

Decoupling Beam Steering and User Selection for Scaling Multi-User 60 GHz WLANs

Yasaman Ghasempour and Edward Knightly Rice University

July 2017

60 GHz WLANs

Capabilities and propagation characteristics

- o 7-14 GHz available unlicensed bandwidth
- \circ 20-40 dB increased signal attenuation

60 GHz WLANs

Capabilities and propagation characteristics

- o 7-14 GHz available unlicensed bandwidth
- o 20-40 dB increased signal attenuation

Directional transmission

- Small form factor with mm-scale antennas
- \circ Standardized via IEEE 802. I lad
- Up to 7 Gbps data rate

Goal

• Enabling multi-user directional transmission

- Opportunity for spatial reuse
- $\circ~$ Simultaneous downlink transmission
- Scaling total throughput
- Which users and which beams (directions)?

• Multi-RF chain AP

- Multi-RF chain AP
- Each RF chain is connected to <u>multiple</u> antennas (vs. one in 2.4/5 GHz)

- Multi-RF chain AP
- Each RF chain is connected to <u>multiple</u> antennas (vs. one in 2.4/5 GHz)
- Each data stream is independently steerable

- Multi-RF chain AP
- Each RF chain is connected to <u>multiple</u> antennas (vs. one in 2.4/5 GHz)
- Each data stream is independently steerable
- Capable of analog beam steering

- Multi-RF chain AP
- Each RF chain is connected to <u>multiple</u> antennas (vs. one in 2.4/5 GHz)
- Each data stream is independently steerable
- Capable of analog beam steering
- Capable of digital precoding

- Multi-RF chain AP
- Each RF chain is connected to multiple antennas (vs. one in 2.4/5 GHz)
- Each data stream is independently steerable
- Capable of analog beam steering
- Capable of digital precoding

• Selecting users to be served (G)

• Selecting users to be served (G)

- Transmit and receive analog beamforming vectors W_{u,tx} ∈ C^{N_{AP}×1}

 Digital beamforming weights (F_{PP})

- Transmit and receive analog beamforming vectors W_{u,tx} ∈ C^{N_{AP}×1}

 Digital beamforming weights (F_{PP})

$$R_{sum}(G) = \sum_{u=1}^{U} R_{u}(G, w_{u,tx}, w_{u,rx}, F_{BB})$$

$$R_{sum}(G) = \sum_{u=1}^{U} R_{u}(G, w_{u,tx}, w_{u,rx}, F_{BB})$$

• Maximizing sum-rate

$$\{G^{opt}, w_{u,tx}^{opt}, w_{u,rx}^{opt}, F_{BB}^{opt}\} = \operatorname{argmax} \sum_{u=1}^{U} R_u(G, w_{u,tx}, w_{u,rx}, F_{BB})$$

- Constraints:
 - Analog beams limited to a codebook
 - No. of users limited to no. RF chains

 $w_{u,tx} \in F, u = 1, 2, ..., U,$ $w_{u,rx} \in W, u = 1, 2, ..., U,$

 $|G| \leq N_{RF.}$

$$R_{sum}(G) = \sum_{u=1}^{U} R_{u}(G, w_{u,tx}, w_{u,rx}, F_{BB})$$

• Maximizing sum-rate

$$\{G^{opt}, w_{u,tx}^{opt}, w_{u,rx}^{opt}, F_{BB}^{opt}\} = \operatorname{argmax} \sum_{u=1}^{U} R_u(G, w_{u,tx}, w_{u,rx}, F_{BB})$$

- Constraints:
 - Analog beams limited to a codebook
 - No. of users limited to no. RF chains

$$w_{u,tx} \in F, u = 1, 2, ..., U,$$

 $w_{u,rx} \in W, u = 1, 2, ..., U,$
 $|G| \le N_{RF.}$

- Requires jointly selection of users, RF beams and digital weights
- Requires channel sate info of every client (channel size : N_{AP} x N_u)
- Prohibitively large training and feedback overhead

$$R_{sum}(G) = \sum_{u=1}^{U} R_u(G, w_{u,tx}, w_{u,rx}, F_{BB})$$

sum-rate
$$Not Practical$$

T 7

Maximizing sum-rate

$$\{G^{opt}, w_{u,tx}^{opt}, w_{u,rx}^{opt}, F_{BB}^{opt}\} = \operatorname{argmax} \sum_{u=1}^{U} R_{u}(G, w_{u,tx}, w_{u,rx}, F_{BB})$$

