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ABSTRACT

Peer-to-peer (p2p) file sharing systems are characterizéiyhly
replicated content distributed among nodes with enormggsea
gate resources for storage and communication. These figxper
alone are not sufficient, however, to render p2p networksumen
to denial-of-service (DoS) attack. In this paper, we sthgyneans
of analytical modeling and simulation, the resilience oppize
sharing systems against DoS attacks, in which malicioussoet
spond to queries with erroneous responses. We considelehe fi
targeted attacks in current use in the Internet, and wedote a
new class of p2p-network-targeted attacks.

In file-targeted attacks, the attacker puts a large numbeomwf
rupted versions of aingle file on the network. We demonstrate
that the effectiveness of these attacks is highly dependieribe
clients’ behavior. For the attacks to succeed over the leng,t
clients must be unwilling to share files, slow in removingropted
files from their machines, and quick to give up downloadingh
the system is under attack.

In network-targeted attacks, attackers respond to quimiesy
file with erroneous information. Our results indicate thagge at-
tacks are highly scalable: increasing the number of malgiwdes
yields a hyperexponential decrease in system goodput, amata
erate number of attackers suffices to cause a near-colldpbe o
entire system. The key factors inducing this vulnerabiite (i)
hierarchical topologies with misbehaving “supernodes)”’High
path-length networks in which attackers have increaseanbyp
nity to falsify control information, and (iii) power-law heorks
in which attackers insert themselves into high-degreetpdmthe
graph.

Finally, we consider the effects of client counter-strasguch
as randomized reply selection, redundant and parallel k@l
and reputation systems. Some counter-strategies (endomazed
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reply selection) provide considerable immunity to attaed(cing
the scaling from hyperexponential to linear), yet signifittyahurt
performance in the absence of an attack. Other countdegies
yield little benefit (or penalty). In particular, reputatigystems
show little impact unless they operate with near perfection
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1. INTRODUCTION

Peer-to-peer (p2p) file sharing networks can be subjectéd to
tense Denial-of-Service (DoS) attacks. For example, itieas re-
ported that the music industry places false content on pRpanks
used for trading copyrighted music [3, 7, 16]. Likewise,aet
ing artists have released false content on p2p networks6[211.

On one hand, one may expect that p2p file-sharing systems-are r
bust to DoS attacks, because popular data is highly repticand
system resources such as bandwidth and storage are imnmehse a
widely distributed. On the other hand, one may expect a p2p ne
work whose topology is characterized by a power-law grapbeto
vulnerable to attack [2].

The contributions of this paper are to identify the key fastbat
affect the DoS resilience of a p2p file sharing system and émqu
tify the impact of these factors via analytical modeling aah-
ulation. These factors include protocol properties.( hierarchy
via “supernodes”), graph propertiesd., power-law vs. k-regular
graphs), client counter-DoS strategieg)(, parallel download and
randomization strategies), and user-behavior facegs (villing-
ness to share files and persistence in downloading a file wieen t
system is under a DoS attack). Thus, our findings providé crit
cal guidelines for DoS-resilient design of p2p architeesproto-
cols, and client counter-strategies by characterizirachktscalabil-
ity and even “collapse points” associated with each deségistbn.



Scope of Attacks.We consider known file-targeted attacks tar-
geted against popular files [7, 16], and we introduce a nessaé
more devastating attacks against entire p2p file sharingpsgs
In file-targeted DoS attacks, a malicious node advertisesra c
rupted (polluted) copy of a given file, and distributes tlupywhen

chy, ak-regular graph, and a power-law graph. Two-level hierar-
chy topologies occur in systems with supernodes such ase{mut
and KaZaAk-regular graphs arise in structured p2p networks such
as CAN [19], Chord [19], Pastry [20], Tapestry [13], and Kade

lia [17]. Finally, power-law graphs can arise in a number afys

chosen by another peer. Both measurements [7, 16] and anecdo(see [1]). In particular, they occur as a protocol objectiMEreenet [9],

tal evidence [3, 21] indicate that the music industry is déptg
large volumes of polluted files into p2p file sharing systeochsas
KaZaA. Moreover, companies such as OverpeeRetsnap pub-
licly offer their pollution-based DoS services to the etdamment
industry for protecting copyrighted materials.

and in networks in which the access link capacity has a hegilry-
distribution and a node’s degree is made proportional tadtess
link capacity. We also model the effects of different clieatinter-
DoS strategies such as random and redundant reply selectibn
reputation systems.

Next, we develop and study a new class of attacks designed to Our findings for modeling network-based attacks are asvallo

collapse a p2p network’s goodput. In such an attack, a noalci
peer maodifies replies to queries fmy file, before it forwards them
to the client. In a “false reply attack”, the malicious peeirts the
client to itself. When the client then requests a downloashfr
the malicious peer, it presents a corrupted copy of the fieg-f
ing a repeated request and download in order for the clieabto
tain the true file. Alternatively, in a “slow node attack,’etimali-
cious peer points the client to a slow or overloaded peer thigh
goal of increasing the client’s delay. Such attacks ardquéatrly
malicious as they consume resources in both the data antbtont
planes. Moreover, we show that false-reply attacks possesx-
traordinary scaling behavior, in which the attacker cani§icantly
degrade the performance of the entire p2p system whileabtnty
only a small fraction of nodes.

First, the model characterizes how the additional prothguitions
of supernodes yield significant leverage to DoS attackexsdh-
tain supernode status (in today’s Gnutella, nodes seladethem-
selves as supernodes by advertising a high access link fdthglw
Second, non-hierarchic&tregular graphs incur a different scaling
for resilience to attackers. The “collapse” points for sgcaphs
typically occur only with very large path lengthad., greater than
10), which occur either in very large scale systems or in oeta
that route via long paths specifically to achieve anonyneity, as

in [6, 9]. Third, we find that power-law graphs present an acut
vulnerability to DoS in cases in which malicious nodes are &b
insert themselves in the high-degree “hubs” of the graph.ilé&Vh
vulnerability of power-law graphs to DoS attack and failigevell
established, e.g., [2, 9], no prior study has explored as@@in

Even a small percentage of nodes in a large-scale system canwhich highly-connected nodgmrticipate in the attack.
represent 100s or 1000s of hosts. We note two mechanisms by Finally, the analytical model characterizes the impachefdlient’s

which attackers can control numerous hosts. First, theladtacan
deploy all malicious nodes itself at a single or multipleehmet
Data Centers. A second way to launch an attack is by subverting
peers via a “trojan horse” program that serves corruptedecon

reply-selection policy. The worst policy under attack is thest
peer policy,” in which a client selects the peer advertigimg best
performance. Because attackers can easily falsify peeoca in-
formation, a victim that “believes” reported informatiog only

Trojan horse programs are already common on both the Iriterne successful whemo false replies are received. Furthermore, our
(eg., those spread via email viruses, worms, and the web) as well analytical model characterizes system performance inrbsepce

in p2p systems [23]. This latter scenario could be employed by
“resource-poor” malicious users who wish to deny servicettn
ers.

