
1

Impact of Denial of Service Attacks on Ad Hoc
Networks

Imad Aad Jean-Pierre Hubaux Edward W. Knightly
DoCoMo Euro-Labs EPFL Rice University
Munich, Germany Lausanne, Switzerland Houston, TX

Abstract—Significant progress has been made towards
making ad hoc networks secure and DoS resilient. How-
ever, little attention has been focused on quantifying DoS
resilience: Do ad hoc networks have sufficiently redundant
paths and counter-DoS mechanisms to make DoS attacks
largely ineffective? Or are there attack and system factors
that can lead to devastating effects? In this paper, we
design and study DoS attacks in order to assess the damage
that difficult-to-detect attackers can cause. The first attack
we study, called the JellyFish attack, is targeted against
closed-loop flows such as TCP; although protocol compli-
ant, it has devastating effects. The second is the Black
Hole attack, which has effects similar to the JellyFish,
but on open-loop flows. We quantify via simulations and
analytical modeling the scalability of DoS attacks as a
function of key performance parameters such as mobility,
system size, node density, and counter-DoS strategy. One
perhaps surprising result is that such DoS attacks can
increase the capacity of ad hoc networks, as they starve
multi-hop flows and only allow one-hop communication, a
capacity-maximizing, yet clearly undesirable situation.

I. I NTRODUCTION

Significant progress has been made in securing ad hoc
networks via the development of secure routing protocols
[1], [2], [3], [4], [5]. Moreover, ensuring resilience to
misbehavior and denial-of-service attacks has also been
the focus of significant research efforts as such resilience
is a critical component of a secure system: examples
include “watch-dog” mechanisms designed to detect
and circumvent misbehaving nodes [6]; rate-limiting
of route-request messages to prevent route query-flood
attacks [4]; and “rushing attack prevention” that seeks
to inhibit malicious nodes from attracting an excessive
number of routes, which would increase their ability to
inflict damage [7].

c©Copyright IEEE: Personal use of this material is permitted.
However, permission to reprint/republish this material for advertising
or promotional purposes or for creating new collective works for
resale or redistribution to servers or lists, or to reuse any copyrighted
component of this work in other works, must be obtained from the
IEEE.

Yet, there remains an indefinite “arms race” in system
and protocol design: attackers (or researchers anticipat-
ing the moves of attackers) will continually introduce
increasingly sophisticated attacks, and protocol designers
will continually design protocol mechanisms designed to
thwart the new attacks.

The goal of this paper is to quantify via analytical
models and simulation experiments the damage that a
successfulattacker can have on the performance of an ad
hoc network. In particular, we recognize that successful
attacks are inevitable (at least until the corresponding
counter-DoS protocol modification is deployed), and our
objective is to characterize the relationship between the
resources that must be commandeered by the attacker
(the percentage of nodes in an ad hoc network used
in the attack) and the impact on performance of non-
attacking nodes, where performance refers to per-flow
goodput and system-wide fairness. In this way, we study
the scalability of DoS attacks and identify the key
mechanisms and factors of both attacks and protocols
that affect a system’s DoS resilience.

Our methodology is to study DoS resilience via a new
and general class ofprotocol compliantdenial-of-service
attacks, which we refer to asJellyFish (JF). Previously
studied attackersdisobeyprotocol rules; on the contrary,
JellyFish conform to all routing and forwarding protocol
specifications, and moreover, as implied by the name,
are passive and difficult to detect until after the “sting.”
JellyFish targetclosed-loopflows that are responsive to
network conditions such as delay and loss. Examples
include TCP flows and congestion-controlled UDP flows
employing a TFRC-like algorithm [8].

The goal of JF nodes is to reduce the goodput of
all traversing flows to near-zero while dropping zero
or a small fraction of packets. In particular, JF nodes
employ one of three mechanisms. The first JF variant
is a packet reordering attack. TCP has a well-known
vulnerability to reordered packets due to factors such
as route changes or the use of multi-path routing, and
a number of TCP modifications have been proposed to
improve robustness to misordering [9], [10], [11], [12].

2

However, no TCP variant is robust tomalicious and
persistent reordering as employed by the JF misordering
attack. The second JF mechanism is periodic dropping
according to a maliciously chosen period. This attack is
inspired by the Shrew attack [13] in which an endpoint
sends maliciously spaced periodic pulses in order to
force flows into repeated timeout phases [13]. The JF
periodic dropping attack utilizes the same principles but
realizes the attack via periodic dropping at relay nodes.
In particular, suppose that congestion losses force a node
to drop x% of packets. As shown in [13], if these
losses occur periodically at the retransmission-time-out
timescale (approximately 1 second), TCP throughput is
reduced to near zero even for small values ofx. Thus,
a JF periodic-dropping node can drop no more packets
than neighboring congested nodes, but inflict near-zero
throughput on all TCP flows traversing it. Third, we
consider a delay-variance attack in which the attacker
delays packets (preserving order) in order to thwart
TCP’s timers and congestion inferences. This attack not
only thwarts widely deployed TCP variants, but also can
disrupt rate-based congestion control algorithms such as
[14], [15]. Notice that JF nodes areprotocol compliant
in that IP’s datagram service does not mandate loss-free
service, in-order delivery, or bounded delay jitter.

Finally, in addition to the JF attack, we also study
the “black hole” attack as described in [4]. This attack
is relevant foropen-loopflows that do not respond to
congestion, loss, or delay information, and hence cannot
be thwarted by JellyFish. Black Hole nodes participate
in the routing protocol to establish routes through them-
selves, yet drop all packets after correctly receiving them
at the MAC layer.

With these attacks (three JF variants and Black Holes),
we use a combination of analytical modeling and simu-
lation experiments to study the key performance factors
that determine a network’s DoS resilience and equiva-
lently, the attack’s scalability.

Throughout, we consider that victims will diagnose
and react to DoS attacks. Thus, we quantify the relation-
ship between the timescale of diagnosis and reaction to
the attacker as compared to the route lifetime. Intuitively,
if a system has no mobility (and infinite route lifetimes),
JF will have little effect as nodes will eventually discover
routes without JF if such routes exist. However, as
mobility increases, the route lifetime shortens and the
effects of JF become increasingly pronounced as the
time spent uselessly transmitting on JF paths and re-
establishing routes becomes an increasing fraction of
a flow’s lifetime. Thus, we derive an analytical and
experimental relationship that characterizes the impact
of these timescales on flow goodput.

Several reputation systems have been developed to
help traffic sources and forwarders avoid misbehaving
nodes and route breaks. Using multipath routing is
another method to make end-to-end throughput more
robust against route breaks. We model the impact of
reputation mechanisms and multipath routing on end-
to-end throughputs and we show that the enhancement
is negligible whenever we consider realistic system pa-
rameters.

Finally, we study a number of system factors that
affect a network’s DoS resilience and obtain the follow-
ing findings. (i) JF have a network partitioning effect
that severely degrades or altogether prevents long-range
communication. Consequently, an increased number of
JF reduce the system’s fairness index but mayincrease
network capacity, as capacity can be increased by starv-
ing long-range flows and serving only one-hop flows.
(ii) The mean and distribution of path length have a
significant effect on attack scalability as higher path
length flows are highly vulnerable. (iii) JF are most
devastating in a system with a well balanced offered load.
If a system is heavily overloaded, system performance
is already so poor (high path length flows are already
starved), that JF have little marginal impact. (iv) Random
or mobile JF placement performs nearly identical to
optimal-coverage JF placement in systems with even
a small number of JF. (v) JF are most effective in
moderate to high density networks as excessively low
density networks may already be partitioned and JF can
do little marginal damage. (vi) The scaling of the attack
with the percentage of JF remains largely unaffected
for large vs. small scale networks. Yet, the absolute
performance is quite different, as without attack, small
scale network performance is significantly better than
large scale network performance.

