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Abstract—In 802.11 managed wireless networks, the manager
can address under-served links by rate-limiting the conflicting
nodes. In order to determine to what extent each conflicting
node is responsible for the poor performance, the manager needs
to understand the coordination among conflicting nodes’ trans-
missions. In this paper, we present a management framework
called MIDAS (Management, Inference, and Diagnostics using
Activity Share). We introduce the concept of Activity Sharewhich
characterizes the coordination among any set of network nodes
in terms of the time they spend transmitting simultaneously.
Unfortunately, the Activity Share cannot be locally measured by
the nodes. Thus, MIDAS comprises an inference tool which, based
on a combined physical, protocol, and statistical approach, infers
the Activity Share by using a small set of passively collected, time-
aggregate local channel measurements reported by the nodes.
MIDAS uses the estimated Activity Share as the input of a
simple model that predicts how limiting the transmission rate
of any conflicting node would benefit the throughput of the
under-served link. The model is based on the current network
conditions, thus representing the first throughput model using
online measurements. We implemented our tool on real hardware
and deployed it on an indoor testbed. Our extensive validation
combines testbed experiments and simulations. The resultsshow
that MIDAS infers the Activity Share with an average normalized
relative error as low as 4% in testbed experiments.

I. I NTRODUCTION

Managed enterprise WLANs and wireless mesh networks
regularly encounter underperforming links, i.e., links with
throughput below an acceptable value determined by the
operator. A key corrective action available to the network
manager is to throttle other nodes that may be hindering
the underperforming link. However, to do so first requires
identifying which node to throttle. While it is clear it should
be a “neighbor,” there may be a large set of candidate
nodes for which throttling can have vastly different effects,
including no effect on the under-served link. Moreover, it is
not immediately evident how much throttling any node will
increase the throughput of the targeted under-served link due
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to complex node interactions and coordination.1

In this paper, we design MIDAS, a framework that uses
online measurements of network performance to infer the most
hindering nodes which cause a target link to be under-servedor
to obtain poor performance. Moreover, MIDAS identifies ef-
fective management actions to increase the performance of the
under-served link by appropriately limiting the transmission
rates of the hindering nodes. Finally, we implement MIDAS
on real hardware and investigate its performance in an indoor
testbed and simulation.

MIDAS employs a methodology comprising three proce-
dures:i) measurement collection, which gathers reports from
each node consisting of a small set of passive time-aggregate
measurements;ii) inference, which infers the coordination
among the transmissions of different sets of nodes using
the reported measurements;iii) prediction, which utilizes the
inferred information to predict the throughput gain of any
target link, corresponding to rate-limiting different conflicting
nodes. In particular, our contributions are as follows.

First, we introduce the concept ofActivity Sharewhich
characterizes the coordination and interference among anyset
of conflicting nodes. The throughput of a link is influenced
by the sender busy time (i.e., the more the sender senses
the medium busy the less it can transmit), and the collision
probability (i.e., even if it can transmit, its transmissions are
corrupted). Coordination is critical to understand how different
nodes contribute to busy time and collision probability of each
other. In fact, a sender’s busy time is not simply the sum of
the transmission times of its neighbors, as neighbors which
are hidden from one another may transmit simultaneously.
Analogously, link collisions are not the sum of the collisions
with each hidden terminal, because multiple hidden termi-
nals may collide with the same packet. Therefore, knowing
which conflicting nodes are destructive to a link requires
understanding their coordination. In order to capture node
coordination, we define network state as a set of transmitting
nodes; accordingly, in each time instant the network is in a
unique state. We defineActivity Shareas the time share the
network spends in each possible state in a given interval. That

1Network managers have a number of options for mitigation, including
moving sets of APs or clients to alternate frequencies. MIDAS could equally
be applied to such strategies (it would identify the best ones to move and
could recompute the new throughputs). However, evaluationof such alternate
mitigation schemes is beyond the scope of this paper.



2

is, the Activity Share is a vector including, for each possible
set of nodes, the fraction of time they spend transmitting
simultaneously. Note that the Activity Share depends not
only on the topological relationships between the nodes as
determined by carrier sensing and link interference, but also
on the transmission rate and pattern of each node under the
current traffic conditions. Furthermore, since the transmission
pattern of any node depends on the transmission pattern of
its neighbors, and the transmission pattern of its neighbors
depends on the transmission pattern of their neighbors (and
thus recursively of all nodes in the network), the Activity
Share captures the effects of global network interactions that
extend beyond node locality. In particular, the Activity Share
captures the coordination among the transmissions of any
set of conflicting nodes as determined by the current global
network conditions. In contrast, alternative indicators,such
as the individual node transmission rates, are insufficientto
determine how conflicting nodes influence the target link,
since they do not capture the coordination. For example,
the conflicting node with the highest transmission rate might
mostly transmit simultaneously with other conflicting nodes,
such that limiting its rate may scarcely benefit the target link.
We will show how the manager can utilize the Activity Share
as a tool to understand the network behavior and to determine
a strategy to change it, e.g., to increase the throughput of a
congested or underperforming link. Unfortunately, the estima-
tion of the Activity Share is challenging, because it cannotbe
locally measured by the nodes. In fact, during the reception
of multiple overlapping packets, nodes cannot identify all
senders, and thus recognize the network state.