- Constraints:
 - Analog beams limited to a codebook
 - \circ No. of users limited to no. RF chains

$$w_{u,tx} \in F, u = 1, 2, ..., U,$$

 $w_{u,rx} \in W, u = 1, 2, ..., U,$
 $|G| \le N_{RF.}$

- Requires jointly selection of users, RF beams and digital weight
- Requires channel sate info of every client (channel size : $N_{AP} \times N_{u}$)
- Prohibitively large training and feedback overhead

Prior Work

Hybrid beamforming for 60 GHz MU transmissions^[1,2]

- For a given group of users \rightarrow no user grouping
- Developing low-complexity algorithms for hybrid analog and digital beamforming Maximizing sum-rate considering the hardware limitation and channel specification with limited feedback
- No protocol for user selection

MU-MIMO in sub 6 GHz

- One antenna per RF chain \rightarrow no analog beam steering, smaller channel size
- User grouping based on channel state info ^[3]
- User grouping without channel info exploiting the rich scattering propagation environment below 6 GHz ^[4]
- In contrast, we consider a different frequency band and node architecture

- [2] R.A. Stirling-Gallacher, et. al. Multi-user MIMO strategies for a millimeter wave communication system using hybrid beam-forming. ICC'15.
- [3] S. Sur, et. al. Practical MU-MIMO user selection on 802.11ac commodity networks. MobiCom 2016
- [4] N.Anand, et. al., Mode and user selection for multi-user MIMO WLANs without CSI. INFOCOM 2015.

^[1] A. Alkhateeb, et. al. Limited Feedback Hybrid Precoding for Multi-User Millimeter Wave Systems. IEEE Transactions on Wireless Communications (2015).

Decoupling User and Beam Selection

• Choosing analog beams independent from potential user selection

Decoupling User and Beam Selection

- Choosing analog beams independent from potential user selection
- sub-optimal approach

Decoupling User and Beam Selection

- Single-User beam Training (SUT):
 - Training every user individually
 - Repeat only when the old transmit/receive beams are not reliable
- User selection
 - \circ Selecting a set of users
 - Right before a multi-user transmission

- The AP and each user discover the best analog beam to communicate
- Beams are selected from a pre-determined codebook
- E.g. 802. I lad beam training

- The AP and each user discover the best analog beam to communicate
- Beams are selected from a pre-determined codebook
- E.g. 802. I lad beam training

- The AP and each user discover the best analog beam to communicate
- Beams are selected from a pre-determined codebook
- E.g. 802. I lad beam training

- The AP and each user discover the best analog beam to communicate
- Beams are selected from a pre-determined codebook
- E.g. 802. I lad beam training

- The AP and each user discover the best analog beam to communicate
- Beams are selected from a pre-determined codebook
- E.g. 802. I lad beam training

- The AP and each user discover the best analog beam to communicate
- Beams areselected from a pre-determined codebook
- E.g. 802. I lad beam training

User ID	TX beam ID
I	Beam 2
2	Beam 13
3	Beam I
4	Beam 2

User Selection Framework

- Available info after SUT:
 - Beam ID selected for all users
 - Received SNR of SU transmission

Class I: Only based on information acquired in SUT \rightarrow Single-Shot (S²)

Class II: Collecting further info before choosing users

Single-Shot (S²) user selection example

- Maximum beAm Separation (S²-MAS)
 - Choosing users with maximum beam separation
 - -Which user should be grouped with user 1?

Single-Shot (S²) user selection example

- Maximum beAm Separation (S²-MAS)
 - Choosing users with maximum beam separation
 - -Which user should be grouped with user 1?