Modeling File Targeted Attacks. To study the resilience of p2p
networks to file-targeted attacks, we develop a discrete-thodel

of non-perfect reputation systems, and under various tatagly-

selection policies. We show that reputation systems witnesx-
tremely small inaccuracies (incorrect belief that a malisinode is
non-malicious or vice versa) are unable to improve the perdmce
of different variants of the “best peer policy.”

that enables us to study the spread of good and bad copies. We Simulation Experiments. The key result of our simulations is

initially assume a fully cooperative p2p environment. Wende-
strate that in this case the pollution attack has a sericaislsitity
limitation, and is unable to prevent the spreading of goqaein
the system. Without full cooperation, however, user-bardac-
tors, such as (i) slow and incomplete removal of corruptques
(i) unwillingness to share downloaded files, and (iii) laxfpersis-
tence in downloading files when the system is under attaekgmit
good copies from spreading in the system and render thekdttac
more effective.

Modeling p2p Network Attacks. Network-based attacks are
dependent on the network topology. We model a two-leveklinier

http://www.overpeer.com

2http://www.retsnap.info

3While the costs of such a cluster along with sufficient banutthwi
to serve the false content could be 100s of thousands ofrdplla
such amounts can be quite modest in certain scenarios. Ror-ex
ple, in the context of networks used to trade copyrightedeniel{
the RIAA estimates $4B/year in lost revenue due to mp3 t@adin
and spends an estimated $17M/year in legal fees.

“For example, reference [23] describes how many p2p users wer
thwarted by a spyware program bundled to feign being thadyp
advertising software. The application installed even dresopted
not to install it.

the characterization of the tradeoffs between performarfidée
system in the absence of an attack and its resilience dunrag-a
tack. Experiments confirm the extreme vulnerability of thest
peer policy.” They also demonstrate that if the users inksedect
their download source randomly, the system becomes far mere
silient (goodput decreases only linearly with the numbeattfick-
ers), but at the expense of a substantial performance pendtie
absence of attacks. This tradeoff between resilience sipaiitacks
and performance in the absence of attacks is quite prondufce
instance, for the particular parameters used in our simonag
“best peer” strategy leads to a virtual system collapse viherat-
tack can commandeer 2.5% of the supernodes. In contrashefor
same set of parameters, choosing a random peer from theedcei
guery responses prevents collapse even under a high nurrdter o
tackers. This resilience comes at the expense, howevesafen-
fold increase in average download time in the absence oftackat

We next present a brief background on p2p systems. In Section
3 and 4 we present the file- and network-targeted DoS scenanio
Section 5 we present our analytical model and in Section Glsim
tions. Finally, in Section 7 we conclude.



2. BACKGROUND ON PEER-TO-PEER

SYSTEMS

P2p systems can be broadly classified as structured or anstru
tured based on whether there is any inherent structure isytem
that can be exploited to efficiently locate files.

In unstructured p2p systems such as Gnufelgjven file can be
stored at any node in the system. The original version of &laut
used scoped flooding to locate a file. While this method isligh
robust and flexible, it is not scalable. To address the sitiéyab
problem, newer versions of Gnutella as well as other untitred
p2p systems such as KaZ&Ase a two-level hierarchy. The first
level of the hierarchy consists of leaf nodes, and the setmrel
consists of more powerful nodes, called supernodes. Eathdee
is connected to one or more supernodes. A supernode maimtain
directory of all files stored at its leaf nodes. When a leafenod
queries a file, it sends the query to its supernode. If thersope
knows the location of a file copy (i.e., if one of its leaf nod#sres
the file), it sends the answer back to the requester. Othentis
supernode floods the query to other supernodes. Since thieemum
of supernodes is much smaller than the total number of notdes i
the system, such hierarchical p2p systems are more scdlarie
the original Gnutella.

Freenet [8, 9] is an unstructured p2p network whose aim is to
provide anonymity and censorship resistance. Each fileéerat
is assigned a unique ID by hashing the file content. Each node
maintains a routing table consisting of the IDs of the filegexd
locally and at the neighbor nodes. When a new file is insetted,
file is routed according to its ID and stored at all nodes alibrgy
path. Similarly, when a file is retrieved, the file is copiedrag the
path from the source to the requester. This makes Freerigiyhig
resistant to censorship, as it is hard if not impossible tate all
copies of a specific file. Furthermore, trying to locate a fiié w
result in the file being copied at even more nodes.

Structured peer-to-peer networks such as CAN [19], Cha®{l [1
Pastry [20], Tapestry [13], and Kademlia [17] partition alzdl

ID space across all nodes in the system. As a result, each node

becomes responsible for a chunk of the ID space. Each file-is as
sociated with a unique ID, for example, by hashing the fileeon
or the file title into the ID space. A file is then stored at thel@o
responsible for the file’'s ID. Alternatively, a file can bersi at an
arbitrary node in the system, as long as a pointer to the fi®ied
at the node responsible for the file’s ID. In either case, @esla to
find this node in order to retrieve the file. Thus, the basicatien
in a structured peer-to-peer network is: given an ID, findrthde
responsible for that ID. Structured p2p networks are vetfigieht
in locating such a node. In general, they can find the noderesp
sible for a given ID by contacting oni@(log N) nodes, whergV
is the number of nodes in the system.

Structella [4] is a hybrid proposal based on Pastry. Likeoitig-
inal Gnutella, Structella uses flooding to locate files, mégiso in
a more efficient way. In particular, Structella uses the dyidey
structure of Pastry to send no more than one flood messagéper v
tual link. This helps to reduce the flooding cost by a factok of
wherek is the average degree of a node in Pastry. In this paper,
we assume that the replies are sent back to the requestgrthsin
Pastry routing protocol.

3. FILE-TARGETED DOS ATTACKS

It has been shown recently that the music industry has under-

Shttp://gnutella.wego.com
Shttp://www.kazaa.com

taken serious efforts to combat file sharing of copyrightedtent
by depositing large volumes of corrupted (polluted) filem ip2p
systems such as KaZaA [7, 16]. In such an attack, a maliciods n
advertises a corrupted file, and eventually distributesdbpy if it
is chosen by another peer. Unlike for network-targeteckstahe
p2p network topology does not play a role in the effectiver@dsa
file-targeted attack. Instead, the user-behavior factek as will-
ingness to share files, speediness in removing corruptes] éifed
persistence in downloading files under attack determinsphead
of polluted files. We present a simple model to evaluate tlee fil
sharing dynamics under this “pollution” attack.

In particular, we model the number of peers that have a good
(non-corrupted) copy of a particular file, and the number edrp
that have a bad (corrupted) copy of the same file. Indeede ther
is evidence that the music industry protects only certagicend
video files, usually the new releases [7, 16], and thus ourigda
explore the dynamics in sharing these files. In addition,toie!
number of nodes considered in our system model is ordybset
of nodes that can be present in a p2p network.

