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Abstract—In 802.11 managed wireless networks, the manager to complex node interactions and coordinatton.

can address under-served links by rate-limiting the confliting In this paper, we design MIDAS, a framework that uses
nodes. In order to determine to what extent each conflicting ,nine measurements of network performance to infer thet mos
node is responsible for the poor performance, the manager mels . . . .
to understand the coordination among conflicting nodes' tras- hindering nodes which cause a target link to be under-seved
missions. In this paper, we present a management framework to obtain poor performance. Moreover, MIDAS identifies ef-
called MIDAS (Management, Inference, and Diagnostics usip fective management actions to increase the performanéeof t
Activity Share). We introduce the concept of Activity Sharewhich  ynder-served link by appropriately limiting the transrioss

characterizes the coordination among any set of network nees 5:05 of the hindering nodes. Finally, we implement MIDAS
in terms of the time they spend transmitting simultaneously

Unfortunately, the Activity Share cannot be locally measued by O real hardware and investigate its performance in an indoo
the nodes. Thus, MIDAS comprises an inference tool which, lsed  testbed and simulation.

on a combined physical, protocol, and statistical approachinfers MIDAS employs a methodology comprising three proce-
the Activity Share by using a small set of passively collecte time-  dyres:i) measurement collectiowhich gathers reports from
VIDAS wses.the estmated Actity Share s the nput of & Sach node consisting of a small set of passive time-aggregat
simple model that predicts how limiting the transmission rae Measurementsi) inference which infers the coordination

of any conflicting node would benefit the throughput of the among the transmissions of different sets of nodes using
under-served link. The model is based on the current network the reported measuremeniis), prediction, which utilizes the
conditions, thus representing the first throughput model usg jnferred information to predict the throughput gain of any

online measurements. We implemented our tool on real hardwa . . it . -
and deployed it on an indoor testbed. Our extensive validatin target link, corresponding to rate-limiting different dbcting

combines testbed experiments and simulations. The resulshow nodgs. In pa_rticular, our contributions are as follows. _
that MIDAS infers the Activity Share with an average normalized First, we introduce the concept dctivity Sharewhich

relative error as low as 4% in testbed experiments. characterizes the coordination and interference amongeiny
of conflicting nodes. The throughput of a link is influenced
by the sender busy time (i.e., the more the sender senses
the medium busy the less it can transmit), and the collision
probability (i.e., even if it can transmit, its transmigssoare
corrupted). Coordination is critical to understand hoviedtént
Managed enterprise WLANs and wireless mesh networkgdes contribute to busy time and collision probability atle
regularly encounter underperforming links, i.e., linksttwi gther. In fact, a sender’s busy time is not simply the sum of
throughput below an acceptable value determined by th& transmission times of its neighbors, as neighbors which
operator. A key corrective action available to the networe hidden from one another may transmit simultaneously.
manager is to throttle other nodes that may be hinderipgyalogously, link collisions are not the sum of the collisio
the underperforming link. However, to do so first requiregith each hidden terminal, because multiple hidden termi-
|dent|fy|ng which node to throttle. While it is clear it shidu nals may collide with the same packet' Therefore, knowing
be a “neighbor” there may be a large set of candidajghich conflicting nodes are destructive to a link requires
nodes for which throttling can have vastly different effect ynderstanding their coordination. In order to capture node
including no effect on the under-served link. Moreoversit icoordination, we define network state as a set of transmittin
not immediately evident how much throttling any node wilhodes; accordingly, in each time instant the network is in a
increase the throughput of the targeted under-served ligk d njque state. We definActivity Shareas the time share the
network spends in each possible state in a given intervait Th
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is, the Activity Share is a vector including, for each poksibits inputs from the current network conditions, i.e., frohet
set of nodes, the fraction of time they spend transmittiigferred Activity Share, thus representing the first thriopigt
simultaneously. Note that the Activity Share depends notodel based on online measurements.

only on the topological relationships between the nodes asFourth, we extensively evaluate the accuracy of MIDAS
determined by carrier sensing and link interference, bs alby combining testbed experiments and simulations. We im-
on the transmission rate and pattern of each node under phemented MIDAS on real hardware and deployed it on an
current traffic conditions. Furthermore, since the trassion indoor testbed, where we investigated its sensitivity ffedént
pattern of any node depends on the transmission patternnetwork settings under real channel conditions. The result
its neighbors, and the transmission pattern of its neighb®&how that MIDAS infers the Activity Share with high accuracy
depends on the transmission pattern of their neighbors (arel, with an average normalized relative error as lowm#s
thus recursively of all nodes in the network), the Activityn order to extend our validation to a broader set of scesario
Share captures the effects of global network interactibas t we performed numerous simulations. A key finding is that,
extend beyond node locality. In particular, the Activitya®® by rate-limiting different conflicting nodes for the samesefix
captures the coordination among the transmissions of amyount, the throughput of the target link can increase from
set of conflicting nodes as determined by the current globgl to 172% of the rate-limited quantity. We also validate the
network conditions. In contrast, alternative indicatossch effectiveness of the Activity Share in supporting throughp
as the individual node transmission rates, are insufficient prediction, and show that MIDAS anticipates the benefits of
determine how conflicting nodes influence the target linklternative rate-limiting actions with an error lower th2ots
since they do not capture the coordination. For examplef, the rate-limited quantity.

the conflicting node with the highest transmission rate migh The remainder of the paper is organized as follows. In
mostly transmit simultaneously with other conflicting nede Section Il we present MIDAS, and define the Activity Share.
such that limiting its rate may scarcely benefit the target.li We develop a technique to infer the Activity Share in Section
We will show how the manager can utilize the Activity Shar@l. A throughput prediction tool using the Activity Share i
as a tool to understand the network behavior and to determihgscribed in Section 1V. Section V presents testbed and sim-
a strategy to change it, e.g., to increase the throughput ofilation results. Finally, Section VI overviews related k&r
congested or underperforming link. Unfortunately, théneat and Section VII concludes the paper.

tion of the Activity Share is challenging, because it canmot
locally measured by the nodes. In fact, during the reception
of multiple overlapping packets, nodes cannot identify all

senders, and thus recognize the network state. A link can be considered under-served due to a discrepancy
Second, we design a tool to infer the Activity Share usingigtween the network manager’s targeted link throughput and
small set ofpassively collectedime-aggregatdocal channel he actual throughput. The network manager’s policy for set
measurements, reported by every node. Inferring the Ay;tiviting target throughputs (incorporating factors such améss,
Share requires computing the temporal distribution of th§os, pricing, offered load, etc.) is beyond the scope of this
different network states, i.e., how long the network spent haper. The objective of MIDAS is to determine the causes of
each of them. We develop a technique to eliminate infeasijg poor performance and design corrective actfomghile
distributions by incorporating physical rules (e.g., thesy |ocal node observations can point out problematic links, in
time of a node should coincide with the sum of the duratio%nera“ the causes of the low throughput cannot be locally
of the states in which its neighbors transmit and that nog&erred. For instance, in the case of high packet drop tate,
does not). Unfortunately, there can be an infinite nUMbRYca| measurements can seldom determine the hinderingnode
of temporal distributions that yield identical measuretsen \jpaS helps improving the problematic link by inferring the
Consequently, we penalize unlikely distributions by inmr jmpact of hindering transmitters and by rate-limiting thesn
rating protocol rules (e.g., the occurrence of states incivhigestructive flows.
adjacent nodes simultaneously transmit is unlikely), @l€ci  The severity of link hindering interactions mainly depends
a representative by using a statistical approach based § three factorsi) network topology: nodes’ pairwise re-
entropy considerations. To further limit the complexity@fr |at0ns, as determined by carrier sensing and interference
problem, we propose a technique to reduce its dimensions, dtermine the form of interaction, e.g., hidden terminats a
actually eliminatingthe unlikely distributions. . responsible for transmission corruptions, while carremsed
Third, we develop a tool to predict the throughput increasg,qes affect deferraij) link transmission rates: nodes that
achievable on the target link by rate-limiting the linksrf@d  ansmit few packets are less likely to interfere with a éarg
by the target link's conflicting nodes. The Activity Sharepe jink: and i) link transmission coordination: the number of
mits assessment of the current network conditions; howevggy packets corrupted by a hidden terminal depends on
it lacks predictive power to identify effective rate-liimg oy frequently a link sender and hidden terminal transmit

actions and to anticipate their outcomes. The challenge iss‘imultaneously. Note that transmission rates and coatidima
understand how changing the transmission time of a Conﬂi%rt'rongly depend on the traffic load of each node.
ing node affects the Activity Share, and subsequently how

the new ACtiViFy Share affects the tgrget link's thrOUghP_Ut 2In this paper, we only consider 802.11 MAC issues, e.g., weal@ddress
We design a simple throughput prediction model that derivegoughput losses due to TPC dynamics, or low received kigrength.

