is a strict-priority
scheduler which selects the top sessions after sorting themin
decreasing order as:(1 − p1) ≥ (1 − p2) · · · ≥ (1 − pN ).
• Proportional to Suspicion Share (PSS) Scheduler:The
cost-optimal scheduler may result in starving sessions with high
suspicion probabilitypi. Hence we also design amax-min fair
algorithm with the fairness objective of assigning forwarding-
ratesri to sessions in proportion to their confidence probabilities
1 − pi:

ri

rj

=
1 − pi

1 − pj

(10)
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Fig. 12. Effect of various scheduling policies and scheduler service rates on100 normal sessions. (a) shows performance under most-potent300 request flooding
sessions while (b),(c) shows performance under most-potent 300 asymmetric attack sessions.

As a baseline for comparison, we also implement two sched-
ulers that are agnostic to suspicion measures: (i) First-Come
First-Serve (FCFS) which schedules the session with the earli-
est arrived HoL request from amongst all the eligible sessions
and (ii) Round Robin which schedules requests one per session
in round-robin order only among eligible sessions.

Next, we propose an online algorithm to set thescheduler
service rater of the scheduler as a function of the sum of con-
fidence probabilities of the active sessions at any time. Assume
there areN eligible sessions at the scheduler at timet. De-
note the95%ile of the throughput in terms of completed re-
quests/second achieved by a legitimate session under no attacks
asr0.95. The scheduler service rater is adjusted everyupdate-
interval using an Exponential Weighted Moving Average func-
tion: r = α∗ r+(1−α)∗ rnew. The raternew is the sum of the
individual session-rates:rnew =

∑N

i ri, each of which is ob-
tained as a linear function of the session’s suspicion probability
as follows:ri = (1 − pi)r0.95.

C. Performance Evaluation

First, we establish through experiments that to be effective,
a counter-DDoS mechanism needs both scheduling and a prop-
erly set aggregate service rate. We compare the suspicion-aware
scheduling policies, LSF and PSS against the suspicion-agnostic
policies, Round Robin and FCFS. The per-session queue length
is fixed at100 requests. We also compare the performance of the
scheduling algorithms against two baseline scenarios: (1)No At-
tackwhen there are0 attack sessions; and (2)No Defensewhen
all the attack sessions are present but no defense strategy is used,
i.e., the scheduler is FCFS with per-session queue lengths set to
infinity.

Figure 12 depicts the average response time for normal ses-
sions as a function of the maximum rate that the scheduler for-
wards the aggregate. Performance for the two attacks (Figures
12(a) and 12(b)) is discussed below.

C.1 Request-flooding Attack

We first consider the most potent request-flooding attack us-
ing 300 attack sessions on100 normal sessions in Figure 12(a).
• The strategy of using both scheduling and limiting the aggre-
gate service rate is critical to achieving DDoS resilience.The
best performance is obtained on using a LSF or PSS sched-

uler with scheduler service rate set in the range of 15 to 50 re-
quests/second.
• DDoS-Shield is effective in thwarting the request flooding at-
tack, as evident from the fact that performance improves to0.5
seconds from the3 seconds under no defense. Further, note
that there is minimal penalty due to false positives (legitimate
sessions being delayed) or, false negatives (malicious sessions
being admitted).
• The LSF and PSS schedulers perform the best, with LSF
slightly better. The Round-Robin and FCFS schedulers are ag-
nostic to suspicion probabilities and still admit many malicious
sessions leading to significantly lower performance. Round-
Robin is still better than FCFS since in comparison it schedules
more non-attacking sessions in every round.
• Performance is non-monotonic with the scheduler service rate
as discussed above. Moreover, all scheduling algorithms con-
verge to an average response time of2.2 seconds at service rates
greater than100 requests/second. Even then, limiting session
queues improves performance as compared to without limiting
session queues.
• When the online rate-setting algorithm is used along with the
LSF scheduling policy, we obtain similar performance improve-
ments at approximately0.5 seconds. The average service rate
set by online rate setting was17 requests/second whenα = 0.3
and the rate is updated every10 seconds.