Thus, our goal is not to advance the aforementioned
“arms race” by developing attacks, victim counter strate-
gies, counter attacks, etc., but rather to explore the
impact of a class of attacks that are difficult and time
consuming to detect due to their compliance to all
protocol rules. Yet, we do consider that bad paths will
indeed be diagnosed by victims and routed around (as
will be the case with the JF attack or other yet-to-
be-invented attacks) and we study the key performance
factors for attack scalability.

The remainder of this paper is organized as follows.
In Section II we present the JF attacks and an example
of their effects on throughput. In Section III we present
a simple analytical model that relates system properties
such as mean-path-duration and mean-path-length to the
victim’s throughput. In Section IV we perform exten-
sive simulation experiments to quantify the factors that

3

control an attack’s scalability. Finally, in Section V we
review related work and in Section VI we conclude.

II. JELLY FISH AND BLACK HOLE DOS
ATTACKS

A. System Model

Unless otherwise specified, we consider a general
mobile ad hoc network employing a broad set of security
and DoS resilience mechanisms that (i) ensure node
authentication, (ii) ensure message authentication, (iii)
ensure one identity per node (preventing Sybil attacks),
and (iv) prevent control plane misbehavior (query floods,
rushing attacks, etc.).

Examples of protocols that achieve the above objec-
tives are discussed in Section V, but for concreteness,
we can consider a secure source routing protocol as in
reference [4] as well as enhancements such as [16], [7].
Throughout the paper and especially in Section III, we
discuss the implications of such enhancements, as well
as other counter DoS mechanisms.

The effects of the DoS attacks we describe are inde-
pendent of the considered MAC layer protocol. However,
in our simulations, we consider the MAC layer to be
IEEE 802.11.

A fraction of nodes are malicious and seek to thwart
system performance. A malicious node will always par-
ticipate in route setup operations. For example, if source
routing is employed, malicious nodes always relay Route
Request packets in order to have as many routes as
possible flowing through themselves; if distance vector
routing is employed, malicious nodes will also obey all
control-plane protocol specifications. However, once a
route is established, attacking nodes will thwart the end-
to-end throughput of the flow via a JellyFish or Black
Hole attack. While packets may be encrypted at higher
layers and become “unrecognizable” (e.g., TCP vs. UDP)
to the network layer, the JellyFish and Black Hole attacks
can still be applied irrespective of the packet types.

B. JellyFish Attack

A critical strength of the JellyFish Attack is that it
maintains compliance withall control plane and data
plane protocols in order to make detection and diag-
nosis costly and time consuming. The key principle
that JF use to facilitate the attack is targeting end-to-
end congestion control. In particular, many applications
such as file transfer, messaging, and web will require
reliable, congestion-controlled delivery as provided by
protocols such as TCP. Moreover, TFRC-controlled real-
time applications such as interactive video must also

adapt their rates to available bandwidth and hence also
employ end-to-end congestion control.

The dual role of hosts as routers in ad hoc net-
works introduces a critical vulnerability for congestion
control: specifically, there are a number offorwarding
behaviors that routers (ad hoc relay nodes) can employ
that will severely degrade the end-to-end throughput of
congestion-controlled traffic. We refer to these behaviors
as variants of the JellyFish attack, which we describe as
follows.

JF Reorder Attack. TCP’s use of cumulative ac-
knowledgements defines the message “ACK-N ” to in-
dicate thatall segments1, . . . , N have been received.
Consequently, receipt of duplicate ACKs is used to infer
loss. Yet, because duplicate ACKs can also indicate an
out-of-order packet receipt, TCP has a number of mech-
anisms to increase its robustness to out-of-order packets,
including TCP Sack [17] and reorder robust TCP [12].
Yet, all such TCP variants assume that reordering events
are rare, short-lived, and due to network events such as
route changes.

In contrast, we consider JF nodes to maliciously re-
order packets. In this attack, JF deliverall packets, yet
after placing them in a re-ordering buffer rather than
a FIFO buffer. Consequently, we will show that such
persistent re-ordering of packets will result in near zero
goodput, despite having all transmitted packets delivered.

JF Periodic Dropping Attack. Losses due to buffer
overflow are inevitable in congested environments. Kuz-
manovic and Knightly [13] show that if such losses occur
periodically near the retransmission time out (RTO)
timescale (in the 1s range as RTO is intended to address
severe congestion), then end-to-end throughput is nearly
zero. An endpointattack is described in [13] in which
a malicious node transmits periodic pulses into the
network. As the RTO-spaced pulses can force all flows
sharing the bottleneck link to enter repeated timeout
phases, the attack results in all such flows obtaining near-
zero throughput while the attacker has a low average
transmission rate. The study showed that the impact of
the attack can be quite severe whether minimum RTO
values are all set to 1 second as recommended in [18],
or are randomized over a wide range.

Here, we utilize the same principle for the JF periodic
dropping attack in which attacking nodes drop all packets
for a short duration (e.g., tens of ms) once per RTO.
Thus, unlike [13], JF are passive and generate no traffic
themselves; like non-malicious nodes, JF drop for only
a small fraction of time; yet, with this dropping pattern
during a maliciously chosen period, the following behav-
ior results. Upon encountering the JF’s first loss duration,
the victim flow will enter timeout as the JF chooses

4

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 1 1.5 2 2.5 3 3.5 4 4.5 5

G
oo

dp
ut

 (
M

b/
s)

Reordering buffer size

2 hops
3 hops
4 hops
5 hops

Fig. 1. JF-reorder effect on throughput

the dropping duration to be sufficiently long to result in
multiple losses. When the flow attempts to exit timeout
RTO seconds later, the JF will immediately or soon after
periodically drop again. Note that the JF knows when
a flow enters timeout as the JF itself induced the loss.
Thus, the JF can safely assume that by RTO seconds
later, the flow will be attempting to exit and will be in
the fragile slow-start state.

JF Delay Variance Attack. Variable round-trip-times
due to congestion are an inevitable component of TCP’s
operation. Yet, ensuring high performance in the pres-
ence of random and high delay variation due to an
attackerwas clearly not incorporated into TCP’s design.
Such a high delay variation can (i) cause TCP to send
traffic in bursts due to “self-clocking,” leading to in-
creased collisions and loss, (ii) cause mis-estimations of
available bandwidth for delay-based congestion control
protocols such as TCP Westwood and Vegas, and (iii)
lead to an excessively high RTO value.

Indeed, enhancing TCP to combat the effects ofnon-
malicious delay variation to wireless links has been
the focus of intense research (see [19] for example),
as has the development of tools for available band-
width estimation. Consequently,maliciousmanipulation
of packet delays by the JF delay variance attack has the
potential to significantly reduce TCP throughput. Such
attackers therefore wait for a variable amount of time
before servicing each packet, maintaining FIFO order,
but significantly increasing delay variance.