II. THE MIDAS FRAMEWORK



In this section, we introduce a novel metric termfsctivity
Sharewhich captures the coordination between any possible

set of nodes, by measuring the fraction of time they transmit

simultaneously. Even though the Activity Share does not

directly measure the interference between nodes, it reflect

node interactions. Thus, the Activity Share is affected by

node interference relationships, traffic load, MAC proipco @ (®)

etc. We will show hOVY MIDAS can utilize _the ACt'V't_y ShareFig. 1. Example of transmission alignment due to (lack ofyiea sensing.

to evaluate the potential effects of alternative correctigtions

(see Section IV). We will also show that the Activity Share

cannot be locally observed by the network nodes and descrip&mall portion of the released airtime will result in free

how it can be inferred from measurements collected by tBgtime for (a,b). The analysis of the coordination between

nodes. Note that, in contrast to the Activity Share, alt8vea the conflicting noded and 2, and in particular of the large

indicators that evaluatpairwise conflicts between interfering overlap between their transmissions, can promptly lead to

links taking into consideration onljopological information  this conclusion. Obviously, this is only a simple case, wher

(e.g., the conflict graph [10]) miss the important dynamihe |arge overlap between the transmissionsl cdnd 2 is

information about the coordination of the transmissions @t surprising; however, in more complex topologies with

multiple nodes. several conflicting nodes, it is not clear how to determingeno
coordination and its effect.

A. The Activity Share: Fundamental Element of Network Ob- N€twork State and Activity Share. The key to under-

servation standing how conflicting nodes affect an underserved link is

, , . to determine the time they spend transmitting simultanigous
As previously explained, our management framework aimg, instance, in the example in Figure 1, the transmissions

to identify the originating causes of under-served linksl any nodesl and? mostly overlap, anticipating a small gain in
to increase their throughput by rate-limiting conflictingdes. gee ajrtime perceived by the linfa, b), from the reduction of
In this study, we consider 802.11 stationary multihop véissl e transmission times of either one. Furthermore, theerigh
networks, including enterprise WLANs and mesh networks. e nymber of nodes in conflict with a target link which can
such networks, nodes can affect the throughput attained og@entially transmit simultaneously, the lower the gaianir
link (sender-receiver pair) by two key meaisreducing the jimiting the transmission time of a single node. For ins@nit

time the medium is perceived as free by the sender, thergRyhe example instead of two uncoordinated nodes in conflict
forcing the sender to defeii) corrupting the packet receptionyyit jink (a, ), there were three or more such nodes, the free

at the receiver end, i.e., colliding. In multi-hop topolesi 5jrtime gained by rate limiting a single node would be even
despite the use of the carrier sensing mechanism, sevetesnqqer.

that are in conflict with a specific transmitter can potehial Let us consider anV-node network. To formalize the
transmit s_lmultaneo_us_ly. Hence_, 't_ IS c_hallenglng to apate concept of simultaneous transmission of a set of nodes, we
the benefits of rate-limiting conflicting links on the sentasy definenetwork stateand Activity Shareas follows

time or collisions of the target link, and thus on its thropgh Definition 1: TheNetwork StateD denotes the transmission

Even knowmg the gxact packet tr_ansm|33|c_)r? rate of each n%qStus of each node in the networR. is an N-dimensional
in conflict with the link of interest is not sufficient, becaube

th hout qai inlv d d th dinati vector comprising an entry for each node that indicates
roughput gain mainly depends on the coordinalion amopiainer the node is transmitting or idle in the state.=
the conflicting nodes as illustrated in the example below.

E le. The follow le sh h q (d1,da,...dn), d; € {0,1}, whered; = 1,0 indicates that
xample. The following example shows that node Coory e ; jg transmitting or not, respectively. Note that each

@na_uon IS the_key to under_stand the effectiveness of ralfstwork state is univocally identified by the set of transimit
limiting conflicting nodes to improve the throughput of an odes

e e Teless i STEe (ere are) nodes n he netvork there s
picted in g @), L ) 9 Mhssible states denoted by, Do, ..., Dyn. The network
nodes indicates that the two nodes are within carrier sgns

range. The link(a, b) is identified as under-served: the go Pansitions in time through a succession of network staths.

: . stantaneous Network Sta#e timety, D(to), is the state of
of the network manager is to assess how decrementing EHS network at time.. i.e ﬁ(t ) = D iff the network state
transmission rates of the conflicting links formed by nodes _, . L= O = A0 J
and?2 can benefit the throughput of linfa, b). Since nodeg 2t UMefo 1 D o L :
and2 are not coordinated by carrier sensing, they can transrmtglﬁ);'wv(\)’fkdsef;nn%;hii\(;t;’é%' Sstggev\é?'zrr‘ns lj?:’t time share
simultaneously. Figure 1(b) depicts a typical timeline loé¢ t e p o P ) .
transmissions of the three nodes. The continuous defesral j PEfinition 2: The Activity Share of the network stat;,
the cause of the performance issue of liftk b); in fact, denoted byAS(L,D;), is the fraction of time during the
(a,b) can transmit only when both nodésand 2 are silent. interval [0, L] for g’Vh'Ch the network was in stat®;, i.e.,
Thus, decreasing the transmission rate of only one of thet® (L. D;) = 1 [, 155, (t)dt, wherel 5,5 (1) de-
will produce a minimal benefit tga, b); this is because only notes the indicator function such thit; , 5 ,(¢) =1 if the

mm Transmit Busy



network state at time is ﬁj, and 0 otherwise. The sum ofinterval. Clearly,T}, + By + I, = 1, Vk. An implementation of
AS(L, D;) over all possible states adds to one: the measurement collection tool is presented in Section V-A
In contrast to trace-based solutions, our reports onlyuthel

2N :
ZAS(L,EJ.) -1 VL ) two numerical values.
j=1

IIl. THE INFERENCETOOL

We separately denote Astivity Share A8, the distribution of _ The reconstruction of the Activity Share from the reports

time among all states that the network visited during thestiniS challenging because the time-average measuremeitts in
interval [0, L], i.e. A5 — {AS(L ﬁj) vﬁj}_ Note that if the are the result of the transmissions either of the individual

nodek (i.e., Ty) or of all its neighbors (i.e.,B;). In both
cases, it is not possible to locally determine the overlagpi
intervals of subsets of neighbors, and of sets of nodes that
do not share neighbors. In this section, we will show how to
Qercome this issue; our solution consists of three elesent

The estimation of the Activity Share is challenging becau X d btai S B
it cannot be locally measured by the nodes. Specifically, tﬁgSt’ In order to 0 tain accurate estlmat|or.1$,ﬂwe userthe
inputs to constrain the domain of the feasibl&' (Section

nodes cannot identify the transmitters of all the packety th _ . X N
carrier-sense. In fact, some of the overlapping packegs,(e.”I'B)_' Since the constraints dq n_ot generally identify dque
sent byl and2 in Figure 1) may collide at the intermediates_omnon’ we propose an optimization problem to choose a
nodes (e.g., node), preventing the decoding of at least one opingle repre_sentatlveﬁls (Section 1I-C). The last elem_ent
them. Another obstacle is the strength of the received kign f the solution addresses the computatpnal c-ompleiqty of
which may exceed the carrier sense threshold or gener %p_roposed prol_)lem, and reduces the dlmenS|on_of4tﬁe
collisions, but not be sufficiently greater than the backgib solution space using protoc_ol ru|e§ of 802.11 (S.eCt'OIDD”'.
noise to permit the decoding of the packet. In order 1]6' the experimental results in Section V we consider prattic

overcome these challenges, it is necessary to analyze gﬁglementatlon issues, such as report losses and timengary

combined measurements of different nodes. annel.

network is stationarflimy, .., AS(L, D;) is the probability
that the network at any time instant is in staffg. In the
following, we consider large enough to satisfy stationarity,
and we dropL from our notation.