Second, we design a tool to infer the Activity Share using a
small set ofpassively collected, time-aggregatelocal channel
measurements, reported by every node. Inferring the Activity
Share requires computing the temporal distribution of the
different network states, i.e., how long the network spent in
each of them. We develop a technique to eliminate infeasible
distributions by incorporating physical rules (e.g., the busy
time of a node should coincide with the sum of the durations
of the states in which its neighbors transmit and that node
does not). Unfortunately, there can be an infinite number
of temporal distributions that yield identical measurements.
Consequently, we penalize unlikely distributions by incorpo-
rating protocol rules (e.g., the occurrence of states in which
adjacent nodes simultaneously transmit is unlikely), and select
a representative by using a statistical approach based on
entropy considerations. To further limit the complexity ofour
problem, we propose a technique to reduce its dimensions, by
actuallyeliminating the unlikely distributions.

Third, we develop a tool to predict the throughput increase
achievable on the target link by rate-limiting the links formed
by the target link’s conflicting nodes. The Activity Share per-
mits assessment of the current network conditions; however,
it lacks predictive power to identify effective rate-limiting
actions and to anticipate their outcomes. The challenge is to
understand how changing the transmission time of a conflict-
ing node affects the Activity Share, and subsequently how
the new Activity Share affects the target link’s throughput.
We design a simple throughput prediction model that derives

its inputs from the current network conditions, i.e., from the
inferred Activity Share, thus representing the first throughput
model based on online measurements.

Fourth, we extensively evaluate the accuracy of MIDAS
by combining testbed experiments and simulations. We im-
plemented MIDAS on real hardware and deployed it on an
indoor testbed, where we investigated its sensitivity to different
network settings under real channel conditions. The results
show that MIDAS infers the Activity Share with high accuracy,
i.e., with an average normalized relative error as low as4%.
In order to extend our validation to a broader set of scenarios,
we performed numerous simulations. A key finding is that,
by rate-limiting different conflicting nodes for the same fixed
amount, the throughput of the target link can increase from
7% to 172% of the rate-limited quantity. We also validate the
effectiveness of the Activity Share in supporting throughput
prediction, and show that MIDAS anticipates the benefits of
alternative rate-limiting actions with an error lower than20%
of the rate-limited quantity.

The remainder of the paper is organized as follows. In
Section II we present MIDAS, and define the Activity Share.
We develop a technique to infer the Activity Share in Section
III. A throughput prediction tool using the Activity Share is
described in Section IV. Section V presents testbed and sim-
ulation results. Finally, Section VI overviews related works,
and Section VII concludes the paper.

II. T HE MIDAS FRAMEWORK

A link can be considered under-served due to a discrepancy
between the network manager’s targeted link throughput and
the actual throughput. The network manager’s policy for set-
ting target throughputs (incorporating factors such as fairness,
QoS, pricing, offered load, etc.) is beyond the scope of this
paper. The objective of MIDAS is to determine the causes of
the poor performance and design corrective actions.2 While
local node observations can point out problematic links, in
general the causes of the low throughput cannot be locally
inferred. For instance, in the case of high packet drop rate,the
local measurements can seldom determine the hindering nodes.
MIDAS helps improving the problematic link by inferring the
impact of hindering transmitters and by rate-limiting the most
destructive flows.

The severity of link hindering interactions mainly depends
on three factors:i) network topology: nodes’ pairwise re-
lations, as determined by carrier sensing and interference,
determine the form of interaction, e.g., hidden terminals are
responsible for transmission corruptions, while carrier sensed
nodes affect deferral;ii) link transmission rates: nodes that
transmit few packets are less likely to interfere with a target
link; and iii) link transmission coordination: the number of
link packets corrupted by a hidden terminal depends on
how frequently a link sender and hidden terminal transmit
simultaneously. Note that transmission rates and coordination
strongly depend on the traffic load of each node.