C. Impact of JF

We next present simulation experiments that illustrate
the effects of JF on end-to-end goodput. To study these
effects in isolation, we consider a simple “chain” sce-
nario with a sequence of nodes between the sender and
receiver, one of which is a JF. We use TCP Sack, the
default IEEE 802.11 MAC at 2 Mb/s, and show the 95%
confidence intervals over 10 simulation runs.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 0.5 1 1.5 2 2.5 3

G
oo

dp
ut

 (
M

b/
s)

Time period (s)

2 hops
3 hops
4 hops
5 hops

Fig. 2. JF-drop effect on throughput

Figure 1 shows the impact of the JF-reorder attack
on the TCP-Sack flow for different re-ordering. This
experiment has a scheduler that is a FIFO queue, except
that it selects randomly among the firstk packets in the
queue. The figure depicts performance as a function of
the re-ordering buffer size expressed in packets.

The figure indicates that TCP is robust to moder-
ate reordering with a reordering buffer of 2 packets.
Whereas, when the reordering buffer is larger and the
reordering is performed in this persistent and malicious
way, TCP throughput collapses. For example, consider
the curve with 3 nodes and a 2-hop chain, i.e., a source,
destination, and a single relay node. Without an attack
(a reordering buffer of 1), the flow obtains a throughput
of 710 kb/s. Yet, with a reordering buffer of 3 or more
packets, the throughput decreases to approximately 1%
of the peak value indicating a successful attack and
near starvation of the flow. That is, if the scheduler
selects the next packet to service randomly among the
first 3 or more queued, the resulting reordering cannot
be overcome by TCP. We note that solutions to TCP
reordering such as TCP-PR [10] use only timers to detect
loss vs. duplicate ACKs. Thus, attackers would need to
either use other JF variants for TCP-PR flows or use
larger reorder buffers to force TCP-PR timeouts.

Figure 2 depicts the results of simulation experiments
with the JF periodic dropping attack. Consider first the
upper curve in which the path consists of a source,
a single relay node (a JF), and a destination. A time
period of 0 indicates no attack and the flow again obtains
a throughput of 710 kb/s. As in [13], the degradation
in throughput to the victim is highly non-linear as a
function of the dropping period, with null frequencies
near 0.5 and 1 second (the minimum RTO value). To
obtain the null at 1 second, the JF drops packets for 90
ms every 1 second, which results in dropping 9% of the
time, and forwarding 91% percent of the time, values
easily incurred by a congested node.

5

time

IDLE
time

Packet departure

Paket arrival

Jitter−JF

Fig. 3. The jitter implementation used

The attack is therefore successfully exploiting the
slow-time-scale congestion avoidance mechanism of
TCP, namely, that flows must infer that multiple packet
losses within a round-trip-time are an indication of
severe congestion, such that the flow must back off
aggressively, and wait RTO seconds before entering slow
start. Significantly reducing RTO or removing the mech-
anism all together would lead to significant spurious
retransmissions and potentially congestion collapse [18],
whereas increasing the value would make the attack even
more devastating.

Finally, we show how an intermediate JF can attenuate
the TCP throughput by varying the RTT.

The jitter implementation we used is shown in Fig. 3.
In this scenario, the JF behaves as a server with

vacations, alternating between periods of serving no
packets (and queuing, but not dropping them) and serv-
ing packets at its maximum capacity. Both idle and active
periods are of equal lengths. Packet departure times are
proportional to their arrival times. We deploy this jitter-
JF in a three node chain.

Figure 4 shows how TCP goodput decreases with
increasing jitter (i.e., increasing idle and active periods).
While this decreased throughput is also due to increased
mean delay, the figure nonetheless indicates that the
effects of this attack can be quite severe.

D. Black Hole Attacks

We also consider Black Hole attacks as described in
[4]. As with JF, Black Hole nodes participate in all
routing control plane operations. However, once paths
are established, Black Holes simply dropall packets.
Although refusing to forward data isnotprotocol compli-
ant, we also study Black Holes for the following reasons.
First, as demonstrated in the simulations above, JF have
nearly the sameimpactas Black Holes, making end-to-
end throughput collapse until the victim detects and fixes
the problem. Thus, in many simulation experiments, we
will consider Black Holes in place of JF for simplicity.
Second, Black Holes allow us to study flows that are
not congestion controlled and therefore are immune to

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 1 2 3 4 5

G
oo

dp
ut

 (
M

b/
s)

Idle period (s)

JF-jitter

Fig. 4. JF-jitter effect on throughput

JF. Thus, we can still study attack scalability for open-
loop flows that ignore the delay, ordering, and loss
information that JF are manipulating.

E. Misbehavior Diagnosis

The broadcast nature of the wireless medium can
help detecting misbehavior or node failure. This is the
case of PACK (Passive Acknowledgement) [20] which
exploits the fact that an upstream neighbor can overhear
a node’s transmission and diagnose failure/misbehavior.
Unfortunately, PACK has several key limitations that
preclude its use as a general solution to attacks such
as JF, as we showed in [21].

From the end-to-end point of view, victims of the
attacks will measure that they have near zero throughput
and will react. Likewise, a malicious node’s neighbors
may attempt to diagnose failed paths due to DoS be-
havior. Clearly, the attacker seeks to inhibit diagnosis in
order to maximize damage. Thus, in [21] we explore
network and endpoint mechanisms for DoS diagnosis
with a focus on their practical feasibility, as well as
on the timescales for successful diagnosis and repair. In
Section III we quantify the effects of these timescales
on flow goodput and in Section IV we experimentally
explore this factor.

F. Victim Response

Once a path is diagnosed as providing zero throughput,
the end points will attempt to establish an alternate path.
With uni-path source routing, this will be achieved via
transmission of a new route request message, typically
from the source. When route replies are received, the
victim should avoid paths withany node from the prior
malfunctioning path as the victim does not know which
node on the path was malicious, i.e., the victim has
insufficient information to form an accurate “black list.”
Furthermore, note that as JF are protocol compliant, the
victim is not certain whether throughput collapsed due

6

to an attacker or simply due to congestion, fading, or
other factors incurred in normal protocol operation.

An alternate solution is to employ multipath routing,
and to adapt the path weights according to path goodput
as proposed in [4], [22]. Even without attackers, such
a protocol must overcome the impact of different paths
having different delay characteristics and the correspond-
ing impact on TCP throughput. For example, reference
[23] found that TCP Sack’s use of multiple paths in ad
hoc networks led to a severe throughput reduction for
even two paths, and near collapse for three or more paths.
The authors then suggest a re-design of TCP to support
multipath routing.

Other promising counter-measures would be the es-
tablishment of backup routes, e.g., caching of all route
reply messages for later use if a current path fails.

In any case, even with multipath routing and TCP re-
design, use of backup routes, etc., a victim flow will
always encounter the issues we study next: delays to
diagnose and react to the problem, and poor throughput
until all forwarding paths are free of JF.

III. A NALYTICAL MODEL

In this section, we develop a simple model to predict
the throughput of a flow traversing a network in the
presence of attacking nodes.

Consider an ad hoc network withN nodes anda < N
attacking nodes (JellyFish or Black Holes). Denotep
as the probability that a randomly selected node is an
attacker such thatp = a/N . (We also discuss other
relationships betweena, N , and p below.) Consider
a path traversingh relay nodes. If the selected nodes
represent a random sample of theN network nodes, then
the path contains no attacking nodes with probability
(1 − p)h.