A. Network Model
B. The Measurements We consider a single-radio, single-channel network, and we

In MIDAS, each network node: continuously collects abstract it as a graply = {V, E}, where the verticed
information, and delivers a repotk,, to the manager at epresent thé_\f nod_es, and the edgés represent th_e carrier
every report interval. In this paper, we suggest a new sche§f'Sing relationships among the nodes. The existence of a
which we will use to infer Activity Share, given a set ofS€nsing edgei,j) € £ means that nodeé carrier senses
measurements reported by the nodies: {R1,Ry,..Rn}. transmissions from nodﬁand vice versa. We define the set of

A tradeoff emerges between the amount of informatidfi€ nodes that nodecarrier senses ds.; (i) = {j|(i,j) € E}.
contained inRy, and the estimation accuracy of the Activity/V& @ssume that the topology of the graph with respect to
Share. IfR,;, contained complete traces of the exact times arfel S fixed during any observation interval and known to our
durations of all transmissions of noélethe manager could useinference tool (e.g., via offline link profiling [19], or pass
the reports to reconstruct a global trace of the transmmissig®nline estimations [13]).
in the network (such as in Figure 1(b)), and hence obtaj
the Activity Share by inspection. However, the amount o ] ) ) o
information that needs to be collected and the timely dgfive !N Order to obtain an accurate estimation of the Activity
of such traces would overwhelm the network resources. Fopare, we use the reported measureménts constrain the
example, a set of traces satisfying our requirements iscteit! feasible domain. Since the local observations of the cHafne

in [5]: therein, the authors show that the overhead is beatwe8"Y node provide information about the cumulative duration

100 kbps and 500 kbps per node, without even considerifify Sets_Of network states, the actualS must satisfy the

the multiplicative effect of multi-hopping [3]. constraints imposed by all local observations, and herese li

We consider a highly simplified and easily measured s the feasible region the observations define. Accordingey
of inputs R, consisting of information passively collected®@n derive the following constraints:
from the local network card and time averaged over the report

. Report-based Constraints

interval. Each node observes the local channel in threesstat Z AS(D;) = Ty (2)
T if the measuring node is transmitting;, if the node is not j{(DF=1)

transmitting but the total received energy exceeds theaecarr ’ -

sensing threshold: if neither the received energy exceeds the > AS(Dj) = Bi 3)
carrier sensing threshold, nor the node itself is tranamgitt J(DF=0)A(3s€Ves(k): D5 =1)

Notice that the stat® reflects the activity of all carrier sensed Z AS(ﬁj) — I (4)

nodes and does not distinguish between different transritt
The reportRy, includes the time sharesy, By, I, nodek
observed the channel in any of the three states during tloetrep Vk € [0..N]

3. k_— 5
J:(DF=0)A(D5=0,Vs€Ves(k))



where D7 denotes then-th component of theﬁj vector. if their backoffs expire within a slot interval, while non-
Equation (2) constraints the time share each node is traaslcent nodes can initiate their transmissions indepefyden
mitting: the sum of the Activity Shares of states in whiclAs a consequence, among the admissill§, our scheme
node k transmits should be equal to the fraction of tirhe should favor theAS that do not assign large probabilities to
transmitted. Equation (3) is related to the busy time of thetates including neighbor transmissions.
nodes. In our network model, the state of a nédis busy if We model the protocol behavior of 802.11 by identifying an
the node is not transmitting and any of the node¥.ink) is a priori distribution that assigns probabilities to the stafé;s
transmitting. Hence, the Activity Shares of states, in Whicunequally. Since trying to capture the exact prior probgbil
any of the nodes inl.s(k) is transmitting and nodé: is of each state according to 802.11 is very complicated, we use
not, sum up toBy. Notably, also the busy time of the nodes coarse-grained approximation. Nonetheless, we will show
carries information about the Activity Share, by inducingn Section V that our technique attains high accuracy. Our
constraints on the duration of the network states includirigndamental idea is to assign to the network statgsriori
transmissions from any neighboring node. The assumptiprobabilities exponentially decreasing with the number of
that the links inE are fixed plays a crucial role in enforcingadjacent transmitters they contain, e.g., the states icomga
this constraint. Even though this is a simplifying assumpti two pairs of adjacent transmitters have half the probabdlft
related research shows that threshold-based carrierngenshose that contain only one pair. Notice that this assignmen
relationships can be reasonably well approximated as yingartitions the stateﬁj in classes, where all the states in the
[18]. Our experimental results, and a specific discussion $ame class contain identical numbers of adjacent traressyitt
Section V-B, evaluate the effects of this assumption. Eqoat and thus have equal probabilities. For instance, classiOdas
(4) relates to the idle time of the nodes, and can be obtain@l states that do not contain adjacent transmitters ane hav
with considerations analogous to the previous two. Simppeobability p, class 1 includes all states that contain only one
considerations show that any of the three equations assdcigair of adjacent transmitters and have probabjlit2, etc.
with each node is redundant with respect to the remaining twoMinimum Relative Entropy AS inference.In the previous
and Equation (1). This fact can be easily verified by noticingaragraph, we formalized our knowledge of the protocol
that the state indexes used for the three constraints (2)403 behavior by using aa priori distribution of AS. Our objective
are a partition of the whole set of indexes, thus they sum i to select the feasiblel’S closest to the defined priori
to the left hand-side term of Equation (1). Thus, we considdistribution. We propose to use the concept of Kullback-
Equation (4) redundant for all nodes. Leibler distance [6] to quantify the distance between two
distributions, and select the representatiéd as the feasi-
ble solution that minimizes such distance from thepriori
distribution. Accordingly, the problem is formulated f@ing

In this subsection, we show how to determine a repréne Minimum Relative Entropy PrincipfeOut of the feasible
sentative AS close to the actualdS occurred during the solutions that have equal Kullback-Leibler distance frdma t
measured interval. The representativd should satisfy the a priori distribution, the Minimum Relative Entropy Principle
report constraints, since the actul$ determines the reportedfavors the solutions that spread the probability of theestat
measurements. However, the constraints we defined do ipthe same class as evenly as possible. In fact, in absence of
identify in general a singlelS, but rather a feasible solutionany other information about the 802.11 protocol behavitr, a
domain. Each Activity Share distributiodS in the domain states that the priori distribution assigns to the same class
defined by the reports would have generated the exact safia@e identical probability. Hence, any different probiapil
observations obtained by the nodes; hence, the selectlona§§|gnment would introduce an unmotivated bias.
any of thesedS is admissible. However, a key observation is The AS Inference problem. We formulate the4s infer-
that not all feasible solutions are equally likely, .9.280 ence problem as:
introduces a bias against states that include simultaneous
transmissions of mutually carrier sensing nodes. We farmaal . T

. . A min ijlog—
this bias using the priori distribution of the states, and we j
select our representativﬁs as the feasible solution closest to
the a priori distribution.

C. Entropy-based Statistical Solution

st. ®.x=T

Protocol-driven a priori information. As shown in Section V.r=B
[I-A, we can give a statistical interpretation of the compnts 1-z=1
of the Activity Share. EachAS(D;) corresponds to the >0

probability the network is in the stat@ at a random time

instant. Because of the carrier sensing behaV|0r of 802dt1, where VN'S the cardinality of the set of admissible network
all network states hawe priori identical probabilities of occur- states %" in this case) is ay-dimensional vector, whosg
rence, |.e.,AS( ;) is not a priori uniform i.e., equal tozk) th entry isAS(D;); w is the prior distribution of the network
over all statesD;. In fact, 802.11 carrier sense aims to preve tatef cf '(')5 atr;]N = 7‘Ilmatr|x xhosez; tht entryh s L if
the occurrence of states where neighboring nodes transmit's/ — ' otherwise; W is an NV x v matrix, whosei;-

H B! . k _ I _
mUIta.neOUSIYi '-e-{_Dj | 3k, 1:1 € Vcs(k)., D].' =1,D; =1} 3Note the that minimizing the relative entropy is equivalemmaximizing
Practically, two neighbors can transmit simultaneouslyy onthe expected value of the log-likelihood.



th entry is 1 if D;'- = 0and3ds € V(i) : D = 1; T i) based on the new Activity Share, we estimate the potential
and B are N-dimensional vectors, whodeth entries are the throughput gain that any single link can obtain, in pargcul
measurement resulfg,, and By, respectively. Notice that the the target link. With regard to the first procedure, the key
objective function is the relative entropy between the sotu technique we devise follows a differential approach in vhic
x and the prior distributionw; further, the first and secondwe consider that small deviations from the current network
constraints (eactV-dimensional) correspond to Equations (2¢onditions have limited effect on the nodes other than the
and (3) respectively, while the third constraihtdimensional) rate-limited and the under-served. The second proced@® us
corresponds to Equation (1). a simple model that identifies how the Activity Share affects
the busy time and collision probability of the under-served

D. Protocol-based State Space Reduction link. In this section, we discuss each step separately.

The solution space of th&S inference problem is generatedA_ Evolution of the Activity Share after Rate-limiting

by 2% variables, i.e., the Activity Share components that corre- _ i _

spond to all possible network states: as the number of nitwor !N ©rder to obtain the potential throughput gain of the under
nodesV increases, the exploration of such a large space to fifi@"ved link by rate-limiting a specific node (Section IV-B),
the best candidate solution becomes computationally camplW€ first compute the Activity Share after rate-limiting. Our
In order to reduce space and complexity, we again leverag&thodology follows a differential approach that assurhes t
the protocol properties of 802.11 which permit to discové¥n@ll changes on the transmission rate of a node do not
unlikely states. affect the relative durations of the states in which thatenod