C.2 Asymmetric Attack

DDoS-Shield improves the performance under the most-
potent asymmetric attack from10 seconds to0.8 seconds, as
seen from Figure 12(b). Note that under asymmetric attacks,
the performance of DDoS-Shield is much more sensitive to ad-
mittance of attack sessions. At service rates higher than17 re-
quests/sec, the response times increase sharply for even the best
scheduling algorithms (LSF, PSS), with their performance be-
coming similar to that of the baseline schedulers. The reason is
that at high service rates, a slight increase in admittance of at-
tack sessions drives the server CPU loads to as high as100%, as
depicted in Figure 13.

C.3 Repeated One-shot Attack

Similarly, for repeated one-shot attacks, DDoS-Shield im-
proves the performance under the most-potent attack (inter-
session time=0 seconds) from40 seconds to1.5 seconds. The
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Fig. 13. Database CPU load under asymmetric attack

best performance is achieved using LSF scheduler at scheduler
service rates of approximately15 requests/second.

C.4 Moderate Potency Attacker Strategies

Recall from our discussions in Section IV that lower potency
attacks are more difficult to detect than high potency attacks.
Hence, to demonstrate the efficacy of DDoS-Shield in thwarting
moderate potency attacks, we evaluate the performance under
varying request flooding and varying asymmetric attack strate-
gies. Using the scheduling policy LSF and the service rate set
at 15 requests/second, DDoS-Shield maintains the performance
of normal sessions at0.8 seconds, even when the attack rate
was varied by changing the think-time over[0 − 7] seconds.
Similarly, DDoS-Shield maintains the performance of normal
sessions at0.5 seconds, even when300 attack sessions morph
their workload profile by employing lighter requests alongside
the heavy BestSellers requests. Finally, DDoS-Shield maintains
performance at1.5 seconds, even when the repeated one-shot
attack is varied by changing the attacker inter-session times.

The success of DDoS-Shield in thwarting moderate potency
attacks as well as high potency ones, is due to the suspicion as-
signment mechanism being able to differentiate between legiti-
mate and malicious sessions rapidly. Recall from Figure 10(a)
that even though lower-rate or lower-intensity attacks arede-
tected with certitude much later than their high potency counter-
parts, on average they are assigned higher suspicion than normal
sessions after only4 requests. Hence, they are quickly given
lower priority service by the LSF scheduler compared to the le-
gitimate sessions.

VI. RELATED WORK

CERT3 classifies denial of service attacks in three broad cate-
gories: 1) attacks aimed at consumption of scarce resourcessuch
as network bandwidth or CPU; 2) attacks aimed at destructionor
alteration of configuration information; and 3) attacks aimed at
physical destruction or alteration of network components.This
paper focuses on a class of attacks in the first category, namely
attacks mounted at the application layer (layer-7) with attackers
posing as legitimate clients of the service. The attack classes
we consider overwhelm server resources in the web cluster and
hence are distinct from earlier attacks that have primarilytar-
geted network connectivity. Most recent examples of network
attacks mimicked flash crowds using zombie clients [11][15].

3http://www.cert.org

A. Detecting DDoS attacks

The first step in thwarting a DDoS attack is to detect it. Exist-
ing detection mechanisms operate at the network level to detect
DDoS floods in the network [4], [17], [18], [23]. For exam-
ple, the anomaly detection system in [17] assigns every packet
a score based on the probability of it being a legitimate packet
given the attribute values it carries. The attacks we are focusing
in this paper cannot be detected by these tools as they do not
necessarily flood the network with high volumes of traffic.

Other detection mechanisms attempt to catch intrusions both
at the network and the host level [24]. While the attacks in this
paper do not rely on intrusions at the victim, effective intru-
sion detection makes it difficult for the attackers to commandeer
client machines, and hence could only act as a first-step defense
with reference to our attacks.