We compute the throughput via a renewal argument
in which time alternates between periods of successful
transmission and periods of thwarted transmissions and
assume that such durations are independent and identi-
cally distributed. In particular, we denoteE(TL) as the
expected lifetime of a route as determined by factors
such as the node velocity and node density.

When a route breaks due to mobility, a number of de-
lays are incurred in repairing the route. First, a duration
Tdiag is incurred to diagnose that the route is broken.
Next, the request for a new route may be delayed by a
rate-limiting duration in order to mitigate the impact of
route query flood attacks. We denote this rate-limiting
time asTRL, which denotes the minimum inter-spacing
of route requests allowed by the routing protocol. Finally,
the node must wait to receive one or more route reply
messages, a duration that we denote asTRR.

After these three phases, a node begins transmitting
data on the new path. However, the new path includes at
least one attacking node with probability1 − (1 − p)h.
If this is the case, the transmission is thwarted and the
node must again incur the above three delays and try
again. Note that even if the victim has ensured that the
new route contains no nodes in common with a failed
route, the new route may again contain an attacking
node. Thus, a node exits the zero-throughput phase only
after it has successfully established a route without an
attacking node.

In general, a protocol may change timers according to
the number of attempts. Thus we denote superscriptj as
the attempt number such that for exampleT j

RL denotes
the rate-limiting duration waited immediately before the
jth attempt. Thus, we have that the total expected time
of zero throughput, i.e., the time to find a new route that
contains no attacking node, is given by

E(T0) = T 0

RR+

∞
∑

t=1





t
∑

j=1

[

E(T j
diag) + E(T j

RL) + E(T j
RR)

]



×

(1 − p)h
(

1 − (1 − p)h
)t

. (1)

More generally, the path length can be repre-
sented by a random variableH such thatE(T0) =
∑

h≥0
E(T0|H)Pr(H = h) using Equation (1) for

E(T0|H) along with the distribution ofH. To sim-
plify, we consider a fixed path length (H = h) unless
otherwise noted, and consider the further simplifica-
tion E(T i

diag) = E(Tdiag), E(T i
RL) = E(TRL) and

E(T i
RR) = E(TRR),∀i such that we have

E(T0) = TRR+
∞

∑

t=1

t[E(Tdiag) + E(TRL) + E(TRR)]×

(1 − p)h
(

1 − (1 − p)h
)t

(2)

which under the above assumptions reduces to

E(T0) = TRR+

[E(Tdiag) + E(TRL) + E(TRR)] × [
1

(1 − p)h
− 1]. (3)

The normalized goodput for a flow is given by

G =
E(TL)

E(TL) + E(T0)
(4)

We make several observations about Equations (3) and
(4). First, note the corner case withp approaching 1
or high route length send goodput to 0. Another corner

7

case is a scenario with no mobility: in this case, once a
successful route is established, it is never subsequently
broken and goodput approaches 1.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6

G
oo

dp
ut

Fraction of JellyFish nodes

3 relay nodes
6 relay nodes
9 relay nodes

Fig. 5. Attack scalability and path length

Intermediate cases are depicted in Figure 5, which
illustrates goodput (computed from Equation (4)) as a
function of the percentage of attackersp = a/N for three
route lengths of 3, 6 and 9 relay nodes. We consider a
mean route lifetime ofE(TL) = 10 s, which corresponds
to a high node velocity of Vmax = 30 m/s as reported
in [24]. Moreover, the curves depict the case that the
diagnosis, rate limit, and route reply times are 2 s, 2 s,
and 1 s respectively. The diagnosis time is set to two
times the default retransmission timeout value for TCP:
a lower value would certainly lead to false inference
of broken routes. The 2 second rate limit value is the
default value for DSR for the minimum spacing of route
requests, which is increased in DSR to 10 seconds for
subsequent requests (not considered here).

The figure indicates that without any attacking node,
legitimate nodes spend approximately 90% of their time
successfully transmitting, and the remaining 10% having
broken routes and trying to re-establish them. Next
observe the scalability of the attack for 6 relay nodes:
with 10% of attacking nodes, the goodput drops to
65%, whereas with 20% of attacking nodes, the goodput
drops to 40%. The impact of the attacker is even more
pronounced in large-scale networks in which a longer
path length is increasingly likely to include an attacking
node. For example, with 9 relay nodes, the goodput
decreases to 53% under 10% attacking nodes and to 23%
under 20% attacking nodes.

The model also allows us to explore the impact of a
“Rushing Attack” [7] as we showed in [21].

A. Performance of reputation systems against JF attacks

To help thwarting misbehavior in ad hoc networks,
several reputation systems have been proposed in the
literature [25], [26]. In this section we evaluate the

Reputation
Good Bad

Actual Good g(1 − fp) gfp

Bad (1 − g)fn (1 − g)(1 − fn)

TABLE I
ALL COMBINATIONS OF REPUTATION AND ACTUAL STATE OF

NODES.

ability of such systems to avoid the JF. In order to
abstract from the technical details, we assume that the
reputation system can be modeled as a black box with
two performance parameters:

• False positives(fp): This is the rate at which the
reputation system reports well-behaved nodes as
being malicious.

• False negatives(fn): This is the rate at which the
reputation system reports a malicious node as being
well-behaved.

Assume that the system has a proportiong of well-
behaved nodes. The various combinations of good/bad
choices are depicted in Table I. For instance, there is
a probability of gfp to select a good node with bad
reputation.

When establishing a new route, the source and the
forwarding nodes try to select well-behaved nodes only
(Reputation: Good). However, they may mistakingly
choose, with probabilityfn, one of the(1 − g) actually
Bad nodes. Therefore(1 − g)fn replacesp in (3), i.e.

Greput =
E(TL)

E(TL) + E(T reput
0

)
. (5)

where

E(T reput
0

) = TRR+

[E(Tdiag) + E(TRL) + E(TRR)]×[(1−(1−g)fn)−h−1]

Figure 6 shows that using a reputation system with
fn = 0.1 (i.e. only one tenth of misbehaving nodes

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6

G
oo

dp
ut

Fraction of JellyFish nodes

9 relay nodes, fn=0.1
9 relay nodes, fn=0.5

9 relay nodes, fn=1

Fig. 6. Impact of false negatives of a reputation system

8

are likely to be selected during route establishment)
enhances the goodput with respect to a system that does
not rely on reputation (fn = 1). In fact, whenfn = 1,
misbehaving nodes and well-behaved nodes are selected
with equal probability, i.e. the reputation system has no
impact on node selection during route setup.

On the other hand, the false positives ratefp has a
negative impact, due to the fact that the source and the
forwarding nodes will avoid actually good nodes (g),
with a bad reputation (fp), during route establishment.
This reduces the number of possible paths by a factor
of:

g(1 − fp)

g
= (1 − fp) (6)

with respect to a system that does not use any repu-
tation mechanism. Therefore, whenfp = 1 (i.e. all good
nodes are judged to be bad), the factor expressed by (6)
reduces to zero, and no route can be established. When
fp = 0, the reputation system does not mislead the route
establishment procedure, therefore the factor in (6) is
equal to 1, i.e., the performance is similar to the one of
a system with no reputation mechanism.