The modeling assumptions are as follows. First, upon a dfoery
a file, the user is presented with the listabf nodes that advertise
that particular file. Second, each node can advertise @asiggle
copy of a specific file. This policy prevents a single malisioode
from performing large-scale attacks against a certain fite] it
can easily be enforced through the search mechanism. ¥inall
assume that a user picks a random file from the list. In light of
recent DoS attacks against p2p file sharing systems, thikkisly
counter-DoS method, and we show in Sections 4.3 and 6.4 that
this is indeed the most successful client counter-straaegyng the
ones that we consider.

3.1 Spreading the Pollution

While users have a clear incentive to keep a good copy on their
machines, it is possible that a bad copy remains on a norcimadi
user’'s machine for a certain amount of time. If a corrupted fil
is not immediately inspected and removed after the downldad
remains on the machine for a certain amount of time, and durin
that time it can be downloaded by other users. Moreovergttser
evidence that downloads in p2p file-sharing systems ara oftele
in the background and that content is typically examineer Igt1].

Denote byM the total number of users that are either interested
in downloading a certain file or already have a copy (eithedgar
bad). Next, denote by; andb; the respective number of peers that
have good and bad copies of the file at time intef\@l time inter-
val corresponds to one hour). Further, denote e interest-rate
factor that determines how many of the interested nodeskitu
send a query for the file during ttigh hour. Then, the number of
nodes that have a good copy of the file in hour 1 is

gi
git1=gi+ (M —b; gz)slgi b
In Equation (1),M — b; — g; is the number of nodes that are

interested in obtaining the file, but still do not have a copyt.o

g_gi - is the probability that the users that have sent a query in the
i-th hour download a good copy of the file. Next, defiRgas the
number of nodes that are “infected” with a corrupted copyirdur
thei-th hour as

@)

b;
gi +b;°
The above term is similar to the one from Equation (1), with th

difference of the facto%, which is the probability that the file

R; = (M —b; —gi)s: ()



Measurements from [7, 16] show, however, that the ratio &f po
luted to non-polluted copies in the KaZaA network remaira-re
tively constant over time, and that good copiesndb manage to
spread. We analyze in detail below how this behavior can come

about.

3.2 Cooperation and Persistence
There are two fundamental reasons that prevent files taftgte
the pollution attack from spreading in the network. Firgit all
n Peers are willing to share the files that they download. Seécon
a user’s interest for downloading newly released audietvifiles
quickly decreases [11]. Next, we demonstrate how both afethe
effects can significantly improve the success of the palfuéittack.

downloaded in the-th hour is polluted. Next, denote by the
probability that an infected node removes a corrupted cdigy g
hours, and denote h§ the maximum number of hours for which a
corrupted copy can remain on the user’s machine. Then, time nu
ber of polluted nodes in hour+ 1 will be

L
biy1=b;+R; — ijRi+1—j-

j=1

®)

Wherez:.L:1 p; = 1. Equation (3) provides a relationship betwee
the number of polluted nodes in two consecutive hours. On one
hand, the number of polluted nodes in héur 1 increases by the

number of nodes that get infected during #h hour, as defined
in Equation (2). On the other hand, the number of pollutedesod
in houri + 1 decreases by the number of peers that are “cleanse

during thei-th hour. These peers are represented by the last term

of Equation (3), which sums over the fractions of peers thatew
infected in the past, while cleansed during k@ hour. For exam-

ple,p1 R; is the number of peers that are both infected and cleansed

during thei-th hour;p2 R;_1 is the number of peers infected during
hours — 1 hour while cleansed during theth hour, and so on.
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Figure 1: Spreading corrupted and non-corrupted copies

A previous study has shown that p2p users in general are\greed

d” i.e, most users consume data, but provide little in return [2R]sT
behavior is even more prevalent due to recent legal actigamst
p2p systemseg., against KaZaA [14]). Denote by, the proba-
bility that a user isiot willing to share a good copy of a file once it
has downloaded it, and denote §¥ (P stands forpublic copies)
the number of users at time stéghat are willing to share a good
copy. Then, the number of good public copies increases as

gt
gf +b;

gt
1—ps

(1-ps). (4

giv1 =90 + (M —bi — )si
Equation (4) is similar to Equation (1), with the differertbat the
total number of copies at time intenigik expressed as a function of

good public copiesg; = lgf;s ). Also, the increase in the number
of good public copies is reduced by the fagtbrp, ), as compared
to Equation (1). It can be shown that equations similar tociQus
(2) and (3) govern the spreading of polluted copies.

In addition to clients being unwilling to share files, theusdtin-
terest (request) rate for a particular file influences theagting of
both good and bad copies. A measurement study [11] inditades
the interest rate for new popular objects (those typicaltgéted by
the pollution attack) tends to decrease significantly aftdy a few
weeks. While no study explicitly measures the user behawithre
presence of a file-targeted attack, it is reasonable to asshat
the interest rate for a certain file decreases even faster @npol-

Figure 1 shows the spreading of both good and bad files in a sys-lution attack, because users become frustrated after dewinlg

tem with M = 15, 000 interested nodes, a large number of mali-
cious node$, = 1, 500, and a small number of initial good copies,

bogus copies. Here, we evaluate a simple linear interéstuac-
tions; = 1/24(1 — 5;0.15). This means that, on average, 15%

go = 10. The interest-rate factor is set to 1/24 such that each peer Of users give up after the first day, another 15% after thergkco

interested in obtaining this file attempts to download it vaerage
once per 24 hours. Hence, not all clients instantaneousiynidad

a copy of a file, and thus the sum of the two fractions in Figuie 1
less than 1. Next, we set the paramdiep 48 such that a polluted
copy can remain at most 48 hours on a user’s machine. In additi
the probabilitieg; are all equal such that the lifetime of infected
machines is uniformly distributed between one and 48 holing
fraction of polluted copies in this scenario monotonicéligreases
up to the maximum lifetime of infection, because the “infeit
parametetR; of Equation (3) is larger than the “cleansing” param-

eteijL:ijRHl_j of the same equation. The relationship be-

tween the two factors changes after 48 hours, when the nuafiber
polluted copies decreases. Furthermore, good copiesdspigaf-
icantly slower at the beginning because the probabilityowrdoad

a good copy iﬁ%gi) is initially very low. As time evolves, the num-
ber of good coples increases, and so does the probabilityvio-d
load a good copy. Eventually, all non-malicious clients%®6f all
clients interested in hosting this file) manage to downloagbad
copy of the file. Atthis point)M —b; — g; of Equation (1) becomes
zero, and the system reaches steady state.

day, and so on. While not representative of an actual sagraur
main goal here is to illustrate the impact of users’ persigteon
the effectiveness of the attack.
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Figure 2: The impact of users’ greediness and persistence



Figure 2 depicts the effects of user greediness and parséstin
the rate at which good copies spread. All parameters areathe s
as in the previous example. In addition, we set the prolighiiat
a user is willing to share the file 0.6 (1 — ps = 0.6), while
the interest-rate is modeled with the linear function abovast,
the decline of the number of bad copies in Figure 2 is morepshar
than the decline in Figure 1, which is due to the low persisten
level. After realizing that they have downloaded a pollutegdy of
afile, users may give up and make no further attempts to daanlo
the file. Hence, the probability to get re-infected decrsaand so
does the number of infected nodes. The key point, howevtrats
if users get discouraged quicklgpod copies are never success-
fully distributed in the network. In our scenario, the irst rate
factor s; of Equation (4) converges to zero approximately beyond
180 hours, forcing the system to reach a quite unsatisfasteady
state’ Interestingly, measurements from KazaA [7, 16] show that

the file. Clients may employ a number of selection policiedas
scribed below.