Single-Shot (S²) user selection example

- Maximum beAm Separation (S²-MAS)
 - Choosing users with maximum beam separation
 - -Which user should be grouped with user I? User 2

Single-Shot (S²) timeline

- Phase I: SUT
- Phase 2: Single-shot user selection
- Phase 3: digital precoding, e.g. zero-forcing, to cancel any residual inter-user interference between selected users

- Measuring interference before selecting a user
- Incremental user addition in multiple rounds

- Measuring interference before selecting a user
- Incremental user addition in multiple rounds
- In each round : Measuring interference of a set of candidate users

- Measuring interference before selecting a user
- Incremental user addition in multiple rounds
- In each round : Measuring interference of a set of candidate users
- At the end of each round:

- Add user that provides the highest sum-rate boost when grouped with already selected users

- If no such user is found \rightarrow stop user selection

- Measuring interference before selecting a user
- Incremental user addition in multiple rounds
- In each round : Measuring interference of a set of candidate users
- At the end of each round:

- Add user that provides the highest sum-rate boost when grouped with already selected users

- If no such user is found \rightarrow stop user selection

• We call this class, Interference-aware Incremental (I²) user selection

Example: I²-Partitioned multi-test (I²-PM)
 Assume U=9, N_{RF}=3

- Example: I²-Partitioned multi-test (I²-PM)
 - Assume U=9, N_{RF}=3
 - Assume the prime user index=1 \rightarrow G={1}

- Example: I²-Partitioned multi-test (I²-PM)
 - Assume U=9, N_{RF}=3
 - Assume the prime user index=1 \rightarrow G={1}
- Steps:

I. Sort users based on achievable SNR via selected beams in SUT

- Example: I²-Partitioned multi-test (I²-PM)
 - Assume U=9, N_{RF}=3
 - Assume the prime user index=1 \rightarrow G={1}
- Steps:

I. Sort users based on achievable SNR via selected beams in SUT

- Example: I²-Partitioned multi-test (I²-PM)
 - Assume U=9, N_{RF}=3
 - Assume the prime user index=1 \rightarrow G={1}
- Steps:
 - I. Sort users based on achievable SNR via selected beams in SUT
 - 2. Partitions into N_{RF} batches

- Example: I²-Partitioned multi-test (I²-PM)
 - Assume U=9, N_{RF}=3
 - Assume the prime user index=1 \rightarrow G={1}
- Steps:
 - I. Sort users based on achievable SNR via selected beams in SUT
 - 2. Partitions into N_{RF} batches
 - 3. Find the prime user

Sorted users

- Example: I²-Partitioned multi-test (I²-PM)
 - Assume U=9, N_{RF}=3
 - Assume the prime user index=1 \rightarrow G={1}
- Steps:
 - I. Sort users based on achievable SNR via selected beams in SUT
 - 2. Partitions into N_{RF} batches
 - 3. Find the prime user

Sorted users

l² user selection timeline

Sorted users

User Selection Framework- Summary

Single-Shot (S²)

- Only based on info acquired in SUT
- Interference estimation
- One-shot
 - Lower complexity
 - Zero grouping overhead
- Example: S²-MAS

Interference-aware Incremental (I²)

- \circ Collecting further info
- Interference measurements
- o Multi-round incremental
 - Higher complexity
 - Higher overhead
- \circ Example: I²-PM

Benchmarking algorithms

- Exhaustive Joint: Exhaustively test all user-beam combinations •
- - Exhaustive Decoupled: SUT for beam selection
 - Exhaustively test all user combinations -

	Beam selection	User selection	Total
Exhaustive joint			$\sum_{m=1}^{N_{RF}} \binom{U}{m} (F^m \times W^m)$
Exhaustive decoupled	$U \times (F \times W)$	$\sum_{m=1}^{N_{RF}} \binom{U}{m}$	$U \times (F \times W) + \sum_{m=1}^{N_{RF}} \begin{pmatrix} U \\ m \end{pmatrix}$
S ² -MAS			
l ² -PM			

Benchmarking algorithms

- Exhaustive Joint: Exhaustively test all user-beam combinations
- - Exhaustive Decoupled: SUT for beam selection
 - Exhaustively test all user combinations

Testbed

- Commercial 60 GHz VubIQ transceivers
- WARP vI boards with only one RF chain
- Horn antennas instead of phased array
- Using NYU channel model to validate RSS with over the air measurements
- Extensive measurements: over 10000 measurements varying receiver location, antenna orientation, antenna beamwidth