B. Using multipath routing

In this section we analyze the performance of us-
ing multipath routing [27] to thwart JF attacks: Upon
route establishment, the source keeps a list of possible
routes, not necessarily optimal ones, to the destination.
The source either uses several routes simultaneously, or
changes route upon diagnosing a problem on a given
path. We consider the best case scenario where there is
always at least one unbroken path (no need for route re-
establishment). This increases the throughput in equation
(4) to:

Gmultipath =

E(TL)

E(TL) + E(TRR) + E(Tdiag) × [(1 − p)−h − 1]
. (7)

That is, a single route request is issued (per flow
lifetime), and therefore route request limitations are not
considered.

Figure 7 shows that using multiple paths improves
the flow throughput with respect to a system using
single paths, however it is still weak in thwarting JF
attacks. More importantly, one should also take into
consideration the negative effect of multi-path routing
(therefore packet reordering) on TCP (not considered
in the model). The resulting overall impact of packet
reordering on TCP goodput due to the use of multipath
routing would be definitely negative.

IV. A SSESSMENT OFPERFORMANCEUNDER DOS
ATTACK

In this section, we perform an extensive set of simula-
tion experiments to quantify the impact of DoS attackers
on the system performance and to identify the key factors
that determine an attack’s scalability. After describing
our methodology, we establish a baseline case and then
isolate the impact of each factor.

A. Methodology

Attackers affect performance in a number of ways.
The performance metrics below allow us to evaluate the
impact of JF on individual flows, as well as on the whole
system performance.

• System fairness: To measure fairness, we use Jain’s
fairness index computed using long-term throughput
averages and given by [28]:

FJ =
(Σm

i=1
γi)

2

mΣm
i=1

γ2

i

=
1

mΣm
i=1

γ2

i

wherem is the total number of flows andγi is the
proportion of received packets of flowi during the
simulation time.FJ is equal to 1 when all flows
equally share the network, and is equal to1/m
when a single flow monopolizes all resources (in
which caseFJ → 0 whenm → ∞).

• Number of hops for received packets: We consider
random topologies with random traffic matrices.
However, JF and Black Holes can have the effect
of starving multihop flows and giving all the ca-
pacity to one-hop flows that (by definition) have
no relay nodes and hence do not encounter JF.
This performance measure captures this effect and
also characterizes network partitioning in which
multihop communication becomes impossible.

• Total system throughput: This measure characterizes
the received throughput aggregated over all network
flows. Providing all capacity to one-hop flows and

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6

G
oo

dp
ut

Fraction of JellyFish nodes

3 relay nodes, single-path
3 relay nodes, multi-path

9 relay nodes, single-path
9 relay nodes, multi-path

Fig. 7. Enhancement due to the use of multipath routing

9

starving others can be the capacity-maximizing al-
location of bandwidth to flows. Thus, JF and Black
Holes often increase total system throughput.

• Probability of interception: This characterizes the
probability that a flow encounters a JF in its path.
This probability depends on many factors such
as the placement of JF, the traffic patterns, the
percentage of JF etc. Moreover, all the previously
mentioned performance metrics depend on this
probability.

Experimental and simulation results showed that de-
lays and jitters in ad hoc networks vary considerably.
Therefore they provide no relevant information to be
considered in our analysis.

An attack’s effectiveness is a function of a number
of system parameters. We consider the offered load,
the congestion control protocol, and the JF placement
strategy. We next assess the effect of these parameters
on the performance metrics described above by varying
them one at a time. We show the effect of other system
parameters in [21]. We usens-2.27 [29] simulations
and present results averaged over 50 simulation runs,
using 18 different topologies / mobility scenarios (8000
simulations in total)[30]. We show the corresponding
95% confidence intervals. Each simulation is 500 s, and
results are obtained after a warmup period of 100 sec-
onds. Unless otherwise specified, we use Black Holes
to emulate the effects of JellyFish on TCP, as the
latter were shown in Section 2 to result in near-zero
throughput, resulting in a near identical effect as Black
Holes. Moreover, JF can have a slightly stronger effect:
for example, with JF, re-ordered and delayed packets
are still transmitted end-to-end, consuming additional
capacity while not contributing to goodput. To simplify
the presentation, we designate the attacking nodes as JF
throughout the section; in practice, however, they are
Black Hole nodes in the case of UDP flows and JellyFish
nodes in case of TCP flows. Degraded channel conditions
(e.g. noise, fading etc.) are harmful components to the
system performance. Therefore we consider a clear non-
fading channel to assess the impact of the JF attacks.

B. Baseline

For the baseline simulations, we consider a scenario
in which 200 nodes move randomly (random waypoint
model) in a 2000 m×2000 m topology, at a maximum
velocity of 10 m/s, pausing for 10 s on average. Nodes
use the IEEE 802.11 MAC with a node receive range
of 250 m. The channel capacity is 1 Mb/s. 100 of these
nodes communicate with each other to create 50 flows.
UDP packets are transmitted at a constant rate of

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0 5 10 15 20

P
ro

ba
bi

lit
y

Number of hops

0 JF / 200 nodes
16 JF, Grid. plac. / 200 nodes
25 JF, Grid. plac. / 200 nodes
49 JF, Grid. plac. / 200 nodes

Fig. 8. Distribution of the number of hops for received packets

800 bits/s, corresponding to one 500-byte packet every
5 s. The other 100 nodes route packets without generat-
ing any flows, and are henceforth called “routers.” JF are
compromised routers among these 100. For the baseline,
JF are statically placed on a grid at equal distances from
each other. Without loss of generality, DSR [20] is used
for ad hoc routing.

Figure 8 shows that in the absence of JF, one-hop
flows account for approximately 8% of received packets,
with the remaining packets nearly uniformly allocated to
flows up to 5 hops, and then longer-path-length flows
accounting for significantly less.
(Note that there is a smaller number of flows having very
long paths due to the random traffic matrix.)

However, with 25 JF (12.5% of nodes), the percentage
of received packets corresponding to one-hop flows
increases to 20%, and with 49 JF (25% of nodes), the
percentage increases to 33%. In each case, this advantage
to one-hop flows comes at the cost of multihop flows. For
example, under 25 JF, 5 hop flows have their throughput
cut in half and 10-hop flows become nearly starved.
This indicates that the attack has nearly prohibited long-
range communication such that the network is in effect
partitioned, allowing only short-range communication.

Figure 9 shows the impact of JF on system fairness.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35 40 45 50

F
ai

rn
es

s

Percentage of JF

Baseline

Fig. 9. Fairness index for the baseline case

10

 0

 1

 2

 3

 4

 5

 6

 7

502512.580

A
ve

ra
ge

 n
um

be
r

of
 h

op
s

Percentage of JF

Baseline

Fig. 10. Average number of hops for received packets

Observe that with no JF, the system has a relatively
high fairness index of 0.9 indicating that flow rates are
not significantly different. However, with an increasing
proportion of JF in the network, the fairness index
significantly decreases, indicating that some flows are
obtaining a significantly higher throughput share at the
expense of other flows.

Figure 10 explains the phenomenon. The figure depicts
the mean hop length for areceivedpacket. Without at-
tack, the mean is 6.6 indicating that a significant number
of packets are received on long-path-length routes. Yet,
as the number of JF grows, the average path length for a
received packet diminishes: fewer and fewer packets are
able to traverse long routes leading to increased capacity
for one-hop flows. Figure 8 illustrates the unfairness:
long paths are increasingly likely to be intercepted by JF,
considerably reducing their share of the system capacity,
whereas the short-path flows “benefit” from the attack.