In the rest of the paper, we refer to the first phase of thednter
tion as the control plane, and the second phase as the data pla

4.2 Attacker Strategy

An attacker can interfere with both the control plane andiia
plane. In this section and in the rest of the paper we consier
following scenario: Upon receiving any query, a maliciousl@
forwards it normally. Upon being requested to forward arplyie
however, the malicious node modifies the reply with falserimfa-
tion. We consider two cases:

False reply attack. The attacker falsifies the reply by replacing
the replying peer’s identity with its own and by advertismgery
low expected transfer delay. This strategy allows the ké¢taio re-
spond to requests for files for which it has no or limited infiation

the number of good and bad copies for newly released files does e g, the attacker does not know the exact file name). If selected by

not change much over time, indicating that the network dpsria
a “depressed” mode (like the one in Figure 2 beyond 180 hpiars)
which clients do not manage to increase the number of goadd€op
In summary, the main reason for the success of file-targdted a
tacks applied in today’s p2p systems is the user behaviopatn
ticular, the key factors are (i) negligence in cleansingrtfaehines
infected by polluted copies, (ii) users’ unwillingness hage down-
loaded files, and (iii) a low persistence level. However,hsan
attack is unable to prevent the spreading of good copies ity f
cooperative p2p environments (that do not exhibit the aljigv@i)
behavior) with a sufficient interest rate for a certain fikeiradicated
in Figure 1.
Thus, in the rest of the paper, we anticipate the next stepen t
“arms race” between the attackers and defenders, and totass
of more sophisticated DoS and counter-DoS strategies.

4. NETWORK-TARGETED DOS ATTACKS

We present a class of DoS attacks targeted against entire p2

networks. The key differences between such attacks andl¢he fi
targeted (pollution) attack are as follows. First, in netivtargeted
attacks, an attacker respondstbqueries, whereas in the pollution
attack it only replies to queries for a set of targeted files tre
being protected. Second, in network-targeted attacksattiheker

is able tointercept a query for a downstream node and falsify the
reply on the reverse path. Hence, a query that follows a péth w
even a single malicious node gets a response pointing to asbog
file.

4.1 System Model

We consider a p2p file sharing system in which the interaction

between the clients and system occurs in two steps:

Query. The client queries the system for a particular file, and
the system returns a number of replies. Each reply contambot
cation of a copy of the queried file, and information aboutrtbde
storing the copy. Without loss of generality, we assumeadhaply
contains (1) the IP address of the node storing a copy of tegegl
file, and (2) sufficient information for the client to calctdahe es-
timated time to download the file from this node, e.g., thee'®d
queue length (ideally including file sizes), the maximum benof
simultaneous uploads, and the access link bandwidth.

Download. The client selects a node among the nodes contained

in the replies it has received, and contacts that node to ldaan

"While we do not consider client’s arrival and departure dyius,
shorter lifetimes of nodes can further slow down spread afdgo
copies.

the client, the node transfers a corrupted file.

Slow node attack.The attacker points the client to a non-malicious
but low-bandwidth peer, and lies about that peer’s capadsli.e.,
it changes the advertised delay of slow nodes. It also drepges
from fast nodes.

In both cases, we assume that the attacker cannot respond to
queries directly, but rather must wait for legitimate replifrom
downstream in order to modify them. This is because, tylyical
queries to p2p networks are not very precise, they result in
multiple files in the result set, which is ultimately filterbg the
user when making the final download decision. We considér tha
attackers cannot modify the query forwarding algorithmoexed
by a legitimate node. Thus, a query that follows a path ctingis
only of legitimate nodes always generates a correct reply.

The space of possible attacks in a p2p systems is immense. We
focus on a limited class of attacks that aim to attack systéte-
performance. Even within this class of attacks, we do nosictam
all possibilities. For example, we do not explore attackstten

prouting protocol, that are treated elsewhere [5].

4.3 Client Strategy

In response to a query, a client receives a set of repliesipgito
different nodes. The main decision that the client needsakenis
which one of these nodes to ask for a copy of the file. We conside
the following selection strategies:

Best. The client selects the node that advertises the best perfor-
mance,i.e,, the node with the lowest estimated delay (the node’s
gueue length times the file size times the maximum number-of si
multaneous uploads divided by the access link bandwidth).

Random. The client selects a random node, independent of the
nodes’ advertised resources.

Redundant best.The client performs redundant downloads from
the C nodes with the lowest estimated delay. Once the firshdow
load finishes and the content is verified for correctnesspther
downloads are stopped.

Redundant random. The client performs redundant downloads
from C peers, but chooses thoSepeers randomly.

File Chunking. The file is sliced intaP chunks, and the client
downloads a chunk from each &f different peers in parallel. File
chunking is already used in today’s systems to improve mEspo
time for downloading large files. Selection of these peerslma
best or random.

Reputation Systems.We consider a simplified model in which
a reputation system is employed to mark peers as malicionsroer
malicious. We do not attempt to model the specifics of thequalt
beyond the fact that it is imperfect, i.e., it has a non-zeded-



negative and false-positive probability. This abstracgmables us
to evaluate how accurate the reputation system must be &r ord
for the system to be resilient to DoS attack. We do not attdmpt
study key challenges for reputation systems such as assucdn
persistent identity, prevention of collusion for false asation or
false praise, binge bad behavior after good behavior, &g, 12,
15, 18].

Detection. For the download of a complete file, we assume
that the client can detect whether a file is corrupted onlrdtthas
downloaded the entire file. The client then selects a diffepeer
from the response list and downloads the file again. For filmkh
ing, we consider two possibilities. First, as an upper boand
performance, we consider the case in which the client caectiat
corrupt chunk as soon as it receives it, and immediately tmads
that chunk from an alternate node from the set of nodes thét ha
replied to the query. Second, as a lower bound on performance
we consider the case in which the client must first downlo&d al
chunks before inferring that the file is corrupt. At this timbe
client is not able to infer which chunk is corrupt, only thiag ffile
is corrupt. Subsequently, the client downloads all chunésifnew
peers from the set of replies to the original query, and wéuat@
this approach later in simulations.

Finally, like the space of attacks, the space of possiblertess is
also quite large, and our scope is limited to the above gliegeDe-
spite these limitations, our study provides a key step td&ander-
standing and quantifying the vulnerability of p2p systergainast
network-targeted attacks.