2In this paper, we only consider 802.11 MAC issues, e.g., we donot address
throughput losses due to TPC dynamics, or low received signal strength.
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In this section, we introduce a novel metric termedActivity
Sharewhich captures the coordination between any possible
set of nodes, by measuring the fraction of time they transmit
simultaneously. Even though the Activity Share does not
directly measure the interference between nodes, it reflects
node interactions. Thus, the Activity Share is affected by
node interference relationships, traffic load, MAC protocol,
etc. We will show how MIDAS can utilize the Activity Share
to evaluate the potential effects of alternative corrective actions
(see Section IV). We will also show that the Activity Share
cannot be locally observed by the network nodes and describe
how it can be inferred from measurements collected by the
nodes. Note that, in contrast to the Activity Share, alternative
indicators that evaluatepairwiseconflicts between interfering
links taking into consideration onlytopological information
(e.g., the conflict graph [10]) miss the important dynamic
information about the coordination of the transmissions of
multiple nodes.

A. The Activity Share: Fundamental Element of Network Ob-
servation

As previously explained, our management framework aims
to identify the originating causes of under-served links and
to increase their throughput by rate-limiting conflicting nodes.
In this study, we consider 802.11 stationary multihop wireless
networks, including enterprise WLANs and mesh networks. In
such networks, nodes can affect the throughput attained on a
link (sender-receiver pair) by two key means:i) reducing the
time the medium is perceived as free by the sender, thereby
forcing the sender to defer;ii) corrupting the packet reception
at the receiver end, i.e., colliding. In multi-hop topologies,
despite the use of the carrier sensing mechanism, several nodes
that are in conflict with a specific transmitter can potentially
transmit simultaneously. Hence, it is challenging to anticipate
the benefits of rate-limiting conflicting links on the senderbusy
time or collisions of the target link, and thus on its throughput.
Even knowing the exact packet transmission rate of each node
in conflict with the link of interest is not sufficient, because the
throughput gain mainly depends on the coordination among
the conflicting nodes as illustrated in the example below.

Example. The following example shows that node coor-
dination is the key to understand the effectiveness of rate-
limiting conflicting nodes to improve the throughput of an
under-served link. Let us consider the simple wireless network
depicted in Figure 1(a), where a dotted line connecting two
nodes indicates that the two nodes are within carrier sensing
range. The link(a, b) is identified as under-served; the goal
of the network manager is to assess how decrementing the
transmission rates of the conflicting links formed by nodes1
and2 can benefit the throughput of link(a, b). Since nodes1
and2 are not coordinated by carrier sensing, they can transmit
simultaneously. Figure 1(b) depicts a typical timeline of the
transmissions of the three nodes. The continuous deferral is
the cause of the performance issue of link(a, b); in fact,
(a, b) can transmit only when both nodes1 and 2 are silent.
Thus, decreasing the transmission rate of only one of them
will produce a minimal benefit to(a, b); this is because only

(a) (b)

Fig. 1. Example of transmission alignment due to (lack of) carrier sensing.

a small portion of the released airtime will result in free
airtime for (a, b). The analysis of the coordination between
the conflicting nodes1 and 2, and in particular of the large
overlap between their transmissions, can promptly lead to
this conclusion. Obviously, this is only a simple case, where
the large overlap between the transmissions of1 and 2 is
not surprising; however, in more complex topologies with
several conflicting nodes, it is not clear how to determine node
coordination and its effect.

Network State and Activity Share. The key to under-
standing how conflicting nodes affect an underserved link is
to determine the time they spend transmitting simultaneously.
For instance, in the example in Figure 1, the transmissions
of nodes1 and2 mostly overlap, anticipating a small gain in
free airtime perceived by the link(a, b), from the reduction of
the transmission times of either one. Furthermore, the higher
the number of nodes in conflict with a target link which can
potentially transmit simultaneously, the lower the gain from
limiting the transmission time of a single node. For instance, if
in the example instead of two uncoordinated nodes in conflict
with link (a, b), there were three or more such nodes, the free
airtime gained by rate limiting a single node would be even
lower.

Let us consider anN -node network. To formalize the
concept of simultaneous transmission of a set of nodes, we
definenetwork stateandActivity Shareas follows.

Definition 1: TheNetwork State~D denotes the transmission
status of each node in the network.~D is an N -dimensional
vector comprising an entry for each node that indicates
whether the node is transmitting or idle in the state.~D =
(d1, d2, . . . dN ), di ∈ {0, 1}, wheredi = 1, 0 indicates that
node i is transmitting or not, respectively. Note that each
network state is univocally identified by the set of transmitting
nodes.

Since there areN nodes in the network there are2N

possible states denoted by~D1, ~D2, . . . , ~D2N . The network
transitions in time through a succession of network states.The
Instantaneous Network Stateat timet0, ~D(t0), is the state of
the network at timet0, i.e., ~D(t0) = ~Dj iff the network state
at time t0 is ~Dj .