As we observed, due to carrier sensing, the occurrerfG@SMits. In particular, we assume that the Activity Shafre
of AS that assign large probabilities to states includin e states in which the rate-limited node transmits willuesl

neighboring transmissions is unlikely. We take advantaige |5 Proportion to their values before rate-limiting. Noteath
this consideration by excluding from the solution space tf@sed on the differential approach, the total time the nodes
AS with AS(ﬁj) >0, for any ﬁj including neighboring transmit, other than the under-served and rate-limiteceapd

transmitters. Practically, this is equivalent to reducihg 'S NOt affected by the change. In practice, this can be reliz

number of Activity Share components, by eliminating thosg 9~ by having the transmission rates of neighboring links
corresponding to the unlikelys;. In terms of graph theory, fixed to the value before the management operation. In the

the set of transmitters in any allowed state is an independ&!owing, we illustrate the analytical aspects of the efiéintial

set of the graphG. Thus, the number of network states?pproaCh* while its accuracy is implicitly evaluated by the
erimental results in Section V (see in particular, Fégur

and of Activity Share components to be estimated, reduce®®

to the cardinality of the set of the independent sets, whiéhand 17-19). A
is generally still exponential (in graphs with bounded node DenoteAS. (_ACt'V'ty Shareold) and AS™ (Activity Shar.e.
degree [7]) but smaller tha". new) the Activity Share before and after the rate-limiting

action, respectively. Let us consider the case of ratetitigi

By using this simplification, the resulting inference preol I ) :
the packet transmission rate (i.e., at the MAC layer) of glsin

can be obtained from (llI-C), by equatingto the cardinality o _ : 210
of the set of the independent sets of the network and G§nflicting nodek of a quantity RL. We define{D;"} the

. . . . k . _’kl
replacingw; with 1, vj. The latter substitution reduces the> ates in whiclk: does not transmit (i.e); = 0), and{D;

. ; e .
Minimum Relative Entropy objective to Maximum Entropy{n€ states in whicfk does (i.e..D; = 1), and we establish

the probability of all the states in thdS solution will be that the j-th states, i.e.D}" and D}, differ only for the
spread as evenly as possible according to the constraints. k-th entry, i.e., D* = {dj1...djx—1 0djxy1...d;n} and

In our experiments, we verified that the enhancement défl ={dj1...djk—1 1 djp41...d;jn}. Using the differential
scribed above permits to double the network size that vé@proach, the Activity Share of the network states{(ﬁfl})
can solve with similar time budget. While simplifying thein which % transmits decreases proportionally to the duration
computation, the illustrated state space reduction is anly of those states im.S°, and the stateﬁfo benefits from the

approximation of the reality and may penalize the accuragycrease of the stat@”!, for all j. Formally,
of the obtained solution. We investigate the performance of ’

the state space reduction in Section V-D, while we adopt the

full state space representation in the testbed resultsdtidde 4 gn(Hkl) ~ A5o(DFY) — —ASO(D;?l)A ~h-RL; (5)
V-C. ! ! > AS°(Dy)
l:Df:l
IV. MITIGATION OF HINDERING TRANSMISSIONS Aso(ﬁé_cl)

In this section, we address our goal of improving the ASn(D;'CO) “ASO(D§O)+ ﬁ'h'RLk (6)
throughput of under-served links. Specifically, we show how Z AS*(Dy)

MIDAS uses the Activity Share to predict how limiting the
transmission rate of any hindering node will benefit the whereh is the duration of the packets sent byand RLy,
throughput of the problematic link. Our solution is compds is the rate-limiting amount of node in terms of packets per

of two procedures:i) we address the main challenge obecond. For ease of exposition, we assume fixed duration of
estimating the Activity Share after the management opmrati the data packets transmitted over all links. Next, we wik us

l:D;‘:l



the AS™ to obtain the new collision probability of the under- In order to do this, we compute the total duration the process

served link. is in ON and{ON or OFF} states during a measurement
interval AT the ratio between these two quantities is equal
to the ratio of their average§—TON . Recall that the ON

B. Relationship between the Collision Probability of thgnd OFF states model the Sg%?{;,gof nade the channel

Under-Served Link and the Activity Share at the receiver, and that nodecannot sample the ON/OFF

According to [9], we can express the maximal throughp@focess (i.e., transmit) during the_ transmi;sions_ of nades
of any link after the rate-limiting action by estimating itsVes(2). Hence, we prune all time intervals in which at least
busy time and collision probability. The busy time of a linkone ofi’s neighbors is transmitting, i.e., we consider only time
can be obtained from the new Activity Share using Equatiditervals in which no node it (i) is transmitting. Thus, the
(3). In this section, we show how to use the new Activityvhole duration of the ON-OFF processl"is (1 — B;) AT
Share to determine the collision probability of any linkdanL€t us denoteVj, (i, j) the set of hidden terminals df, j).
in particular of the under-served. Given the Activity Shard hen, the whole duration of the ON period A" is the time
the main challenge in computing the collision probabilityri at least one hidden terminal is transmitting and no node in
the transformation of the cumulative time the colliding aed Ves (@) is transmitting. By using the Activity Share, we denote
have transmitted simultaneously into the number of catliddhe latter interval astS*"*AT, where
packets. For instance, letbe the sum of the Activity Share of
the states where collliding. nodesand b transmit simultane- 4 gHT* _ Z AS(D))
ously; since (assuming a fixed packet duratijra packet can 1-(FmEVie (i.5): DI =D A(DP =0 ¥nVas (i)
collide at most with two different packets, the total number s L )
collided packets between these two nodes can be any integer i B
the rang€[;, 2 min{transmitted packets by a or b}]. In the Finally, the identity betweenfmff# and the ratio of
following, we use a binary channel assumption; accordinglheir total durations imMA7T" discussed above leads to
a packet on(i, j) is corrupted if it overlaps for any arbitrary
small duration of time with any other packet receptiory at Ton ASHT* AT e

In order to compute the collision probability’ of a T = =7 _n. = Asmorm (8)

o ) . on +Torr (1 —B)AT
problematic link(i, j), we determine the success probability, ) _ - )
i.e., the probability that the transmission of a packet fiotm ~ BY replacing (8) intop™/ , we can write:
4 entirely fits within a time interval during which its hidden i normHTw ——ASTormHT .
terminals are not transmitting. To estimate this probshili p=1-(1-AS Je 1-as ©)

we model the transmission attemptsioks the sampling of  which expresses the collision probability of a link using
an ON/OFF process representing the aggregate transmissigtiusively the Activity Share. Using Equation (9) we can

of all the hidden terminals of [9], [19] The ON periOd compute the throughput according to [9]
is the interval during which at least an hidden terminal is

transmitting, the OFF period is the gap in the activity of all V. PERFORMANCE EVALUATION
the hidden terminals that nodehas to discover randomly. In this section, we validate MIDAS through an extensive

In the analysis of this process, we make the followinge; of testbed and simulation experiments. After introdgci
assumptionsl) In general, the transmissions of the hiddeg,, experimental platform and implementation, we investtg
terminals are not coordinated and may overlap; thus, the performance of MIDAS in a real testbed deployment.
durations of the ON and OFF periods are variable. In this,caﬁna”y’ we extend the evaluation by simulating a broader
itis a common assumption to model them distributed exponegist of topologies with larger numbers of nodes, in order to
tially. 2) The duration of an ON period can range from vengetermine the sensitivity of the tool to node density antfitra

short, e.g., an individual ACK transmission, to much 10ng§gaq, and show its robustness to missing reports and rdét tra
than the duration of a data packietin case of consecutive yistripution.

overlapping transmissions of different hidden termin&ie
balance these cases, by approximating the average duddtio
an ON period Ty, with h. 3) Conditioned on the fact thait
can transmit, i.e., that the nodesli (¢) are not transmitting,
we assume that the transmissions @iccur at random points
in time.