C. Offered Load and TCP

The system’s offered load is an important factor for the
scalability and impact of the JF attack. At one extreme,
if the offered load is very high, most packets received
end-to-end will be over one hop flows even without the
attack, so that JF can do little if any additional damage.
At the other extreme, with a more moderate load, JF will
skew the distribution of received traffic more towards that
achieved in an over-load case.

To study this effect, we consider an offered load per
flow of 5 times that of the baseline. Moreover, we
consider the offered load that TCP will achieve for 5
and 50 TCP flows. The rest of the parameters remain
the same as in the baseline scenario.

The curve in Figure 11 with an offered load of 5 times
that of the baseline case illustrates that an overloaded
network has a fairness index of 0.4 without any JF, even
below that obtained under the baseline load with 25%
JF. Thus, there are too few multihop flows for the JF

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25

F
ai

rn
es

s

Percentage of JF

Low CBR load
High CBR load

5 TCP
50 TCP

Fig. 11. Effect of offered load

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1 2 3 4 5 6

P
ro

ba
bi

lit
y

Number of hops

0 JF/200 nodes, 50 TCP
49 JF/200 nodes, 50 TCP

0 JF/200 nodes, 5 TCP
49 JF/200 nodes, 5 TCP

Fig. 12. Hops for received packets with different TCP loads

to even slightly degrade the fairness index, i.e., repeated
collisions and buffer overflow severely impede multihop
traffic.

For TCP traffic, TCP congestion control does not
attempt to provide equal throughput to all flows (which
would achieve a fairness index of 1). Instead, it seeks
to provide throughput that is inversely proportional to
round-trip-time. However, the situation with 50 TCP
flows is quite similar to that of the CBR overload case:
the JF have little effect on fairness, as one-hop flows are
dominating the percentage of packets received end-to-
end, even without the attack.

With 5 TCP flows, Figure 12 indicates that without the
attack, 40% of received packets are from one hop flows
whereas with 49 JF, this percentage increases to 69% of
received packets. Thus, the attack increased the number
of one-hop packets by 73%, resulting in a significant
impediment to multihop traffic.

Next we measure the total system throughput as a
function of the percentage of JF and present the results in
Figure 13. For the baseline case, the figure shows that
an increasing percentage of JF results in progressively
lower system throughput as an increasingly high number
of flows become thwarted by the attack for the reasons
discussed above. However, the results are quite different
under 5× system load and for 50 TCP flows. For the

11

case of 5× system load, the total system throughput has
nearly doubled under 12.5% of attackers when compared
to no attackers, thus indicating that a DoS attack can
increasethe capacity of an ad hoc network. Although
initially surprising (at least to the authors), the reason is
quite simple: JF prevent multi-hop communications, thus
liberating significant capacity, which is used by one-hop
flows. Thus, Figure 13 shows how misleading capacity
can be to express the impact of DoS: communication still
continues to take place, but only with one hop neighbors.

We also observe that even under high loads, the behav-
ior is non-monotonic. The reason is that the existence of
surviving flows depends on the topology and node move-
ments: if JF happen to stop a flow that potentially inter-
feres with others, the overall throughput will increase.
Otherwise, system throughput is reduced by the thwarted
flow’s throughput. This dependency on the topology and
movement makes the confidence intervals1 very large, in
spite of averaging over 18 different mobility scenarios
of 50 runs each.

Thus, with the given topology dimensions of
2000 m×2000 m and a high offered load, having 200
nodes with a receive range of 250 m each and a 500 m
interference range, the first JF added will most likelyre-
ducecontention and interference, thusincreasingsystem
throughput. But beyond a certain number of JF, no flows
can take advantage of this removal of interfering flows
anymore, and the system throughput starts decreasing.

Figure 14 illustrates this issue from an alternate per-
spective and depicts the average number of hops for a
received packet under different loads. The figure shows
that the presence of JF severely diminishes the allowed
path lengths for successful communication in both the
baseline and the overload cases.

1Not shown, for clarity.

 0

 0.5

 1

 1.5

 2

 2.5

 0 5 10 15 20 25

N
or

m
al

iz
ed

 s
ys

te
m

 th
ro

ug
hp

ut

Percentage of JFs

CBR load: baseline
CBR load: baseline x5

TCP

Fig. 13. Normalized system throughput with different loads

 0

 1

 2

 3

 4

 5

 6

 7

2512.50

A
ve

ra
ge

 n
um

be
r

of
 h

op
s

Percentage of JF

Baseline
CBR load: Baseline x 5

Fig. 14. Hops for received packets with different CBR loads

D. JellyFish Placement

The baseline scenario considers grid placement with
the JF placed at equal distances from each other. Here
we analyze the effect of different JF placement methods
on the effectiveness of the JF attack and consider two
additional methods: (i) random static placement in which
JF are uniformly randomly placed within the geographi-
cal area, yet are non-mobile, and (ii) mobile JellyFish in
which JF nodes have the same mobility characteristics
as all other nodes.

Figure 15 shows the probability that an established
route contains a JF node for the different placement tech-
niques. From Section III, we have that the probability
of interception is given byPint = 1 − (1 − a/N)h for
a fixed average number of relay nodesh = 5.62. As
also described in Section III, this expression is easily
generalized to incorporate the hop countdistribution via

Pint =
∑

h≥0

(1 − (1 − a/N)h)Pr(H = h) (8)

wherePr(H = h) is the probability of havingH = h re-
lay nodes. The figure indicates that the simplified model
which considers path length to be constant overestimates
the number of intercepted flows. In contrast, by using

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30 35 40 45 50

P
ro

ba
bi

lit
y

of
 in

te
rc

ep
tio

n

Percentage of JF

Random, dynamic
Grid placement

Model (simplified)
Model (general)

Fig. 15. Probability of interceptionPint for different JF placement
methods

12

the path length distribution as obtained from simulations
together with Equation (8), the curve labeled “Model
(general)” provides a close match with simulation.

E. System Size

Finally, we explore the effect of system size on attack
scalability. In particular, as demonstrated in Section 3,
the mean hop length plays a critical role in an attacks
effectiveness. Here, we consider a 1000 m×1000 m sys-
tem vs. the 2000 m×2000 m case of the baseline, and
keep the node density constant resulting in 50 nodes.

Observe first from Figure 16 that without an attack,
the mean hop length for a received packet is reduced
by a factor of approximately 2 . Moreover, this factor is
maintained across different percentages of JF as shown.
Thus, the attack scalability remains unchanged with
system size, yet the mean path length has a significant
effect.

A similar trend is illustrated in Figure 17 which shows
that a smaller system size results in higher initial fair-
ness. That is, with shorter path lengths, flow throughputs
are nearly identical. (Consider a small system in which
all flows are within radio range: if the MAC protocol
provides long term fairness, then the fairness index will
be 1.) Yet, both system sizes obtain a similar scaling
of a reduction in fairness with an increasing number of
attackers.

V. RELATED WORK

Significant recent research efforts have focused on
the challenge of securing mobile ad hoc networks with
most work targeted towards securing routing protocols.
Results can be classified according to the routing proto-
col(s) they consider and by the assumptions they make
in terms of available security mechanisms (e.g., on-
line/offline presence of an identity and key certification
center, key distribution and revocation techniques, and
cryptographic computation capabilities of the nodes).