5. MODELING RESILIENCE TO
NETWORK-TARGETED ATTACKS

We develop simple models to evaluate the impact of a cotiecti
of DoS nodes on p2p system performance focusing on threesssu
hierarchy via supernodek;regular topologies and path length, and
power-law graphs.

5.1 Supernodes and Hierarchy

Our objective here is to develop a model that isolates thaanp
of malicious supernodes on a system’s DoS resilience. licpar
lar, supernodes have increased control plane functionsémbe
exploited by an attacker with the following properties velet here:
(1) requests and replies are routed via an inter-connectesth rof
supernodes, and (2) supernodes reply to queries on betihkiof
leaf nodes. Consequently, a malicious supernode can exloif
these properties to more successfully spread false infman
the false reply attack described in Section 4.

Denote the number of peers in the system/M¥y the number
of supernodes by, and the number of malicious supernodes by
s, with s < S < N. Moreover, to provide a lower bound on
the damage of the attack, we consider fully replicated ctrite
which all nodes store all content. This maximizes the nundfer
“true replies” to a query. Consequently, in this scenaricheguery
results inV responses and a particular respondel& if the reply
has been generated or forwarded by a malicious supernode.

Consider a graph in which each supernode is equally likebeto
chosen for each hop, and the path length Hasupernode hops,
where H is a random variable. A response is valid only if Al
nodes visited are not malicious so that

2

P(falselH = h) = % (1 —(1- %)h) (1- %). (5)

andP(false) =Y, P(false|H = h)P(H = h). The first term
is the probability that a peer is directly connected to a calis
supernode (and hence all its requests fail) and the seconds¢he

probability that the request fails given that the peer isdiagctly
attached to a malicious supernode times the probabilityain@de
is not directly attached to a malicious supernode.
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Figure 3: The Role of DoS Supernodes

Figure 3 depicts the probability of receiving a true replyaas
function of the fraction of malicious supernodegS and for a
constantH. Thus, with 0 attackers, 100% of replies are truthful,
whereas with 10% of malicious supernodes the probabilifeis
duced to 81% foh = 1, which represents a fully interconnected
mesh of supernodes such that all paths are one hop. For longer
paths andh = 3, the probability of receiving a truthful reply for
10% malicious supernodes is reduced to 65.6% and fer 5, to
53.1%. Thus, the attack is increasingly powerful with largeas
DoS nodes have increased opportunity to intercept queries.

An example scenario with a ratio of supernodes to non-supies
of 10, a path length ok = 4, and a network size av =100,000
peers,s =1,000 attacking supernodes (10% of supernodes) pro-
duces a truthful reply probability of 59%. Thus, such andkta
indeed has a “multiplier effect” in which 1% of bad nodes resk
truthful replies by 41%. While this example attack may appea
be relatively mild at first glance, we show in Section 6 that‘{hos-
itive feedback” of repeated retransmission induced by datse
replies can indeed have a significant effect on successfutéihs-
fer delay and system goodput.

5.2 k-Regular Topologies and Path Length

Our goal in this section is two fold. First, we aim to model
structured peer-to-peer networks such as CAN [19], Cho#d, [1
Pastry [20], and Tapestry [13], whose underlying topologg be
approximated by &-regular graph, wherg is usuallyO(log N).
Second, we want to explore the effects of the path length en th
robustness of such networks. Typically, the length of thi @
these systems i9(log V), but it can be significantly larger when
users desire anonymity. Indeed, as described in Sectiod &&er-
ence [6], anonymous communication inherently requirel higp
counts in the absence of a trusted third party anonymizagovice.

Let n be the number of malicious nodes, alHda random vari-
able denoting the number of hops on the path. Under thesmassu
tions and with each node being equally likely to be on thecfear
path, failure occurs iiny node along the path is malicious such
that

_ _(1_"\n _
P(false) _;(1 (1-2) )P(H h. ()
In examples from Freenet with a 100,000 peer netwéfkhas
mean 10, and first and third quartiles of 3 and 40 [8]. For Fig-
ure 4 we consideH to be constant, taking on values of 3, 10, or

40. The figure and Equation (6) clearly indicate that such higp
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Figure 4: High Path Length

counts provide strong leverage for attackers, even thotigbkers
no longer have the leverage of being a supernode in this soena
For example, an attacker with 10% of nodes can reduce thdutut
reply probability to nearly 0 wheh is 40. In comparison with the
supernode case in which 1% tftal nodes are malicious, with a
flat network structure, even a high hop counhof 10 reduces the
truthful-reply probability quite mildly to 90%.

5.3 Power Law Topologies
Above we considered graphs in which each node is equalllylike

greater or equal t@, a is the shape parameter, akhds a constant.
Then the degred, of the nodes with the highest ramkis d. =

k1 x r~'/% wherek; = k'/*. Moreover, the sum of the degrees
of the highest ranked nodes is thetD(f) = k1 37~ &= /* =

1),

% (fa.;l
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Figure 5: DoS in Power-law Networks

Thus, in contrast to Sections 5.1 and 5.2 in which each node
(malicious or not) is equally likely to be a hop on the querthpa
here the node degree weights the likelihood of a node beirtheon
path according to its degree. Moreover, we consider thedpord

to be on the path of a query response. However, attacks can beline scenario for the attacker in which malicious peers daequl

far more devastating for graphs with power law structure &-m
licious nodes are able to insert themselves into the higbly- c
nected “hubs” of the graph. Given that the existence of pdawer
graphs in p2p networks has been previously establishgdrefer-
ence [8]), our objective here is to explore the extent to Wisiach
topologies impact a system’s DoS resilience. While fal#rance
and resilience t@xternal DoS attacks has been studied for power
law graphs in [2, 9], here, we consider highly connected adde
be participating in the attack.

To study this effect, consider a network consisting\dhodes,
where node has degred;. Then we have that for random lookup
operations, the expected number of lookups that traverde iis
at most proportional to its degrek. This observation is justified
as follows: Consider a structured p2p network like Chordstipa
or Tapestry. LeG be the graph representing the network topology.
Without loss of generality assume that nodes are ranked diy th
degree where node has the highest degree and nadehas the
lowest degree. Further assume that each node covers a ridiipe o
space proportional to its degree. Construct a new gepas fol-
lows. Replace each noddn G with n; = d;/dn virtual nodes.
Then each virtual node G’ routes approximately the same num-
ber of lookups. By this argument, nodén the original graph=
will route a number of lookups proportional to the number tef i
virtual nodesj.e., d;/dn.

Note that the model is an approximation in that a node with hig
degree will actually route less than its share since a looRu@’
may traverse virtual nodes belonging to the same nod@,im
which case the corresponding nodeGhwill be counted multiple
times. Moreover, if each node @& covers the same ID space then
a node will route even less than its fair share of lookups.