In order to succeed, a packet transmitted(oj) needs to

start during an OFF period, and be entirely received dutieg t . !
g P y " énllar to 802.11a. In our configuration, the boards opeaate

OFF period. Thus, using assumptions 1) and 3), we can : . . i
per us, using UmpH )@ ) W,r_ W@ Mbps using BPSK modulation, and are equipped with a 3

A Experimental Testbed

WARP. To validate MIDAS, we used the Wireless Open-
Access Research Platform (WARP) developed at Rice Uni-
versity [1]. The platform, built around a Xilinx Virtex pro-
cessor, includes the MAX2829 radio chipset that provides
RSSI readings. Moreover, WARP implements an OFDM layer

isi ili ij — 1 _ _ Torr 7T X )
the collision .probab|l|ty asp™ = 1 ~ TontTorrC . °""  dBiantenna; all boards are controlled by a laptop via Etéern
[9]; assumption 2) permits to obtaip™’ as a function of .,,nections
T H :
Tonitory: N the remainder, we show how to express |nference Tool Implementation. The implementation of

7o—2a— (and thugp™) as a function of the Activity Share. the inference tool consists of two basic componeitshe



transmission duration countemeasures the time durationduration ofall and onlythe transmissions of a limited set of
the radio is in transmission state by timing the functionseighboring nodes. In Section II-A, we argued that we cannot
that control the transmission operatiofiy. The sub-packet use packet reception statistics to measure node busy tithe wi
RSSI time samplemeasures the time duration the receivethe needed accuracy because of packet losses. In thisrsectio
signal strength, including noise and interference, exseeed we show how to use the received signal strength to discover
given threshold. In contrast to existing off-the-shelfvdrs, neighbors’ transmissions. The advantage of our technigue i
such as MadWifi for Atheros chipsetswhich only provide that it does not rely on packet decoding, thus being resilien
an RSSI sample per packet, our implementation samples tbdosses.

RSSI values at regular time intervals shorter than the gackeWe identify the neighbor set of a node as the set of nodes
duration, and compares them to the carrier sense thresholévhose transmissions consistently exceed an RSSI threshold
Validation Tool. Two additional components were imple-Because wireless links are heterogeneous, the receivedl sig

mented only for validation purposd}.Thefast RSSI sampler strength varies from link to link; because of fading, it fluates
behaves identically to the sub-packet RSSI time samplertime. The first issue requires each node to autonomously
described above, but supports higher sampling rates viecaibrate its own threshold value, depending on the local
digital design, thus improving the precision of the busyeimtopology, so thaall and onlyneighbors’ transmissions consis-
estimation.ii) The trace collection logicprovides the ground tently exceed it. The choice of an RSSI threshold sufficientl
truth of our experiments by collecting and storing on thlewer (resp. higher) than the average signal strength afyeve
board’s memory the timestamps and durations of all radineighbor node (resp. non neighbor node) permits to cope with
transmitted packets and sends batch traces to a contriobhstatthe temporal variations.
The individual node traces aret used by the inference tool, In order to demonstrate our calibration technique, we desig
but permit to reconstruct offline a network-wide global &#acan experiment where we evaluate many possible RSSI thresh-
of the transmitting activity of all nodes and to extrapoldte olds for each node in the topolod§2. In the experiment, each
actual Activity Share. In order to synchronize the indiatiu node in the network takes turns of 10 seconds transmitting
traces from different nodes, the control station issues Broadcast packets at maximum rate, while the others measure
Ethernet broadcast to the boards at the beginning of eahl fraction of time the RSSI exceeds a threshold. For each
experiment, which is used to reset their clock. We verifielansmitter, we perform the experiment 8 times, increatlieg
that our technique achieves clock offsets below a few micrthreshold of the potential receivers (i.e., all other nydiesn -
seconds. 90 dBm to -66.2 dBm in steps of 3.4 dBm; for each threshold
Testbed SetupWe conduct our experiments on a five-nodealue, we perform 10 iterations. In Figure 3, we show the
indoor testbed. In order to verify the robustness of MIDAS teesults we obtained for node for the other nodes we obtained
different node densities, we alternately deployed our sdde similar results. The X-axis represents the threshold value
different topological configurations. We list the locatsomsed while the Y-axis is the ratio between the total time the reeei
in our topologies in decreasing order of density, with refe RSSI exceeds the threshold and the total transmission time o
to Figure 2: in the single-hop topologil all nodes are next to the source node. The figure shows that, for certain values of
each other close to positidn in the multi-hop topologyM1 the threshold, node can discover almost all transmissions
the nodes are located in the positiofis b, c,d,el}; in the from a set of nodes and almost none from the others. For
multi-hop M2 the nodes are in positions:, b, ¢, d, e2}. Each instance, for a threshold of -80 dBm nodecan discover
board transmits 1000-byte data packets, with constant-inteore than99% of the transmissions of nodésand ¢, and
packet time whose value depends on the experiment. Edess thanl% of those ofd ande2. This threshold defines a
experiment run lasts 10 seconds and, where not differentigighbor set of node including b and c. The experiment
specified, the reported results are cumulative over 10 runsshows that it is possible to identify suitable RSSI thredhol
consistently exceeded by neighbor nodes, and rarely by non-
neighbors. In our experiment, the calibration procedust ju
described was repeated once for each topology at the begin-
ning of each session, and the thresholds were left unchanged
during hour-long repetitions. To address unusual sitnatiof
severe fading where fixed thresholds cannot be identified, we
are investigating a technique based on the evaluation of the
threshold crossing probability of each neighbor.

Fig. 2. Layout of our testbed deployment.
9 Y ploy C. Testbed Results

Experimental Methodology. We evaluate the accuracy of
B. RSSI-based Busy Time Discovery the inference tool, by assessing its predictions in differe

The challenge in the experiment setup is to devise a teéﬁ_stbed and simulation settings. At teied of each experiment

nique to consistently measure the node busy time, i.e.otaé t performed, we collec singlereport from each node including
its transmission time and busy time, which represent the

4Multiband Atheros Driver for Wifi. Available at http://madfivorg/ parameters” and B in Problem (IlI-C). We compute the
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Fig. 4. Activity Share inference (testbed).

timeshare reports constrain the overlapping transmissain
non-neighboring nodes, but also the fewer reports reflaz su
events. For example, if a node has only two transmitting
neighborsz and y (wherex and y are not neighbors);’s
busy timeshare report permits to exactly recover the shire o
time that transmissions afandy overlapped, a8, +7,—B..
However, if a node has three transmitting neighbors (whieh a
non-neighbors to one another), based on the busy timeshare
of the node it is not possible to determine the amount of
overlapping transmissions of any two or all three of them.
In fact, the higher the density, the more combinations of
overlapping transmissions of a node’s neighbors are cemsis
with the node’s busy timeshare report. On the other hand, the
higher is the density, the larger is the number of nodes that
observe the transmitting activity of a given set of transeng.
Accordingly, more constraints can be imposed on the Agtivit
Share estimation based on the diversity of the reports tdrdif
ent neighbors. In order to investigate the influence of netwo
density on the Activity Share accuracy, we run experiments
on all three different topologies of our testbed: topoldgjy
which is densest, as all nodes are connected to one another,
topology M1 which is less dense, and topology2 which is

the sparsest.

Figure 5 shows the CDF of the normalized relative error
of the Activity Share estimation, where the relative error
committed in a state is weighted by the Activity Share of that
state, i.e., proportionally to the duration. The X-axisigades
the normalized relative error committed, while the Y-axgs i
in (non-dimensional) time ratio units. For instance, thénpo
in (0.1,0.7) indicates that the network spend8% of the

optimal solution of Problem (l1I-C) corresponding to th&jme in states where our inference tool commits an error of
collected values using the Matlab solfetincon We establish 10% or less. All plots show that our inference technique
the accuracy of the Activity Share inference by comparing ois remarkably accurate under all density conditions; ferth
estimations with the ground truth provided by amniscent g1 js the most accurate solution, while thé1 plot mostly
centralized approacbhased on the collection of detailed tracegominatesiz2. The respective average normalized relative
(see the Validation Tool above).
An example of the results obtained from a single ruimstant, aret.6% for S1, 9.9% for M1, and11.5% for M2.
on topology M2 is shown in Figure 4. In the Figure, weThese results are obtained for broadcast packets; however,
present the scatterplot of the predicted and actual (grousichilar values have been obtained using one-hop unicass flow
truth) Activity Share obtained in the siggle run. Each valuge., 4.8% for S1, 6.1% for M1, and 7.7% for M2. We
k on the X-axis denotes metwork stateD corresponding to conclude that the Activity Share inference tool is accurate
the binary representation df (once mapped the bit indicesunder all density conditions: in low density, a small number

0 through 4 to the nodes positioned din b, ¢, d, and e2,
respectively, e.gk = 20 maps to the network state 0100},

errors, i.e., the relative error committed in a randomly gkeah

of reports reflects overlapping transmission events, bay th
impose tight constraints; in high density, the large report

i.e., where only nodes2 andc transmit). The graph shows andiversity compensates for the looser constraints imposed b
excellent agreement between the inferred Activity Sha® athe reports.