 0

 1

 2

 3

 4

 5

 6

 7

2512.50

A
ve

ra
ge

 n
um

be
r

of
 h

op
s

Percentage of JF

Topology size: baseline
Topology size: baseline /4

Fig. 16. Hops for received packets for different system sizes

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30

F
ai

rn
es

s

Percentage of JF

Topo. size: baseline
Topo. size: baseline /4

Fig. 17. Fairness for different system sizes

Other relevant parameters include the number of nodes,
the mobility model, the underlying transmission proto-
cols (MAC and physical layer), the propagation model of
the radio channel, as well as the strength of the attacker
(e.g., the number of controlled nodes).

In this section, we present an overview of related work
in security in ad hoc networks with an emphasis on the
mechanisms aiming at protecting against DoS attacks.

Securing Routing Protocols:The area which has
attracted the most attention is security of the routing pro-
tocol and in particular, security of route establishment.

Ariadne [4], proposed by Hu, Perrig and Johnson,
protects source routing protocols such as DSR against a
number of attacks. They propose a protocol to secure the
routing discovery phase and to ensure that all forwarded
packets follow the secure route. As they mentioned, this
protocol does not protect the network against a legitimate
but malicious relay node, which silently discards all
or part of the packets. The two suggested counter-
measures in [4] are Passive Acknowledgement (that we
discussed in [21]) and multi-path routing. Reference [4]
also suggests blacklisting poorly performing nodes in
order to prevent them from being included in future
routes; we evaluated the resilience of multi-path routing
and reputation systems in Section III.

In the same paper Huet al. also consider a route-
request-flooding attack, which without counter-measures
can be quite devastating, as each Route Request message
generates a broadcast throughout the entire network. The
proposed solution consists of having every noderate
limit the Route Requests it is asked to relay. Although
such a mechanism is indeed needed to protect the system
from such attacks, we showed in Section III that such
rate limiting can also delay a victim’s ability to respond
to an attack, and consequently will reduce the throughput
of victims.

Hu et al.also address the problem of securing distance
vector protocols and have developed a protocol termed
SEAD (Secure Efficient Ad hoc Distance vector routing

13

protocol) [3]. In order to guard against several attacks
including DoS attacks, SEAD makes use of one-way-
hash chains and Merkle hash trees. The purpose of
these structures is to authenticate the metric (distance
to the target) and the sequence numbers (which are
used in distance vector to assess the freshness of the
information about a given route and, if not properly
protected, could be exploited to mount attacks). They
conclude that distance vector protocols are more difficult
to secure than those based on source routing. In any case,
we note that SEAD does not consider attacks against
packet forwarding, nor does it address the use of multiple
routes.

Other studied attacks include the Rushing Attack [7]
(discussed in Section III) and the Wormhole Attack [16].
Reference [31] provides a description of four new mech-
anisms as tools for securing distance vector and path
vector routing protocols; however, these mechanisms aim
at protecting against attacks that are different from the
those considered in this paper.

Finally, other proposals about secure routing proto-
cols focus on secure route establishment and explicitly
exclude packet dropping from their field of investigation
[2], [5]; we do not comment on them, as they are quite
remote from our topic.

Identification of the Attacking Node(s):We have
considered that once a victim has detected a DoS attack,
it will establish a new route. A more sophisticated
reaction would also attempt to identify the attacking
node(s) on the route exhibiting the anomalous behavior.
For this purpose, Awerbuchet al. propose a technique
aiming at identifying a “Byzantine node” on a given
route [1]. The technique requires that the destination
acknowledge every packet to the source; when the source
detects that the number of lost packets is higher than a
given threshold, it performs a binary search on the path
in order to identify the faulty link. For that purpose, it
polls specific nodes viaprobesand asks them to reply.
The protocol considers that malicious nodes are unable
to distinguish between polling packets and normal ones,
and are unable to know whether the source has started
a probing session. Although a promising technique, this
proposal has been investigated in static scenarios and its
effectiveness with mobility is still unproven.

VI. CONCLUSION

In this paper, we studied a novel DoS attack perpe-
trated by JellyFish: relay nodes that stealthily misorder,
delay, or periodically drop packets that they are expected
to forward, in a way that leads astray end-to-end conges-
tion control protocols. This attack is protocol-compliant
and yet has a devastating impact on the throughput of

closed-loop flows, such as TCP flows and congestion-
controlled UDP flows. For completeness, we have also
considered a well-known attack, the Black Hole attack,
as its impact on open-loop flows is similar to the effect
of JellyFish on closed-loop flows.

We studied these attacks in a variety of settings and
have provided a quantification of the damage they can in-
flict. We showed that, perhaps surprisingly, such attacks
can actuallyincreasethe capacity of ad hoc networks
as they will starve all multihop flows and provide all
resources to one-hop flows that cannot be intercepted by
JellyFish or Black Holes. As such a partitioned system is
clearly undesirable, we also considered fairness measures
and the mean number of hops for a received packet, as
critical performance measures for a system under attack.

We assessed the effects of various performance factors
on the above metrics via a simple analytical model and
a substantial number of simulation experiments. In this
way, we provide a quantitative study of the performance
impact and scalability of DoS attacks in ad hoc networks.

Our objective is to provide guidelines for protocol
designers who are developing DoS-resilience mecha-
nisms: with a better understanding of the key attack
factors and how to evaluate the impact of an attack,
protocol designers can better determine if the overhead
of deploying a counter-strategy is merited given the
damage that an attack can inflict.

REFERENCES

[1] B. Awerbuch, D. Holmer, C. Nita-Rotaru, and H. Rubens,
“An on-demand secure routing protocol resilient to byzantine
failures,” in Proceedings of WiSe, 2002.

[2] B. Dahill, K. Sanzgiri, B. N. Levine, C. Shields, and E. M.
Belding-Royer, “A secure routing protocol for ad hoc networks,”
in Proceedings of ICNP, 2002.

[3] Y.-C. Hu, D. B. Johnson, and A. Perrig, “Sead: Secure efficient
distance vector routing for mobile wireless ad hoc networks,”
Ad Hoc Networks, vol. 1, no. 1, pp. 175–192, 2003.

[4] Y.-C. Hu, A. Perrig, and D. B. Johnson, “Ariadne: A secure on-
demand routing protocol for ad hoc networks,” inProceedings
MobiCom 2002, September 2002.

[5] M. Zapata and N. Asokan, “Securing ad hoc routing protocols,”
in Proceedings of the ACM Workshop on Wireless Security
(WiSe), 2002.

[6] S. Marti, T. J. Giuli, K. Lai, and M. Baker, “Mitigat-
ing routing misbehavior in mobile ad hoc networks,” in
Mobile Computing and Networking, 2000, pp. 255–265,
http://citeseer.nj.nec.com/marti00mitigating.html.

[7] Y.-C. Hu, A. Perrig, and D. B. Johnson, “Rushing attacks
and defense in wireless ad hoc network routing protocols,” in
Proceedings of WiSe, 2003.

[8] S. Floyd, M. Handley, J. Padhye, and J. Widmer, “Equation-
based congestion control for unicast applications,” inProceed-
ings of ACM SIGCOMM, 2000.

[9] E. Blanton and M. Allman, “On making TCP more robust to
packet reordering,”ACM Computer Communications Review,
vol. 32, no. 1, pp. 20–30, 2003.