Performance loss due to decoupling

- Comparing "exhaustive joint" and "exhaustive decoupled" algorithms
- Scenario : U=20, |F|=24, N_{RF}=2,3,4, |W|=1
- Two different extremes: all users having LOS or NLOS connectivity
- R_i : Achievable sum-rate via Exhaustive joint algorithm
- R_d : Achievable sum-rate via Exhaustive decoupled algorithm
- Metric I: R_d/R_i %

Performance loss due to decoupling

- Comparing "exhaustive joint" and "exhaustive decoupled" algorithms
- Scenario : U=20, |F|=24, N_{RF}=2,3,4, |W|=1
- Two different extremes: all users having LOS or NLOS connectivity
- R_i : Achievable sum-rate via Exhaustive joint algorithm
- R_d : Achievable sum-rate via Exhaustive decoupled algorithm
- Metric I: R_d/R_j %

Scenario	R _d /R _j %
N _{RF} =2, LOS	98.26
N _{RF} =2, NLOS	98.22
N _{RF} =3, LOS	98.06
N _{RF} =3, NLOS	97.44
N _{RF} =4, LOS	95.79
N _{RF} =4, NLOS	95.19

Joint User-Beam Selection vs. Decoupled

- R_d/R_i %> 95
- R_d/R_i % slightly decreases with increasing number of RF chains
- Increasing no. RF chains → group size increases → higher inter-user interference

Scenario	R_d/R_j %
N _{RF} =2, LOS	98.26
N _{RF} =2, NLOS	98.22
N _{RF} =3, LOS	98.06
N _{RF} =3, NLOS	97.44
N _{RF} =4, LOS	95.79
N _{RF} =4, NLOS	95.19

Joint User-Beam Selection vs. Decoupled

- R_d/R_i %> 95
- R_d/R_i % slightly decreases with increasing number of RF chains
- Increasing no. RF chains → group size increases → higher inter-user interference

Decoupling beam steering and user selection results in 5% capacity loss with 4 streams. The capacity loss increases in NLOS case and as the group size increases.

Scenario	R _d /R _j %
N _{RF} =2, LOS	98.26
N _{RF} =2, NLOS	98.22
N _{RF} =3, LOS	98.06
N _{RF} =3, NLOS	97.44
N _{RF} =4, LOS	95.79
N _{RF} =4, NLOS	95.19

- Scenario: U=40, N_{RF}=2,3,4,5, |F|=32, |w|=4
- LOS connectivity

- Scenario: U=40, N_{RF}=2,3,4,5, |F|=32, |w|=4
- LOS connectivity
- SUT for beam selection
- S²-MAS, I²-PM for user selection
- Random and Exhaustive decoupled user selection strategies for comparison
- Zero-forcing as digital precoding scheme

• Random selection can yield to choosing users with significant overlapping beam

- Random selection can yield to choosing users with significant overlapping beam
- MAS makes sure that users with separated beams are chosen

- Random selection can yield to choosing users with significant overlapping beam
- MAS makes sure that users with separated beams are chosen
- With N_{RF} =2 , MAS >70 % of Exhaustive approach
- With N_{RF} =5 , MAS <50 % of Exhaustive approach

- Random selection can yield to choosing users with significant overlapping beam
- MAS makes sure that users with separated beams are chosen
- With N_{RF} =2 , MAS >70 % of Exhaustive approach
- With $N_{\text{RF}}\text{=}5$, MAS <50 % of Exhaustive approach
- I²-PM never loses capacity due to an additional RF chain at the AP

For smaller group size, the single-shot user selection policies can provide around 70% of the maximum possible PHY capacity with zero grouping overhead.

Conclusion

- Joint selection of users and beams requires prohibitively large training and feedback overhead
- We introduced decoupling user and beam selection for multi-user 60 GHz WLANs.
- Decoupling beam steering and user selection results in 5% capacity loss with 4 streams. The capacity loss increases in NLOS case and as the group size increases.
- We introduced and evaluated two structures, S² and I² for user selection in the decoupled framework.
- For smaller groups, the single-shot user selection policies can provide around 70% of the maximum possible capacity with zero grouping overhead.

If you have any questions, email me at ghasempour@rice.edu