the actual Activity Share obtained from the traces. Furtiver

The influence of network density on the Activity Share is

can observe that a number of states have very short duratioegisited by simulating larger topologies and the resuéts ¢
these typically include simultaneous transmissions ofesodbe found in Section V-D.
in carrier sensing range, which occur less frequently than t = Sensitivity to Traffic Load. Similarly to network density,

others.

traffic load can also affect the accuracy of the Activity Shar

Sensitivity to Network Density. Network density can estimation, since it influences the overlapping transroissi
highly affect the accuracy of the Activity Share estimatibom sensed by a node. The higher the traffic load, the larger is
order to infer the Activity Share, it is challenging to estit the amount of overlapping transmissions, which challehge t
the duration of overlapping transmissions of non-neighigpr estimation of the Activity Share by enlarging the feasible
nodes, by combining their transmission reports with theybustate space. In fact, as noted earlier, in case of overlgppin
timeshare reports of their common neighbors. On the otransmissions, several combinations of Activity Sharey ma
hand, the lower is the density, the more tightly the busyenerate identical observations (i.e., node busy andrrians
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Fig. 5. Inference sensitivity to network density (testbed) Fig. 7. Inference sensitivity to short report intervalss{ed).

node k sent one report every 10 seconds including the busy
ey | and transmission timesharB8s andi tha_tk: measured during
——Load 1.2 Mbps | the same interval. The report interval introduces tradeoff
——Load 2 Mbps | reporting overhead (favoring long intervals), responsass

to network changes (favoring short intervals), and obtajni
statistically significant data (favoring long interval¥ye as-

| sess how short report intervals affect the performance ®f th
: ; | inference tool, by measuring the accuracy in the scentrlo

for various report interval lengths, varying from 20 s to@as |

o ¢
)

0 0.2 0.4 0.6 0.8 1

Normalized Relative Error as 100 ms, for fully backlogged unicast traffic.
, o _ The experiments show that the inference tool is accurate als
Fig- 6. Inference sensitivity to traffic load (testbed). for short report intervals (Figure 7). In particular, as thport

interval decreases from 20 s to 500 ms, the accuracy decrease
is minimal. When the report interval is further reduced, and
sion timeshares). However, light traffic conditions inee#he is set up to (as small as) 100 ms, i.e., the reported values
free airtime observed by a node, which in turn weakens thge based on approximately 20 packets sent by each node, the
coordination attained by carrier sensing, by decoupling tlccuracy declines. The average normalized errorsiarg,
transmitting patterns of the nodes and leaving larger roor6%, 10.2%, and29% for the cases of 20 s, 2 s, 500 ms,
to randomness. We study the impact of traffic load on tr@nd 100 ms, respectivelWe conclude that, in order to better
Activity Share inference tool, by running the experiment opapture the network dynamics, the network manager can adapt
a fixed topology with various traffic loads. Specifically, wéhe duration of the report intervals, with a small penalty on
iterate scenarid/1 three times, fixing the unicast traffic loadsnference accuracyNote that since each report includes only
of all nodes to 400 kbps, 1.2 Mbps, and 2 Mbps (also in thigo entries, the overhead is minimal. For example, in our
case, each experiment is repeated 10 times). implementation, the repor#s;, include only two floating point
Figure 6 depicts the CDF of the normalized relative errofalues for a total of 16 bytes, i.e., they easily fit within agie
of the Activity Share estimation. As can be seen in theacket, and can be aggregated or even piggybacked in regular
figure, the Activity Share inference tool attains a very lowaffic.
normalized relative error. Furthermore, the variation®agn  Throughput Prediction Accuracy With Heterogeneous
the three plots are minimal, and are comparable with ti@oncurrent Load. We evaluate the accuracy of the model
results attained for the fully backlogged case. In paréicul in Section 1V, by comparing its predictions with testbed
the average normalized relative erroris%, 4.0%, 4.5% for  experiments in the topology/1 with single-hop flows{a —
400 kbps, 1.2 Mbps, and 2 Mbps, respectivébe conclude c;b — a;c — a;d — b;el — c}. For each set of experiments,
that, even though heavier traffic challenges the Activitgr&h we consider a target under-served link whose traffic is fully
inference by increasing the amount of overlapping transmibacklogged, and we perform a baseline run, measuring the
sions, while lighter traffic increases randomness, the ey throughput of the target link when all others transmit aerat
of our solution is largely independent of the traffic load foét randomly chosen in the [400 kbps, 900 kbps] interval. At the
nodes. end of the baseline run, we collect the node reports, infer
We defer the investigation of the sensitivity of the infezen the Activity Share, and predict the throughput increasehef t
tool to large topologies and non-uniform traffic patterasthe  target link obtained by rate-limiting any of the four contiiig
simulation section. nodes of a fixed quantity (400 kbps). Then, we perform four
Sensitivity to Report Interval Length. In the previous additional runs on the testbed (one per conflicting nod&r-al
experiments, we used report intervals of 10 seconds, aeh enately rate-limiting a different conflicting node for thensa
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Fig. 9. Activity Share: simulation vs testbed.
Fig. 8. Throughput increase estimation for concurrent sodih loads in
[400 kbps, 900 kbps] (testbed).

area. Except for the experiment in Figure 9, which is obthine

400 kbps quantity, and we record the actual throughput gaffing 802.11a at 6 Mbps, all results in this section are bt
of the target link. Finally, we compare the actual throughpSing 802.11b at 11 Mbps data rate in order to experiment

gain obtained in the testbed with the throughput gain ptedic with differen_t conditions. We refer to the analogous sirtiola
by our model. results obtained for 802.11a at 6 Mbps as needed.

Figure 8 shows the CDF of the relative error for all Comparison between Testbed and SimulationsThe sim-

possible target link/conflicting node pairs for 10 repetis ulati(_)ns introduce simplificat_ions abouj[ actual channelppr
of our scenario (200 predictions in total). The long tail ofgation and abstract operational details, such as the WARP

the distribution is due to few combinations for which th&0ard’s packet processing time. For this reasons, our first
actual gain is very small (on the order of a few kbps}axperlment compares the simulations and testbed resuéts. W

in those cases, even an error of few packets is decisive Ggnsider the topologieS1 andM2_ used in t_he testbed se_ction
relative terms. In terms of the absolute error, the predict@nd fully backlogged nodes. Using toenniscent centralized
throughput gain is on average less than 72 kbps diﬁeraﬁlﬁproagh we extract the Activity Share from th_e traces of
from the actual throughput gain (i.6.8% of the rate-limiting simulation and_tgstbed, and we compare them. Flg.ure 9 shows
value of 400 kbps, or around6% of the average actual the actual Activity Share (Y-axis) for all 32 possible state

throughput gain of approximately 280 kbp&)e conclude (X-axis) sorted similarly to Figure ﬁ.The_ plots show an
that, despite rate-limiting different conflicting nodesidaave €Xcellent agreement between the two environments; the smal
largely different impacts on the throughput of an undereerv discrepancies are due to non-ideal packet processing times

link, our prediction tool adequately captures the heterugsus and carrier sensing relationships in the testbed.
effects. Effect of the Protocol-based State Space Reductioithe

next experiment evaluates the effect of the protocol-based
. . reduction discussed in Section IlI-D. We generate a random
D. Simulation Results - Inference Tool . :
topology of 10 nodes, with an average number of 7 neighbors
In order to evaluate the inference tool on various topol@gi@er node, and we compare the Activity Share obtained using
including a larger number of nodes, we performed an extensihe reduced (labeled “Protocol-based Reduction”) and the
set of ns-2 simulations following the inference experinaéntentire 2V state spaces (labeled “Power Set”).
methodology adopted in the previous section. In this sectio Figure 10 shows the scatterplot of the Activity Share. The
we first compare testbed and simulation. Then, we evalugteaxis is the actual value of the Activity Share, while the
the accuracy loss due to the state space reduction discimssed 5xjs is the estimated value; each mark represents a single
Section III-D; all the results in the remainder of the paper i state. As expected, the solution including the power set is
plement such enhancemeWe also investigate the sensitivitymore accurate (crosses are closer to the line than cirdlas).
of the inference technique to network density, unsaturatetl concentration of circles on the X-axis close to the origia ar
real traffic conditions, and its robustness to report losaed  qe to the states including adjacent nodes transmittirag, th
short report interval lengths. the protocol-based reduction excludes. Note that the hctua
Simulation Settings. We consider scenarios where eaclctivity Share values of those states are not significatigdr
node generates 1000-byte UDP packets directed towardnhgn 0, as the simultaneous transmissions of neighboridgso
single neighbor, with constant inter-packet time. Thefitaf 5re relatively unlikely. The power set solution benefitsniro
is generated for 100 s at a fixed rate. We use the FreeSpgggounting for the unlikely states, not only in the predictof
propagation model, with node transmission and interfe¥enge Activity Share of those states, but also of states iritud
ranges equal to 210 m. We generate scenarios with a cerigifly independent sets of transmittelfe conclude that the

network density (i.e., where each node has on averag&@uracy of the inference tool increases by re-introduding
predetermined number of neighbors), by deploying the nodes

in random positions, and scaling the size of the deploymenéNote that for scenario S1 the actual node mapping is imnadieri
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Fig. 10. Infi ith protocol-based reduction. . .
9 nierence with protocol-based reduction Fig. 11. Inference sensitivity to density (10 Nodes).