Next, we define theActivity Sharewhich is the time share
the network spends in each state per time unit.

Definition 2: The Activity Share of the network state~Dj ,
denoted byAS(L, ~Dj), is the fraction of time during the
interval [0, L] for which the network was in state~Dj, i.e.,
AS(L, ~Dj) =

1
L

∫ L

0 1[ ~D(t)=~Dj ]
(t)dt, where1[ ~D(t)=~Dj ]

(t) de-
notes the indicator function such that1[ ~D(t)=~Dj ]

(t) = 1 if the
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network state at timet is ~Dj , and 0 otherwise. The sum of
AS(L, ~Dj) over all possible states adds to one:

2N∑

j=1

AS(L, ~Dj) = 1 ∀L (1)

We separately denote asActivity Share, ~AS, the distribution of
time among all states that the network visited during the time
interval [0, L], i.e., ~AS = {AS(L, ~Dj), ∀ ~Dj}. Note that if the
network is stationarylimL→∞ AS(L, ~Dj) is the probability
that the network at any time instant is in state~Dj . In the
following, we considerL large enough to satisfy stationarity,
and we dropL from our notation.

The estimation of the Activity Share is challenging because
it cannot be locally measured by the nodes. Specifically, the
nodes cannot identify the transmitters of all the packets they
carrier-sense. In fact, some of the overlapping packets (e.g.,
sent by1 and 2 in Figure 1) may collide at the intermediate
nodes (e.g., nodea), preventing the decoding of at least one of
them. Another obstacle is the strength of the received signal,
which may exceed the carrier sense threshold or generate
collisions, but not be sufficiently greater than the background
noise to permit the decoding of the packet. In order to
overcome these challenges, it is necessary to analyze the
combined measurements of different nodes.

B. The Measurements

In MIDAS, each network nodek continuously collects
information, and delivers a reportRk to the manager at
every report interval. In this paper, we suggest a new scheme
which we will use to infer Activity Share, given a set of
measurements reported by the nodes~R = {R1, R2, ...RN}.

A tradeoff emerges between the amount of information
contained inRk and the estimation accuracy of the Activity
Share. IfRk contained complete traces of the exact times and
durations of all transmissions of nodek, the manager could use
the reports to reconstruct a global trace of the transmissions
in the network (such as in Figure 1(b)), and hence obtain
the Activity Share by inspection. However, the amount of
information that needs to be collected and the timely delivery
of such traces would overwhelm the network resources. For
example, a set of traces satisfying our requirements is collected
in [5]; therein, the authors show that the overhead is between
100 kbps and 500 kbps per node, without even considering
the multiplicative effect of multi-hopping [3].

We consider a highly simplified and easily measured set
of inputs Rk consisting of information passively collected
from the local network card and time averaged over the report
interval. Each node observes the local channel in three states:
T if the measuring node is transmitting;B if the node is not
transmitting but the total received energy exceeds the carrier
sensing threshold;I if neither the received energy exceeds the
carrier sensing threshold, nor the node itself is transmitting.
Notice that the stateB reflects the activity of all carrier sensed
nodes and does not distinguish between different transmitters.
The reportRk includes the time sharesTk, Bk, Ik nodek
observed the channel in any of the three states during the report

interval. Clearly,Tk+Bk+Ik = 1, ∀k. An implementation of
the measurement collection tool is presented in Section V-A.
In contrast to trace-based solutions, our reports only include
two numerical values.

III. T HE INFERENCETOOL

The reconstruction of the Activity Share from the reports
is challenging because the time-average measurements inRk

are the result of the transmissions either of the individual
node k (i.e., Tk) or of all its neighbors (i.e.,Bk). In both
cases, it is not possible to locally determine the overlapping
intervals of subsets of neighbors, and of sets of nodes that
do not share neighbors. In this section, we will show how to
overcome this issue; our solution consists of three elements.
First, in order to obtain accurate estimations, we use the~R
inputs to constrain the domain of the feasible~AS (Section
III-B). Since the constraints do not generally identify a unique
solution, we propose an optimization problem to choose a
single representative~AS (Section III-C). The last element
of the solution addresses the computational complexity of
the proposed problem, and reduces the dimension of the~AS
solution space using protocol rules of 802.11 (Section III-D).
In the experimental results in Section V we consider practical
implementation issues, such as report losses and time-varying
channel.

A. Network Model

We consider a single-radio, single-channel network, and we
abstract it as a graphG = {V,E}, where the verticesV
represent theN nodes, and the edgesE represent the carrier
sensing relationships among the nodes. The existence of a
sensing edge(i, j) ∈ E means that nodei carrier senses
transmissions from nodej and vice versa. We define the set of
the nodes that nodei carrier senses asVcs(i) = {j|(i, j) ∈ E}.
We assume that the topology of the graph with respect to
E is fixed during any observation interval and known to our
inference tool (e.g., via offline link profiling [19], or passive
online estimations [13]).