14

[10] S. Bohacek, J. Hespanha, J. Lee, C. Lim, and K. Obraczka,
“TCP-PR: TCP for persistent packet reordering,” inProceedings
of the 23rd IEEE International Conference on Distributed
Computing Systems, 2003.

[11] F. Wang and Y. Zhang, “Improving TCP performance over mo-
bile ad-hoc networks with out-of-order detection and response,”
in Proceedings of MobiHoc, 2002.

[12] M. Zhang, B. Karp, S. Floyd, and L. Peterson, “RR-TCP: A
reordering robust TCP with DSACK,” inProceedings of IEEE
ICNP, 2003.

[13] A. Kuzmanovic and E. Knightly, “Low-rate TCP-targeted denial
of service attacks (the shrew vs. the mice and elephants,” in
Proceedings of ACM SIGCOMM, 2003.

[14] L. Brakmo, S. O’Malley, and L. Peterson, “TCP Vegas: New
techniques for congestion detection and avoidance,” inProceed-
ings of ACM SIGCOMM, 1994.

[15] C. Casetti, M. Gerla, S. Mascolo, M. Sanadidi, and R. Wang,
“TCP Westwood: Bandwidth estimation for enhanced transport
over wireless links,” inProceedings of ACM MobiCom, 2001.

[16] Y.-C. Hu, A. Perrig, and D. B. Johnson, “Packet leashes: A
defense against wormhole attacks in wireless networks,” in
Proceedings of IEEE Infocom, 2003.

[17] K. Fall and S. Floyd, “Simulation-based comparison of Tahoe,
Reno and SACK TCP,”ACM Computer Communications Re-
view, vol. 5, no. 3, pp. 5–21, July 1996.

[18] V. Paxson and M. Allman, “Computing TCP’s retransmission
timer,” Nov. 2000, internet RFC 2988.

[19] M. Chan and R. Ramjee, “TCP/IP performance over 3G wire-
less links with rate and delay variation,” inProceedings of ACM
MobiCom, October 2002.

[20] D. B. Johnson and D. Maltz, “The dynamic source rout-
ing protocol for mobile ad hoc networks (DSR),” 2003,
http://www.ietf.org/internet-drafts/draft-ietf-manet-dsr-09.txt.

[21] I. Aad, J.-P. Hubaux, and E. W. Knightly, “Denial of service
resilience in ad hoc networks,” inProceedings of Mobicom,
2004.

[22] P. Papadimitratos and Z. Haas, “Secure data transmission in
mobile ad hoc networks,” inProceedings of WiSe, 2003.

[23] M. Gerla, S. Lee, and G. Pau, “TCP Westwood simulation
studies in multiple-path cases,” inProceedings of SPECTS, July
2002.

[24] N. Sadagopan, F. Bai, B. Krishnamachari, and A. Helmy,
“PATHS: analysis of path duration Statistics and their impact
on reactive MANET routing protocols,” inProceedings of
Mobihoc, 2003.

[25] S. Buchegger and J.-Y. L. Boudec, “Performance Analysis of
the CONFIDANT Protocol: Cooperation Of Nodes — Fairness
In Dynamic Ad-hoc NeTworks,” inProceedings of IEEE/ACM
Symposium on Mobile Ad Hoc Networking and Computing
(MobiHoc), 2002.

[26] P. Michiardi and R. Molva, “Core: A Collaborative Reputation
Mechanism To Enforce Node Cooperation In Mobile AD HOC
Networks,” in Proceedings of The 6th IFIP Communications
and Multimedia Security Conference, 2002.

[27] P. Papadimitratos and Z. Haas, “Secure routing for mobile ad
hoc networks,” inProceedings of CNDS, 2002.

[28] R. Jain, The Art of Computer System Performance Analysis.
John Wiley and Sons, Inc., 1991.

[29] “The network simulator - ns-2,” http://www.isi.edu/nsnam/ns/.
[30] http://icapeople.epfl.ch/aad/publ/dos-ton-2007/.
[31] Y.-C. Hu, A. Perrig, and D. B. Johnson, “Efficient security

mechanisms for routing protocols,” inNetwork and Distributed
System Security Symposium, NDSS, 2003.

Imad Aad (aad@docomolab-euro.com) is a
senior researcher at DoCoMo Euro-Labs, Ger-
many, working within the Future Networking
Lab. He got his Electrical and Electronics
engineering degree in 1998 from the Lebanese
University, Beirut. He got his M.S. degree in
1999 from the University of Nice - Sophia
Antipolis, then his Ph.D. degree from Joseph
Fourier University, France, in 2003. He pre-

pared his Ph.D. on quality of service in wireless LANs at INRIA,
France, within the Plaǹete team. He worked at EPFL within the LCA
team as a senior researcher from 2003 to 2005 where he worked on
cheating and cheating detection issues, DoS attacks and resilience and
on general security aspects in wireless networks. He joined DoCoMo
Euro-Labs in December 2005 where he is working on cooperative
coding, anonymity, quality of service, beam antennas and overlays
in wireless networks. He is chairing WiOpt 2008 workshops and
served in the program committee of ESAS, WinSys, CFIP, WCNC
and IWCMC. http://imad.aad.name

Jean-Pierre Hubaux (jean-
pierre.hubaux@epfl.ch) joined the faculty
of EPFL in 1990; he was promoted to full
professor in 1996. His research activity is
focused on wireless networks, with a special
interest in security and cooperation issues.
He has been strongly involved in the National
Competence Center in Research named
“Mobile Information and Communication

Systems”(NCCR/MICS, a.k.a. Terminodes project), since its genesis
in 1999; In this framework, he has notably defined, in close
collaboration with his students, novel schemes for the security and
cooperation in multi-hop wireless networks, vehicular networks, and
sensor networks; He has recently written, with Levente Buttyan, a
graduate textbook entitled “Security and Cooperation in Wireless
Networks”. He is an Associate Editor of IEEE Transactions on
Mobile Computing and Foundations and Trends in Networking. He
served as the general chair for the MobiHoc 2002. He has been
serving on the program committees of numerous conferences and
workshops, including SIGCOMM, Infocom, Mobicom, Mobihoc,
SenSys, WiSe, and VANET. He has held visiting positions at
the IBM T.J. Watson Research Center and at the University of
California at Berkeley. He was born in Belgium, but spent most
of his childhood and youth in Northern Italy. After completing his
studies in electrical engineering at Politecnico di Milano, he worked
10 years in France with Alcatel, where he was involved in R&D
activities, primarily in the area of switching systems architecture
and software. http://people.epfl.ch/jean-pierre.hubaux

Edward W. Knightly (knightly@rice.edu) is
a professor of Electrical and Computer En-
gineering at Rice University. He received the
B.S. degree from Auburn University in 1991
and the M.S. and Ph.D. degrees from the
University of California at Berkeley in 1992
and 1996 respectively. He is an associate editor
of IEEE/ACM Transactions on Networking.
He served as technical co-chair of IEEE INFO-

COM 2005, general chair of ACM MobiSys 2007, and served on the
program committee for numerous networking conferences including
ICNP, INFOCOM, MobiCom, and SIGMETRICS. He received the
National Science Foundation CAREER Award in 1997 and has been
a Sloan Fellow since 2001. His research interests are in the areas of
mobile and wireless networks and high-performance and denial-of-
service resilient protocol design.