Continuing with the model, we consider the case that theadsgr
of nodes inG have a Pareto distribution,

PX >z]l=kxz ° @

as the highest rankefinodes in the graph. Then far= 1 (a fully
connected mesh) the expected fraction of lookups that witldm-

promised is bounded above B( false) = g((]{,)) = I{[((z—_?)//zj_

Figure 5 depicts numerical results for this case and a 11666
network and indicates that compared to tthe= 1” curve in Fig-
ure 3, the attack is far more severe. Most notably, all cudrep
sharply with even a small percentage of attacking nodeyeastbe
first malicious node is the most connected node and has stilbta
opportunity to spread false information. The extent to White at-
tack scales is a function of the Pareto shape parameter \iéther
a indicating a heavier-tailed node degree and a more seviaigkat

Of course, in practice, queries traverse multiple hops abttte
performance undéds > 1 is most relevant. Here we consider a flat
node structure (no supernodes) as in Equation (6) and agstimee
that a requests visit exactlyhops and that the probability to visit a
node is proportional to its degree. With the highest rankeddes
being malicious, the probability of false information isgn by

h a—1)/a a—1)/a h
~ D(f)) :1_(N( Va _ pla=1)/ ) _

D(N) N(a—1)/a _1

)

Unfortunately, Equation (8) indicates that a 10,000 node ne
work with 4-hop paths obtains devastating performance eneler
a modest number of attacking nodes. For examples fer1.4 and
1% malicious nodes the truthful-reply rate is 00l38%.

Finally, note that if the joint effect of power law graphs étiger
with high path lengths for anonymity or supernodes for duititg
would make the system even more vulnerable to attack asatedic
by Equations (5), (6), and (8).

5.4 Client Strategies

We next explore client counter-DoS strategies that playeial
role in relating the probability of receiving false vs. timéorma-
tion to the probability of a failed vs. successful downloddr{oted

P(false) = 1—(

where P[X > z] represents the number of nodes with degree by P(fail) andP(succ) = 1 — P(fail), respectively).



5.4.1 SuccessUnder False Information

We consider the same system model in which the attackensetur
bogus replies. Out oV replies to a query, the p2p user chooses to
download a single file, or multiple files simultaneously, eleging
on the policy described below. Upon downloading a file (eithe
good or bad), the user sends the query for another file. Irrothe
words, we assume independence between successive queries.

Select Perfectly.At one extreme, if the victim was able to know
which replies are false via omniscience, then a downlodsl daily
if all received information is false. Thug,(succ) = 1—P(false)Y
renderingP (succ) quite close tmne for large system sizes. How-
ever, as such a policy is infeasible in practice, we considere
realistic policies as follows.

Select “Best”. A trusting user will select the “best” reply ac-
cording to criteria such as advertised link bandwidth oreeted
download time. Unfortunately, this policy is at the otherd esf
the extreme for yielding success as attackers will falsifyhsinfor-
mation. Consequently, the success probability in this sagaven

by

P(succ) = (1 — P(false))™, 9)

quite close to 0O for large system sizes. Equation (9) indi#hat

the download is going to be successful only if all replies tueary

are correct. Otherwise, if at least one is bogus, that onelésted,
and causes an unsuccessful download.

Select Randomly.When users are aware that the system is under

attack, they are less trusting of advertised performancasures.

If they consequently select randomly among the replies) the
simply have

P(succ) =1 — P(false). (10)

Select Redundantly. If users download” redundant copies in
order to protect against false information, then the proipatof
successful download is

P(succ) =1 — P(false)®. (11)

Select Best Redundantly.When users select th@ “best” ad-
vertised download times, the probability of successful dload
becomes

c-1
P(succ) = Z (1 — P(false))N "' P(false)'.
=0
Equation (12) indicates that in the “best redundant” sdendne
download is going to be successful only if there exists attleae
truthful reply within the topC' replies.

File chunking. For file chunking, the above expressions directly
apply to eaclchunk, assuming that the peer for each chunk is cho-
sen independently. DenotinB(succ’) as the probability of suc-
cessful download for a chunk, as computed above, the prisbabi
ity of successful download for the entire file beconf&Succ) =
P(succ’)® for a file sliced intoP chunks. Thus, without attack-
ers, file chunking improves performance as it increases laan
throughput. Yet under attack, this improvement is coumtdne a
reduction in the probability of a successful download.

Figure 6 depicts the impact of reply-selection policies eeyuk
utation systems on the successful-download probability fasc-
tion of the false-reply probability. We séf = 1500. For the
time being, we focus on the results for the netwaikhout a rep-
utation systemj.e, the “thin” curves of Figure 6. On one hand,
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Figure 6: Reply-Selection Policies and Reputation Systems

the “best” policies €.9., Equations (9) and (12)) are highly vul-
nerable to very small false-reply probabilities. Indedda user
always chooses to download one or more files with best-adedrt
download times, then a small percentage of nodes with matity-
advertised download times is enough to decrease the sfidcess
download probability taero. On the other hand, a simple random
strategy significantly improves the successful downloazbabil-
ity, and the “random redundant” strategy is even more sistakes
We demonstrate in Section 6 that, unfortunately, randoategies
considerably degrade the system performance in the abséace
attack.

5.4.2 Reputation Systems

We model the impact of reputation systems on the relatignshi
between the successful-download and the false-reply pilitbes.

We do not make any assumptions about the particular repntati
mechanism, since that is beyond the scope of this paper. We do
however, gauge the impact of tlaecuracy of a potential reputa-
tion algorithm. Denotefy and fp as the false-negative and false-
positive probabilities of a reputation system. The falegative
probability is defined as the fraction of malicious noded tre

left undetected by the reputation system, while the fatsstpe
probability is the fraction of non-malicious users that &aisely
declared malicious.

After receiving N replies for a single query, the user discards
all replies that are declared “malicious.” For a given fategative
probability f~, the number of correctly detected malicious replies
becomesV(1—fn)P(false), while the number of falsely-detected
non-malicious replies becomééfp(1 — P(false)). Since both
of the above two classes of replies are discarded by theatpuit
system, the “effective” number afon-discarded replies, Nr, be-
comes

Nr =N - (11— fnv)P(false) — fr(1 — P(false))). (13)

Not all of the remainingVg replies are necessarily good. Rep-
utation systems fail to detect malicious nodes with praiigbfy .
Hence, it can be shown that the false-reply probability aride
reputation systemPg ( false), becomes

fnP(false)

1—(1— fn)P(false) — fr(1— P(false)()7 )
14
whereP(false) denotes the corresponding false-reply probability

Pgr(false) =



in the absence of a reputation system. Finally, by repladinand
P(false) in Equations (9)-(12) wittiVr and Pr(false) as com-
puted above, we obtain the successful-download probgalfiita
given accuracy of a reputation algorithm.