B. Report-based Constraints

In order to obtain an accurate estimation of the Activity
Share, we use the reported measurements~R to constrain the
feasible domain. Since the local observations of the channel of
any node provide information about the cumulative duration
of sets of network states, the actual~AS must satisfy the
constraints imposed by all local observations, and hence lies
in the feasible region the observations define. Accordingly, we
can derive the following constraints:

∑

j:(Dk
j =1)

AS( ~Dj) = Tk (2)

∑

j:(Dk
j =0)∧(∃s∈Vcs(k):Ds

j=1)

AS( ~Dj) = Bk (3)

∑

j:(Dk
j =0)∧(Ds

j=0,∀s∈Vcs(k))

AS( ~Dj) = Ik (4)

∀k ∈ [0..N ]
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whereDn
j denotes then-th component of the~Dj vector.

Equation (2) constraints the time share each node is trans-
mitting: the sum of the Activity Shares of states in which
nodek transmits should be equal to the fraction of timek
transmitted. Equation (3) is related to the busy time of the
nodes. In our network model, the state of a nodek is busy if
the node is not transmitting and any of the nodes inVcs(k) is
transmitting. Hence, the Activity Shares of states, in which
any of the nodes inVcs(k) is transmitting and nodek is
not, sum up toBk. Notably, also the busy time of the nodes
carries information about the Activity Share, by inducing
constraints on the duration of the network states including
transmissions from any neighboring node. The assumption
that the links inE are fixed plays a crucial role in enforcing
this constraint. Even though this is a simplifying assumption,
related research shows that threshold-based carrier sensing
relationships can be reasonably well approximated as binary
[18]. Our experimental results, and a specific discussion in
Section V-B, evaluate the effects of this assumption. Equation
(4) relates to the idle time of the nodes, and can be obtained
with considerations analogous to the previous two. Simple
considerations show that any of the three equations associated
with each node is redundant with respect to the remaining two
and Equation (1). This fact can be easily verified by noticing
that the state indexes used for the three constraints (2), (3), (4)
are a partition of the whole set of indexes, thus they sum up
to the left hand-side term of Equation (1). Thus, we consider
Equation (4) redundant for all nodes.

C. Entropy-based Statistical Solution

In this subsection, we show how to determine a repre-
sentative ~AS close to the actual ~AS occurred during the
measured interval. The representative~AS should satisfy the
report constraints, since the actual~AS determines the reported
measurements. However, the constraints we defined do not
identify in general a single~AS, but rather a feasible solution
domain. Each Activity Share distribution~AS in the domain
defined by the reports would have generated the exact same
observations obtained by the nodes; hence, the selection of
any of these ~AS is admissible. However, a key observation is
that not all feasible solutions are equally likely, e.g., 802.11
introduces a bias against states that include simultaneous
transmissions of mutually carrier sensing nodes. We formalize
this bias using thea priori distribution of the states, and we
select our representative~AS as the feasible solution closest to
the a priori distribution.

Protocol-driven a priori information. As shown in Section
II-A, we can give a statistical interpretation of the components
of the Activity Share. EachAS( ~Dj) corresponds to the
probability the network is in the state~Dj at a random time
instant. Because of the carrier sensing behavior of 802.11,not
all network states havea priori identical probabilities of occur-
rence, i.e.,AS( ~Dj) is not a priori uniform(i.e., equal to 1

2N )
over all states~Dj. In fact, 802.11 carrier sense aims to prevent
the occurrence of states where neighboring nodes transmit si-
multaneously, i.e.,{ ~Dj | ∃k, l : l ∈ Vcs(k), D

k
j = 1, Dl

j = 1}.
Practically, two neighbors can transmit simultaneously only

if their backoffs expire within a slot interval, while non-
adjcent nodes can initiate their transmissions independently.
As a consequence, among the admissible~AS, our scheme
should favor the ~AS that do not assign large probabilities to
states including neighbor transmissions.

We model the protocol behavior of 802.11 by identifying an
a priori distribution that assigns probabilities to the states~Dj

unequally. Since trying to capture the exact prior probability
of each state according to 802.11 is very complicated, we use
a coarse-grained approximation. Nonetheless, we will show
in Section V that our technique attains high accuracy. Our
fundamental idea is to assign to the network statesa priori
probabilities exponentially decreasing with the number of
adjacent transmitters they contain, e.g., the states containing
two pairs of adjacent transmitters have half the probability of
those that contain only one pair. Notice that this assignment
partitions the states~Dj in classes, where all the states in the
same class contain identical numbers of adjacent transmitters,
and thus have equal probabilities. For instance, class 0 includes
all states that do not contain adjacent transmitters and have
probabilityp, class 1 includes all states that contain only one
pair of adjacent transmitters and have probabilityp/2, etc.