Distinguishing a DDoS attack from a flash crowd has also
proven difficult. Two properties to make the distinction areiden-
tified in [13]: (1) a DoS event is due to an increase in the request
rates for a small group of clients while flash crowds are due
to increase in the number of clients; and (2) DoS clients origi-
nate from new client clusters4 as compared to flash crowd clients
which originate from clusters that had been seen before the flash
event. These characteristics may not help distinguish the attacks
discussed in this paper since (1) it is difficult to associatethe
amount of resources consumed to a client machine and (2) bot-
nets consisting of geographically wide-spread machines are in-
creasingly likely to belong to known client clusters. In contrast,
our suspicion assignment mechanism observes thebehaviorof
the clients to detect suspicious activity.

Our suspicion assignment mechanism relies on statistical
methods. However, our problem formulation differs from sim-
ilar techniques, such as sequential hypothesis testing [14][26]
in two respects: First, we define only one hypothesis for legiti-
mate behavior, and the hypothesis for malicious behavior isin-
terpreted as anything which does not follow the legitimate hy-
pothesis. Thus, not relying on an alternate hypothesis for the
attackers gives our scheme the ability to detect misbehaviors not
seen yet. Second, unlike sequential tests which output binary de-
cisions of legitimate or malicious while bounding detection and
false-positive probabilities, we output a continuous measure of
suspicion. This gives our scheme the ability to start penalizing
misbehaving sessions as soon as their suspicion becomes dis-
tinct from that of legitimate sessions.

B. Counter-DDoS Mechanisms

In [15], Kandula et al. design a system to protect a web cluster
from DDoS attacks by (1) designing a probabilistic authentica-
tion mechanism using CAPTCHAs (acronym for “Completely
Automated Public Turing test to tell Computers and Humans
Apart”) and (2) designing a framework that optimally divides
the time spent in authenticating new clients and serving authen-
ticated clients. Unfortunately, requiring all users to solve graph
puzzles has the possibility of annoying users and introducing
additional service delays for legitimate users. This also has the
effect of denying web crawlers access to the site and as a result
search engines may not be able to index the content. Finally,
new techniques may render the graphical puzzles solvable using

4A Client cluster is defined as a group of topologically close clients, identified
via BGP routing tables.
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automated methods [20]. The DDoS-Shield does not depend on
Turing tests; instead, it uses statistical methods to detect attack-
ers and employs rate-limiting through request scheduling as the
primary defense mechanism.

The technique of rate-limiting unwanted or hostile traffic
has often been used as a counter-measure against DDoS at-
tacks. For example, network packets deemed suspicious could
be dropped [17] or rate-limited [12]. The class-based queuing
scheme used in [16] uses a load balancer to block or limit service
to client IP addresses depending on their bandwidth consump-
tion patterns. Similarly, the probabilistic queuing scheme in [25]
uses a randomized LRU cache to regulate bandwidth consump-
tion to malicious clients. At the infrastructure level, schemes for
routers to cooperatively block malicious traffic were proposed
in [5]. Such techniques are all geared towards countering high
bandwidth flows reminiscent of today’s DDoS attacks. In con-
trast, by rate limiting the work a server cluster performs, we can
prevent attacks on both network bandwidth as well as those that
are aimed at other types of system resources, such as CPU or
storage.

VII. C ONCLUSIONS

In this paper, we explored the vulnerability of systems to
sophisticated layer-7 DDoS-attacks which are both protocol-
compliant as well as non-intrusive. These attacks mimic legiti-
mate clients and overwhelm the system resources, thereby sub-
stantially delaying or denying service to the legitimate clients.
We developed a framework to classify these resource attacksas
one of request flooding, asymmetric workload, repeated one-
shot attacks or combinations there-of, on the basis of the appli-
cation workload parameters that they exploit. Since these re-
source attacks are un-detectable via sub-layer-7 techniques, we
developed DDoS-Shield, a counter-mechanism which assigns
a suspicion measure to a session in proportion to its deviation
from legitimate behavior and uses a DDoS-resilient scheduler to
decide whether and when the session is serviced. Using a web
application hosted on an experimental testbed, we demonstrated
the potency of these attacks as well as the efficacy of DDoS-
Shield in mitigating their performance impact.
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