Figure 6 shows the impact of a reputation system on the ssittes
download probability withf;y = fp = 0.02. The other parameters
are the same as in the previous subsection. Even with edreme
small false-detection probabilities, reputation systeres unable
to improve the performance of the “best” strategies. In esseif
a user always chooses to download files with the best-adedrti
download times, then even a small fraction of malicious sode
that manage to “survive” the reputation system'’s filter dyke do
quickly degrade the successful-download probability tmzeOn
the contrary, an efficient reputation algorithm further s the
“random” strategies. Again, we demonstrate in Section 6sheh
strategies (even when combined with reputation systenmsjder-
ably degrade the system performance in the absence of ak.atta

6. SIMULATION STUDY

We present an extensive set of simulation experiments toexp
the key system factors that influence DoS resilience of p2sfibr-
ing systems.

6.1 Simulation Preliminaries

We implemented a discrete event simulator of a p2p file shar-

ing network with the following capabilities: (1) p2p netwoover-
lay maintenance, (2) query request and reply routing, (Byo
model, (4) content distribution model, (5) search query asd
sponse processing at each node, (6) file transmission aeptiec,
(7) user model for download selection and initiation, (8hdiiang
queuing and rejection of file download requests, (9) mutipbS
attacker behaviors, and (10) multiple counter-DoS stiasegWe
elaborate on some of these factors below.

We investigated both structured and unstructured p2p ay®rl
For the unstructured overlay we have implemented a Gnutelia
work simulator, largely based on gnutellasim from limeuorg.
Requests are flooded over Gnutella’s overlay network, whpées
are routed back to the requester along the reverse path.h€or t
structured overlay we used FreePastry to implement the/duead-
cast facility of Structella, as described in [4]. The replage sent
using Pastry’s usual point to point routing mechanism.

We do not model the network core and consider a scenario in
which the bandwidth bottlenecks are at client access links.
such, we divide peers into high and low bandwidth peers, lwhic
in Gnutella become supernodes and leaf nodes respectilely.
less otherwise specified, access link rates are uniformslyidited

6.2 Baseline Experiments

We first consider a baseline scenario for the two classeswbnle-
targeted attacks described in Section 4: the false-reptytha
slow node attacks. The scenario has a ratio of supernodemto n
supernodes of 1:10. We assume that the attacker has no hmit o
the number of simultaneous uploads, has high bandwidthrend
sponds to queries with predictions of low delay. Clientslengent
no counter-DoS strategies and select peers one-at-a-tisesiton
their reported expected delay. All other parameters arasele-
scribed above.

6.2.1 False Reply Attack
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Figure 7: Gnutella Fraction of Truthful Query Replies

Figure 7 shows the probability of a node receiving a truthful
reply for a Gnutella overlay witth set to the mean reply-path
length, and a TTL of 3. Note the correspondence in scaling be-
havior between the simulation and the model. For exampldy wi
10% malicious supernodes, the simulations measure 65%aprob
bility whereas the model predicts 75%.
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between 56 kb/sec and 1 Mb/sec for the leaf nodes, and 1 Mb/sec

to 10 Mb/sec for the super nodes. We use a Zipf distribution to
represent file popularity and file replication. Moreovereges are
processed at each node with the non-malicious node’s reply-p
ability taken from a Zipf distribution of file replicationfs rank
having been given in the query request. We make the simpgjfyi
assumption that the file popularity distribution is the saamehe
replication distribution.

Finally, file transmission is simulated by allocating baihiv
according to access link speeds being max-min fairly shaneshg
all downloads at an endpoint. Unless otherwise indicatexintim-
ber of nodes in the system is set to 10,000. In most casesegur k
performance measures are firebability of truthful reply and the
average systemgoodput (rate of successful transfer of true content)
normalized to the number of non-malicious users. Each siteisa
simulated 10 times and we report averages. Due to low vagisnc
the output, confidence intervals are shown only in Figure 8.

Figure 8: Baseline Attack

Figure 8 depicts the effects that the attack has on systemigoo
put and indicates its tremendous scaling behavior chaiaeteby
two regions. Curve fitting indicates an excellent match vaitB-
stage hyperexponential. The fast initial drop (indicatgdhe first
region and the first exponent) shows that even a small nunfber o
malicious supernodes, only 0.25% of all nodes, causes gteray
goodput to nearly collapse. Surprisingly, the correspogdiuth-
ful reply probability in this scenario is as high as 95%. Ewvéth
such a small percentage of false replies, the probabiliy the
set of replies to a query contaims least one false reply is quite
high. Because the malicious nodes advertise lower expetged
lays than non-malicious nodes, these false replies arelikaly
to get chosen. In addition, the choice of a malicious peearlt®s
in a failed download, and one or more retries, creating aitjpes



feedback” loop that increases load and reduces goodputdfsibo
does not drop all the way to zero (indicated by the secondmnegi
and the second exponent), because there are queries fdr thiic
user waits only long enough to receive replies from neartesp
which are not malicious in every neighborhood. Finally, lehie
do not show users’ delay results due to space constraieig ate
similar to goodput trends. For example, with 2.5% of malisio
supernodes, the average users’ perceived delay increpsaerb
than an order of magnitude.

6.2.2 SYow Node Attack

Our results (figures not shown due to space constraint)ateli
that the slow node attack has marginal effectiveness onmdod
While one might expect (as indeed the authors previouslyttat
this attack would be effective as fast supernodes would ireoma
used while dial-up lines would become overwhelmed, theesyst
remains far more resilient. The key reason is that this lattacks
the “positive feedback” of the false-reply attack. A falsply re-
sults in a failed download, which requires potentially ratee re-
tries increasing delay and load. In contrast, a slow-nopky @nly
results in a single download, albeit from a slow node. A sdaon
factor is that while the slow node attack reduces the utibimaof
non-malicious high-bandwidth supernodes, when such nddes
transmit a file, which happens with fairly high probabilitiie de-
lay is quite low given their low queue length and high avdiab
bandwidth.

Consequently, an important finding is that a successful orw
targeted attack requires system resources (bandwidthtarabe)
vs. only transmitting false information.¢., redirecting peers to the
slowest peer). Thus, attackers must either (i) invest Sagmitly
in their own infrastructure or (ii) exploit software vulradilities
in order to commandeer the resources of otherwise non-imadic
peers.

6.3 System Factors
6.3.1 Overlay Sructure and Hierarchy
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Figure 10: Overlay Structure and Hierarchy

Structella. As discussed above, both of the points correspo a
false reply probability of 0.95, which in this scenario ioegh to
collapse the system goodput.

6.3.2 Path Length

In Section 5 we showed that, independent of the graph stejctu
vulnerability to DoS increases with increasing path lengalow,

We simulate the baseline DoS attack on systems using both aWe quantify the percentage of malicious nodes capable &z

two-level hierarchy of Gnutella and the Pastry-derivedu&glla
overlay networks. Figure 9 shows that the probability oferec
ing a truthful reply under attack is substantially higherentusing
Structella, even though the average path lengths are appately
the same (equal to 3). In the Structella scenario, appraeimn&%

of the nodes must be malicious in order to degrade the prbbabi
ity of truthful reply to 0.95. This is approximately 20 timése
percentage of malicious nodes needed in the Gnutella Soewar
create the same effect.