states excluded by the protocol-based reduction, sinceetho ol
states contribute to the reported measurements. 08l
Sensitivity to Network Density. This subsection revisits v ol .
the issue of network density on large topologies. In cohtras £ osf Nodes 15, Density 7
Section V-C, we run our scheme on the reduced state space. Sost /S e e s
We evaluate the normalized relative error between inferred Soaf [/
and actual Activity Share, for 30 topologies of 10 and 15 T o /.
nodes, with average node neighbors from 3 to 13 and fully o2 /¢
backlogged traffic. Recall that the normalized relativeoerr o)
is the relative error committed in a state weighted by the oo" n o s s 1
Activity Share (i.e., proportionally to the duration) oftistate. Normalized Relative Error

Figures 11 and 12 show that our inference tool is accurate " _

under different densities, e.g., the network spends mae thf 19 12 Inference sensitivity to density (15 Nodes).
70% of time in states whose relative error is bel@d% for
all tested densities in 10-node topologies. Figure 11 shows

that for 10 nodes a density increase from 3 to 5 improvedl evaluated settings, high network densities challertge t
the accuracy of the inference tool, while for density 7 thealidity of its approximation.

performance decreases. The average normalized relatms er Sensitivity to Traffic Load. Not only the network density
are12.2%, 10.2%, 17% for densities 3, 5, and 7 respectivelyaffects the occurrence of states excluded by the protocol-
We ran this experiment also using 802.11a at 6 Mbps, and Wwased approximation, but also the traffic intensity. In fact
obtained normalized relative errors ©3.7%, 12.5%, 15.2%, as the traffic decreases, the probability that carrier sgnsi
respectively. Figure 12 shows a similar trend for 15-nod®des transmit simultaneously decreases. Figure 13 sln@wvs t
networks; the accuracy grows for density increase from l@r graph of the average normalized relative error between
to 7, but it reduces for density 13. The average normalizétferred and actual Activity Share, for 10 nodes, densionfr
relative errors ard8%, 14%, 26%, for densities 3, 7, and 133 to 7, and target transmission rate from 300 kbps to fully
respectively. Both figures clearly depict the existencerode: backlogged for each node (in a single scenario, all nodes are
curacy tradeoff related to the network density. As expldiime subject to identical target transmission rates). The gsolws
Section V-C, the denser the network the more constraints daat the error increases with the target transmission r@te f
be imposed on the Activity Share estimation. However, as teach density value. Furthermore, the error increases Wéh t
network approaches a clique, the probability of simultarseonetwork density, because of the reasons explained above. In
transmissions of neighboring nodes increases, thus gergeraparticular, as the density increases the network becontigs fu
network states that are excluded by the protocol-based staficklogged for lower transmission rates (the effect is evid
space reduction. For example, the accuracy degrades for 0the case of 900 kbps for density ¥)e conclude that as the
node networks with density 7, and for 15-node with densityetwork traffic decreases the performance of our methogolog
13. In contrast, in 15-node networks with density 7, nodes improves, because of the increased accuracy of the protocol
close proximity likely observe different channel busy imtds, based approximation.

due to the diverse sets of carrier sensed nodes; thus, theiRobustness to Real Traffic Distribution. In our previous
simultaneous transmissions are less frequent. Notice #isat experiments, all traffic sources generate packets acaprdin
shown later in more detail, traffic intensity has a similato predefined inter-packet distributions. In this expenme
effect on the validity of the protocol-based approximatiowe investigate how critical this assumption may be for our
and that fully backlogged traffic is a worst case due tmference technique to operate in real traffic scenarios. In
higher occurrence of adjacent node transmissidfesconclude order to reproduce real traffic, we replay actual traffic ésac
that, although the protocol-based reduction is accurate icollected within UCSD Jigsaw project [5] in our simulation
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Fig. 13. Sensitivity of the Activity Share estimation toffimload (10 Nodes). Fig. 15.  Inference robustness to missing reports.

ten reports transmitted in 10-node networks, with derssitie
al ] of 3, 5 and 7 (i.e., where each node has on average 3, 5,
107 ] and 7 neighbors, respectively). Figure 15 shows the average
ol | normalized relative error of the Activity Share computed @iu
all possible states obtained from 30 random topologiesyevhe
W X ] we evaluate the lack of all possible combinations of missing
x ] reports (bars indicat85-th percentiles). We observe that the
performance gracefully degrades as the number of missing
reports increases. This is because the reports of neigitpori
o o o7 o nodes are related: for instance, part of the busy time of
Real Activity Share neighboring nodes is generated by transmissions of common
neighborsWe conclude that our inference technique is robust
to report losses, due to inherent redundancy of node reports
Report Interval Length. In this section, we extend the
result obtained in the testbed experiments to larger tapeto
environment. In particular, we randomly select 10 ”Od_emfrol_:urthermore, differently from the testbed experiment, we u
the UCSD traces, and we play 10 seconds of their traflige state space reduction which, as shown above, may affect
on a network topology obtained as follows. Two nodes afge accuracy of our solution. Specifically, in the previous
considered disconnected if the considered traces include fi;imulations, we used report intervals of 100 s, i.e., each
overlapping transmissions of data packets from the two $10d§yde 1 sent one report every 100 s including the busy and
(in order to _safely consid(_ar gynchronization errors andusim transmission timeshareB;, and T, that & measured during
taneous neighbor transmission events, we consider the O\gk same interval. This result assesses the accuracy of our
lapping valid only if its duration exceeds 1Qi3); otherwise, inference technique in a 10-node network, with density 5, fo
the two nodes are considered disconnected. Each simulgiggort interval lengths as low as 50 ms. Figure 16 shows that
node generates packets according to the transmission @fmegne inference tool is accurate also for short report interva
the UCSD node it represents in the trace. Figure 14 shoysparticular, as the report interval is decreased from 100 s
a scatterplot of the measured Activity Share vs. the interrgg 2 5 the accuracy decrease is minimal. When the report
Activity Share for 10 repetitions of the experiment, withffic  jnterval is small and set to 50 ms, i.e., the reported values
from 10 different time intervals. Note that, in order to \aly  5re pased on approximately 10 packets sent by each node, the
capture a large range of Activity Share values, we plot bOH?:curacy decreases. The average normalized errors0&he
axes in logarithmic scale; for this reason, for small valoes 119, 14% and25% for the cases of 100 s, 2 s, 500 ms, and
the Activity Share the error is visually magnified, althougBo ms, respectivelyour simulations confirm the conclusions
it is only a few percent. The plot shows that also in thesge optained in our testbed results; the slight performance
real traffic conditions, our inference technique achieves/Vv yecrease is mainly due to the state space reduction and to

accurate results. Quantitatively, the average normateetive he more complex interactions of larger topologies.
error is about3%. We conclude that our inference technique

is robust to real traffic conditions, i.e., it is accurate alf ) ) o

case the traffic is not generated according to a predefinéd Simulation Results - Throughput Prediction Tool

distribution. We investigate the performance of the prediction tool with
Robustness to Incomplete Information.In the case of ns-2 simulations with the same experimental methodology

severe network congestion, some of the reports could be lasted to evaluate the throughput prediction accuracy ini@ect

We evaluate how report losses affect the accuracy of theC. We start by running MIDAS on a ten node random

inference tool, by simulating the loss of up to five out of theopology with density 3. Node transmission rates are set to