Minimum Relative Entropy ~AS inference.In the previous
paragraph, we formalized our knowledge of the protocol
behavior by using ana priori distribution of ~AS. Our objective
is to select the feasible~AS closest to the defineda priori
distribution. We propose to use the concept of Kullback-
Leibler distance [6] to quantify the distance between two
distributions, and select the representative~AS as the feasi-
ble solution that minimizes such distance from thea priori
distribution. Accordingly, the problem is formulated following
the Minimum Relative Entropy Principle.3 Out of the feasible
solutions that have equal Kullback-Leibler distance from the
a priori distribution, the Minimum Relative Entropy Principle
favors the solutions that spread the probability of the states
in the same class as evenly as possible. In fact, in absence of
any other information about the 802.11 protocol behavior, all
states that thea priori distribution assigns to the same class
have identical probability. Hence, any different probability
assignment would introduce an unmotivated bias.

The ~AS Inference problem. We formulate the ~AS infer-
ence problem as:

min
x

γ−1∑

j=0

xj log
xj

wj

s.t. Φ · x = T

Ψ · x = B

1
′ · x = 1

x ≥ 0

whereγ is the cardinality of the set of admissible network
states (2N in this case);x is aγ-dimensional vector, whosej-
th entry isAS( ~Dj); w is the prior distribution of the network
states;Φ is an N × γ matrix, whoseij-th entry is 1 if
Di

j = 1, 0 otherwise;Ψ is an N × γ matrix, whoseij-

3Note the that minimizing the relative entropy is equivalentto maximizing
the expected value of the log-likelihood.
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th entry is 1 if Di
j = 0 and ∃s ∈ Vcs(i) : Ds

j = 1; T

andB areN -dimensional vectors, whosek-th entries are the
measurement resultsTk, andBk respectively. Notice that the
objective function is the relative entropy between the solution
x and the prior distributionw; further, the first and second
constraints (eachN -dimensional) correspond to Equations (2)
and (3) respectively, while the third constraint (1-dimensional)
corresponds to Equation (1).

D. Protocol-based State Space Reduction

The solution space of the~AS inference problem is generated
by 2N variables, i.e., the Activity Share components that corre-
spond to all possible network states; as the number of network
nodesN increases, the exploration of such a large space to find
the best candidate solution becomes computationally complex.
In order to reduce space and complexity, we again leverage
the protocol properties of 802.11 which permit to discover
unlikely states.

As we observed, due to carrier sensing, the occurrence
of ~AS that assign large probabilities to states including
neighboring transmissions is unlikely. We take advantage of
this consideration by excluding from the solution space the
~AS with AS( ~Dj) > 0, for any ~Dj including neighboring

transmitters. Practically, this is equivalent to reducingthe
number of Activity Share components, by eliminating those
corresponding to the unlikely~Dj . In terms of graph theory,
the set of transmitters in any allowed state is an independent
set of the graphG. Thus, the number of network states,
and of Activity Share components to be estimated, reduces
to the cardinality of the set of the independent sets, which
is generally still exponential (in graphs with bounded node
degree [7]) but smaller than2N .

By using this simplification, the resulting inference problem
can be obtained from (III-C), by equatingγ to the cardinality
of the set of the independent sets of the network and by
replacingwj with 1

γ
, ∀j. The latter substitution reduces the

Minimum Relative Entropy objective to Maximum Entropy:
the probability of all the states in the~AS solution will be
spread as evenly as possible according to the constraints.

In our experiments, we verified that the enhancement de-
scribed above permits to double the network size that we
can solve with similar time budget. While simplifying the
computation, the illustrated state space reduction is onlyan
approximation of the reality and may penalize the accuracy
of the obtained solution. We investigate the performance of
the state space reduction in Section V-D, while we adopt the
full state space representation in the testbed results in Section
V-C.

IV. M ITIGATION OF HINDERING TRANSMISSIONS

In this section, we address our goal of improving the
throughput of under-served links. Specifically, we show how
MIDAS uses the Activity Share to predict how limiting the
transmission rate of any hindering node will benefit the
throughput of the problematic link. Our solution is comprised
of two procedures:i) we address the main challenge of
estimating the Activity Share after the management operation;

ii) based on the new Activity Share, we estimate the potential
throughput gain that any single link can obtain, in particular
the target link. With regard to the first procedure, the key
technique we devise follows a differential approach in which
we consider that small deviations from the current network
conditions have limited effect on the nodes other than the
rate-limited and the under-served. The second procedure uses
a simple model that identifies how the Activity Share affects
the busy time and collision probability of the under-served
link. In this section, we discuss each step separately.