Both hierarchical and structured p2p networks aim to sdhee t
scalability problem by making flooding much more efficienthiV§
both schemes manage to do so, the two-level hierarchicabapip
is far more vulnerable to DoS attacks. In a two-level hidmgran
attacker can strategically position malicious nodes amsuples
(as we did in our experiment). Requests and replies aredatide
supernodes, and supernodes reply to queries on behalfiofaak
nodes, significantly increasing the probability that a gumaverses
a malicious node. On the contrary, Structella is far mordieesto
DoS attacks because such strategic positioning of malaioaes
is not possible with structured p2p networks that lack higna

In addition, Figure 10 depicts the system goodput as a fomct
the fraction of malicious nodes. The goodput collapse poioves
from 0.25% of the nodes with Gnutella to approximately 5%hwit

8Henceforth we depict linear scales as some scenarios nesink
ear scaling.

ing the network goodput as a function of the path length.
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Figure 11: Probability of Truthful Replies for Long Paths

Figure 11 shows the system degradation with increased gagtH.
While in the baseline scenario the attacker needs to coRt&6b
of supernodes in order to degrade the truthful reply prdivaibo
95%, this percentage significantly decreases with inctepsgh
length. For example, when the average path length is 5 ihstea
3, an attacker needs to conttets than 1% of supernodes in order
to collapse the system goodput. Thus, while longer patheskef
anonymous communication, they significantly increase tesys
vulnerability to DoS attacks.



6.4 Victim Counter Strategies

P2p users do not sit by idly when the system is under attack.
They use trial and error to find effective counter-DoS syiate
to improve their performance. Such users may invoke meltipl
downloads in order to decrease their own delay, perhapsoutith
consideration of adverse effects on others’ performancens€-
quently, we consider a number of parallel download and ramdo
ization techniques. In addition, we evaluate to what exéergpu-
tation system can improve the system resiliency to DoS kadtac

6.4.1 Best Redundant Download

We first consider parallel downloads of a file from the set of N
best advertised files.
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Figure 12: Best Redundant Download

Figure 12 indicates that the best redundant strategy offesg-
nificant resilience against attack. The “N-best” strategstill sig-
nificantly thwarted by false information. Indeed, if a uskvays
chooses to download one or more copies of a file with the best-
advertised download times, then even a small percentageaef m
licious nodes is enough to degrade the system performanice. T
key insight from the figure is that the above scheme introslace
substantial goodput penalty for transferring multipleiespof files
in parallel, even under no attack, due to wasted resourdédshe
first transfer completes.

6.4.2 Random Redundant Downloads
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Figure 13: Random Single and Redundant Downloads

preclude a client from selecting a malicious peer, it megdsy
creases the probability of it occurring.

These combined effects are illustrated in Figure 13. Censid
first the case of a single random selection (the curve lareletl).
Without attack, random selection results in a 72% decreegedd-
put compared to the best-peer selection policy in the alesehat-
tack. The attack scales, however, quite poorly, withoutsiarp
knee that characterizes the baseline attack. Redundantl @by
with a small redundancy factor increases the goodput, lseciu
provides better protection against false information.HA4tger re-
dundancy factors goodput decreases, because of the eattanlo
flicted on the system by the increasing number of redundanstr
fers.

6.4.3 Reputation Systems

Finally, we evaluate the impact of the accuracy of a repomati
mechanism, focusing on the false-negative probabiligctfon of
malicious nodes undetected by the reputation system). i3 this-
cause our modek(g., Equation (14)) predicts that this probability
dominantly impacts the resilience to DoS attacks in theges of
reputation systems.
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Figure 14: Reputation System and Best Selection Policy

Figure 14 shows the system goodput in a scenario in which the
users apply the best selection policy, while the false-tiezyarob-
ability varies from 1% to 20%. Indeed, in the presence of r&jn
systems, the clients might feel confident to download fileh thie
best advertised delay. The shape of the curves in the presétite
reputation system in Figure 14 is quite similar to the basetiurve
where no reputation system is applied. Unlike other clieninter
measures, here the best system performance is retained abth
sence of an attack. However, in the presence of maliciouss)od
the system performance significantly degrades. While thtope
mance is not as poor as in the baseline scenario, it is farifleal.

For example, when the percentage of malicious supernodas is
small as 2.5%, and the false-negative probability of theitaton
system is only 1%, system goodput degrades to about 32% when
compared to the no-attack case. If a user always downloags fil
with the best advertised times, then a small number of nual&i
nodes can degrade system performance, even when the reputat
system is highly accurafe As the percentage of malicious nodes
increases, the positive effects of the reputation systamtstfade,

as predicted by our model.

On one hand, when clients select randomly among replies, the Thus, given that reputation systems alone are insufficersto-

false resource information supplied by attackers is igthoHence,
attackers cannot attract clients by claiming to have lowugseor
high-speed access links. On the other hand, randomizatipleis
that clients must ignore performance-related informatttached
to query replies forcing them to select a less-than-optichalce,
even if avoiding the attacker. Moreover, randomizationsdoet

late the network from the attack, clients may start applyamgiom-
ization as another level of protection. Figure 15 shows thra-c

SWhile it may appear possible to builcbarfect reputation system,
the malicious nodes can apply many counter-measures géen,
change identity or occasionally upload a non-polluted copw
file) to keep the false-negatives and positives non-zero.
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Figure 15: Reputation System and Random Selection Policy

bined effects of the two counter-DoS strategies. While thedg
put performance under attack is indeed improved, it is fatilbe-
low the best achievable goodput, which is 185 kb/s in thisare.
Moreover, due to randomization, system performance idtalgly
degraded in thabsence of an attack.

7. CONCLUSIONS
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We analyzed DoS attacks against both popular files and entire[15] S, D. Kamvar, M. T. Schlosser, and H. Garcia-Molina. The

p2p file sharing systems. We produced an extensive set of ana-

lytical models and simulations, and our findings are as feslo(i)

File-targeted (pollution) attacks applied in today’s p2pworks are
largely inefficient in cooperative p2p environments duedalabil-

ity limitations; the main reasons for their current succassthat
clients do not share files, do not remove corrupted files, akiu
give up when the system is under attack. (ii) To launch a ssfak
attack against a p2p network, it is insufficient to only traitfalse
information; the attackers must either invest in their onfinastruc-
ture or exploit software vulnerabilities in order to comrdaar the
resources of otherwise non-malicious peers. (iii) Stmeztup2p
systems are more resilient than hierarchical p2p systenieas-
ditional protocol functionality of nodes in the first-levefl the hi-

erarchy provides an acute DoS vulnerability. (iv) In botlses
system goodput degrades tremendously (hyperexpongniiest)

with the number of malicious nodes, when users select to down

load files from the peer with best-advertised download tirf\.
Reputation systems are largely ineffective, even with g gemall
number of false negatives. (vi) Randomization techniquesra
deed able to transform the system’s resilience from a datiagt
hyperexponential scaling to a more resilient linear scalitun-
fortunately, randomization severely hinders performanben no
attackers are present.
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