Inferred Activity Share

e
o
X

=
o
&

|
4

=
o

Fig. 14. Inference robustness to realistic traffic.
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100 hidden terminals) that respectively affect the link busyeti
5% and collision probability, which in turn are key to our pre-
g% e diction tool. We investigate these effects by evaluating ou
g ;Z . g predictions fqr all possible target Iink/confl?cting nodains
S ol * i | in 10 topologies with 10 nodes, and densities of 3, 5, and 7,
£ ol s ‘ | with node transmission rates of 600 kbps. Figure 18 shows the
E w0l * ix ;«” | empirical CDF of the relative error between the predicted an
g L S | actual throughput increase. The plot for density 3 (i.er, fo
J: 10,%"? & ] topologies with 3 neighbors per node) is the most accurate,
0 ‘ ‘ ‘ ‘ while the case for density 5 is the least; the average relativ
® Actual Throughput Increase [packets] errors arel7%, 26%, 22% for densities 3, 5, and 7, respec-
tively. Surprisingly, the accuracy in throughput predictidoes
Fig. 17. Throughput increase estimation for scenarios whsity 3. not exactly reflect the accuracy in the inference of the Afgtiv

Share (we checked that the trends in Figure 11 were respected

also in this set of scenarios). The main reason is that our
600 kbps. As in the experimental case, we pick one targébdel is more accurate in the computation of the fraction of
underserved link, we increase its load until it is fully backbusy time than of the collision probability, since the forme
logged, and successively repeat the experiment, rateirgnitimposes less stringent assumptions (see Section IV-B)s,Thu
each time a different conflicting flow by 400 kbps; we iteratthe case of density 3, where the number of hidden terminals
this procedure for all links in the network. In Figure 17is restricted by the degree of the receiver, is most accurate
we compare the scatterplot of the predicted throughput gainterms of the absolute error, i.e., the difference betwaen
with the actual throughput increase collected for 10 déffér actual throughput gain and the predicted gain, the predlicte
random topologies. The X-axis index identifies the actu#iroughput gain is within 80 kbps (i.e20% of the rate-
throughput increase for a saturated link by rate-limitimg @f limiting value of 400 kbps) from the actual throughput gain
its conflicting nodes, while the Y-axis represents the mtedi in 83% to 92% of the casesWe conclude that the accuracy
value for the same rate-limiting action, e.g., a point on thef the prediction model increases as the number of hidden
diagonal represents a perfect match between the actual @&hinals decreases, because of the less stringent assurspt
the predicted throughput gain of the tagged link; pointsvabowe impose on the computation of the fraction of busy time of
and below the diagonal represent an overestimate and th® under-served link.
underestimate of the predicted over the actual through@iat g Sensitivity to Traffic Load. In this experiment, we inves-
of the tagged link, respectively. The graph shows an exuellgigate the effect of traffic load on the accuracy of our predic
agreement between the prediction and the simulation. It isi@ns, by repeating the simulations above for node trarsionis
notable finding that by rate-limiting different conflictimpdes rates of 900 kbps. Figure 19 shows the same ranking among
of the same fixed amount, the throughput increase of thettargge curves relative to different densities as for the case of
link can range fron% to 172% of the rate-limited quantity 600 kbps. However, the accuracy obtained for 600 kbps is
400 kbps, i.e., from 28 kbps to 688 kbps. In the remainder afgher than for 900 kbps. This is due to two reasons: first,
this section, we evaluate how the prediction accuracy dipenhe Activity Share inference technique based on the prétoco
on network density and traffic load. state-space reduction is more accurate for lower traffiddoa

Sensitivity to Network Density. As previously shown, (see Figure 13); second, in terms of the relative error the

network density influences the accuracy of the Activity @haprediction of small throughput gains is more challenginanth
inference, which is the basis of throughput prediction (seke prediction of large gains. As the neighbor load increase
Section V-C). In addition, network density determines theate-limiting actions produce on average a lower benefit for
number of neighbors and neighbor's neighbors (potentialiife under-served link, thus increasing the influence ofélse |
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Fig. 19. Throughput prediction sensitivity to density (Kips).

accurate results for lower gains on the CDF. For example, for
density 5 and 600 kbps, on average the under-served link gaiy. 20. Topology of the TFA network deployed in Houston, dex
0.6 of the rate-limiting amount (i.e., 240 kbps out of 400 kbps
in this experiment), while for the case of density 5 and 900
kbps the under-served link gaifist (i.e., 160 kbps out of 400
kbps). This explains why the relative error is larger for 900

kbps than for 600 kbps. | | T et vy S

F. Simulation Results - Real Network Topology

In this experiment we consider the topology of a real
mesh network, TFA [3], deployed in south-east Houston.

Activity Share

The topology consists of 18 backhaul nodes whose actual 2

connections, as reported by WIANA [21], are depicted in it BT il
Figure 20; the coverage areadgm?, and the average node . ittt
degree i%.58. All nodes are equipped with 802.11b cards; the 3°° 2 NetworkStates *

node denoted a&W, the gateway, is also wiredly connected
to Internet via a 100 Mbps fiber. We considered a scenariofdf. 21.  Activity Share Inference for the TFA network (fullyacklogged
. . . - nodes).

upload activity of the nodes, and the destination of eadk liff

is chosen according to the shortest path toward the gateway.
Inference Tool. Figure 21 compares the values of the

Activity Share entries inferred by our solution with the wadt

values. All network nodes send fully backlogged traffic at 11

Mbps (as shown above, this represents a worst case for the

inference tool). The X-axis index identifies the networkesta

while the Y-axis represents the Activity Share, i.e., thiora

of time the network spent in a state. The X-axis is sorted

according to increasing values of the actual Activity Shafre

the states and, for the sake of readability, represent drdy t

237 states with highest Activity Share. The graph showsragai

an excellent agreement among inference and simulation.
Throughput Prediction. Similarly to the case in Figures s w B w & wm m @ %

18-19, we evaluate the accuracy of our methodology by pre- Absolute Error [pkus]

dlCtII_‘]g_t_he throughput I_ncr_ease on any target Im_k,_acrbtn/a Fig. 22. Throughput Increase Prediction for the TFA netwfirinsmission

by limiting the transmission rate of any conflicting nodegate 600 kbps).

we consider all possible target link / conflicting node pairs

Figure 22 shows the empirical CDF of the absolute error

between the throughput increase predicted by the methggolo

and the actual throughput increase. The X-axis represkats t

absolute error in terms of packets per second, while thei¥-ax Wireless Network Monitoring. Performance monitoring of

represents the fraction of predictions. In this experimémg single-hop WLANSs has recently attracted research int¢&st

target transmission rate is 600 kbps for all links excludimgy [16]. The proposed approaches reconstruct a global traak of

target link, which is fully backlogged; the rate limitatiage network packet transmissions by combining offline detailed

o o o
S & e e

°
>
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Fraction of Target Link/Conflicting Node Pairs
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traces reported by sniffers spread throughout the networlg]
These solutions can provide a comprehensive survey of the
network activity. However, they require the deliverydstailed 6
tracesfrom all (or at least most of) the nodes, which severely
hinders the normal operations of multi-hop wireless neksor [7]
In our work, we show that we can attain very accurate result[§]
with the use of small time-averaged reports. Furthermé&ie, [ [9]
[16] do not address the problem of identifying the origins of
poor link performance and rate-limiting the most hinderingo]
nodes.

802.11 Throughput Models. Several 802.11 throughput(11l
prediction models have been proposed in the literature [2],
[4], [9], [11], [12], [17], [19], [20]. Their goal is eithera [12]
compute the throughput of the network links given theirficaf
demands, or to compute the feasible region of the network. i
contrast, we use measurements to infer the network behavior
particularly the coordination between node transmissams [14]
the causes of poorly performing links, and use this under-
standing to improve the throughput of under-served links: O[15]
scheme relies on active offline link profiling, such as [12B]]
to identify the carrier sensing and interference relatgus
between the nodes. In addition, we introduce passive online]
measurements during normal network operations, to capture
the complex node interactions determined by the actuai;{rar[h]
mission patterns. Recently, [13] proposes a method to cepla
active offline profiling with passive online estimations ngsi
traces collected by deployed sniffers. While [13] does ngtsl
characterize the coordination between conflicting nodes, r19]
predicts the effects of rate-limiting actions, we can |leger

) o - [20]
the result therein for passive link profiling.
[21]
VII. CONCLUSIONS

In this paper, we present a management framework for
wireless networks called MIDAS. MIDAS addresses the prob-
lem of identifying the conflicting nodes that cause under-
performance of a target link. We introduce the key concept
of Activity Share that captures the coordination among the
conflicting nodes. Since the Activity Share cannot be lgcall
measured by the nodes, we show how MIDAS infers it using
time-aggregate, passively collected measurements ezpbyt
the nodes. Finally, we design a throughput model based on the
Activity Share that MIDAS utilizes to predict the benefit of
rate-limiting conflicting transmissions. Our results shthat
MIDAS infers the Activity Share with an average normalized
relative error as low a$%, and predicts the throughput gain of
an under-served link corresponding to alternative ratetiing
actions with an error lower thar0% of the rate-limited
guantity.
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