A. Evolution of the Activity Share after Rate-limiting

In order to obtain the potential throughput gain of the under-
served link by rate-limiting a specific node (Section IV-B),
we first compute the Activity Share after rate-limiting. Our
methodology follows a differential approach that assumes that
small changes on the transmission rate of a node do not
affect the relative durations of the states in which that node
transmits. In particular, we assume that the Activity Shareof
the states in which the rate-limited node transmits will reduce
in proportion to their values before rate-limiting. Note that
based on the differential approach, the total time the nodes
transmit, other than the under-served and rate-limited nodes,
is not affected by the change. In practice, this can be realized,
e.g., by having the transmission rates of neighboring links
fixed to the value before the management operation. In the
following, we illustrate the analytical aspects of the differential
approach, while its accuracy is implicitly evaluated by the
experimental results in Section V (see in particular, Figures
8 and 17-19).

DenoteASo (Activity Shareold) andASn (Activity Share
new) the Activity Share before and after the rate-limiting
action, respectively. Let us consider the case of rate-limiting
the packet transmission rate (i.e., at the MAC layer) of a single
conflicting nodek of a quantityRLk. We define{ ~Dk0

l } the
states in whichk does not transmit (i.e.,Dk

l = 0), and{ ~Dk1
l }

the states in whichk does (i.e.,Dk
l = 1), and we establish

that the j-th states, i.e.,~Dk0
j and ~Dk1

j , differ only for the
k-th entry, i.e., ~Dk0

j = {dj1 . . . djk−1 0 djk+1 . . . djN} and
~Dk1
j = {dj1 . . . djk−1 1 djk+1 . . . djN}. Using the differential

approach, the Activity Share of the network states (in{ ~Dk1
l })

in which k transmits decreases proportionally to the duration
of those states inASo, and the state~Dk0

j benefits from the
decrease of the state~Dk1

j , for all j. Formally,

ASn( ~Dk1
j ) ≈ ASo( ~Dk1

j )−
ASo( ~Dk1

j )
∑

l:Dk
l
=1

ASo( ~Dl)
· h ·RLk (5)

ASn( ~Dk0
j ) ≈ ASo( ~Dk0

j ) +
ASo( ~Dk1

j )
∑

l:Dk
l
=1

ASo( ~Dl)
· h ·RLk (6)

whereh is the duration of the packets sent byk, andRLk

is the rate-limiting amount of nodek in terms of packets per
second. For ease of exposition, we assume fixed duration of
the data packets transmitted over all links. Next, we will use
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theASn to obtain the new collision probability of the under-
served link.

B. Relationship between the Collision Probability of the
Under-Served Link and the Activity Share

According to [9], we can express the maximal throughput
of any link after the rate-limiting action by estimating its
busy time and collision probability. The busy time of a link
can be obtained from the new Activity Share using Equation
(3). In this section, we show how to use the new Activity
Share to determine the collision probability of any link, and
in particular of the under-served. Given the Activity Share,
the main challenge in computing the collision probability is in
the transformation of the cumulative time the colliding nodes
have transmitted simultaneously into the number of collided
packets. For instance, letτ be the sum of the Activity Share of
the states where colliding nodesa and b transmit simultane-
ously; since (assuming a fixed packet durationh) a packet can
collide at most with two different packets, the total numberof
collided packets between these two nodes can be any integer in
the range[ τ

h
, 2min{transmitted packets by a or b}]. In the

following, we use a binary channel assumption; accordingly,
a packet on(i, j) is corrupted if it overlaps for any arbitrary
small duration of time with any other packet reception atj.

In order to compute the collision probabilitypi,j of a
problematic link(i, j), we determine the success probability,
i.e., the probability that the transmission of a packet fromi to
j entirely fits within a time interval during which its hidden
terminals are not transmitting. To estimate this probability,
we model the transmission attempts ofi as the sampling of
an ON/OFF process representing the aggregate transmissions
of all the hidden terminals ofi [9], [19]. The ON period
is the interval during which at least an hidden terminal is
transmitting, the OFF period is the gap in the activity of all
the hidden terminals that nodei has to discover randomly.

In the analysis of this process, we make the following
assumptions.1) In general, the transmissions of the hidden
terminals are not coordinated and may overlap; thus, the
durations of the ON and OFF periods are variable. In this case,
it is a common assumption to model them distributed exponen-
tially. 2) The duration of an ON period can range from very
short, e.g., an individual ACK transmission, to much longer
than the duration of a data packeth, in case of consecutive
overlapping transmissions of different hidden terminals.We
balance these cases, by approximating the average durationof
an ON period,T̄ON , with h. 3) Conditioned on the fact thati
can transmit, i.e., that the nodes inVcs(i) are not transmitting,
we assume that the transmissions ofi occur at random points
in time.

In order to succeed, a packet transmitted on(i, j) needs to
start during an OFF period, and be entirely received during the
OFF period. Thus, using assumptions 1) and 3), we can write

the collision probability as:pi,j = 1 − T̄OFF

T̄ON+T̄OFF
e
− h

T̄OFF

[9]; assumption 2) permits to obtainpi,j as a function of
T̄ON

T̄ON+T̄OFF
. In the remainder, we show how to express

T̄ON

T̄ON+T̄OFF
(and thuspi,j) as a function of the Activity Share.

In order to do this, we compute the total duration the process
is in ON and{ON or OFF} states during a measurement
interval ∆T : the ratio between these two quantities is equal
to the ratio of their averages T̄ON

T̄ON+T̄OFF
. Recall that the ON

and OFF states model the sampling of nodei of the channel
at the receiver, and that nodei cannot sample the ON/OFF
process (i.e., transmit) during the transmissions of nodesin
Vcs(i). Hence, we prune all time intervals in which at least
one ofi’s neighbors is transmitting, i.e., we consider only time
intervals in which no node inVcs(i) is transmitting. Thus, the
whole duration of the ON-OFF process in∆T is (1−Bi)∆T .
Let us denoteVht(i, j) the set of hidden terminals of(i, j).
Then, the whole duration of the ON period in∆T is the time
at least one hidden terminal is transmitting and no node in
Vcs(i) is transmitting. By using the Activity Share, we denote
the latter interval asASHT∗∆T , where

ASHT∗ =
∑

l:(∃m∈Vht(i,j):Dm
l
=1)∧(Dn

l
=0,∀n∈Vcs(i))

AS(Dl)

(7)

Finally, the identity between T̄ON

T̄ON+T̄OFF
and the ratio of

their total durations in∆T discussed above leads to

T̄ON

T̄ON + T̄OFF

=
ASHT∗∆T

(1−Bi)∆T
≡ ASnormHT∗ (8)

By replacing (8) intopi,j , we can write:

pi,j = 1− (1−ASnormHT∗)e
−

ASnormHT∗

1−ASnormHT∗ (9)

which expresses the collision probability of a link using
exclusively the Activity Share. Using Equation (9) we can
compute the throughput according to [9].

V. PERFORMANCEEVALUATION

In this section, we validate MIDAS through an extensive
set of testbed and simulation experiments. After introducing
our experimental platform and implementation, we investigate
the performance of MIDAS in a real testbed deployment.
Finally, we extend the evaluation by simulating a broader
set of topologies with larger numbers of nodes, in order to
determine the sensitivity of the tool to node density and traffic
load, and show its robustness to missing reports and real traffic
distribution.

A. Experimental Testbed

WARP. To validate MIDAS, we used the Wireless Open-
Access Research Platform (WARP) developed at Rice Uni-
versity [1]. The platform, built around a Xilinx Virtex pro-
cessor, includes the MAX2829 radio chipset that provides
RSSI readings. Moreover, WARP implements an OFDM layer
similar to 802.11a. In our configuration, the boards operateat
6 Mbps using BPSK modulation, and are equipped with a 3
dBi antenna; all boards are controlled by a laptop via Ethernet
connections.

Inference Tool Implementation. The implementation of
the inference tool consists of two basic components.i) The
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transmission duration countermeasures the time duration
the radio is in transmission state by timing the functions
that control the transmission operations.ii) The sub-packet
RSSI time samplermeasures the time duration the received
signal strength, including noise and interference, exceeds a
given threshold. In contrast to existing off-the-shelf drivers,
such as MadWifi for Atheros chipsets,4 which only provide
an RSSI sample per packet, our implementation samples the
RSSI values at regular time intervals shorter than the packet
duration, and compares them to the carrier sense threshold.

Validation Tool. Two additional components were imple-
mented only for validation purposes.i) The fast RSSI sampler
behaves identically to the sub-packet RSSI time sampler
described above, but supports higher sampling rates via a
digital design, thus improving the precision of the busy time
estimation.ii) The trace collection logicprovides the ground
truth of our experiments by collecting and storing on the
board’s memory the timestamps and durations of all radio-
transmitted packets and sends batch traces to a control station.
The individual node traces arenot used by the inference tool,
but permit to reconstruct offline a network-wide global trace
of the transmitting activity of all nodes and to extrapolatethe
actual Activity Share. In order to synchronize the individual
traces from different nodes, the control station issues an
Ethernet broadcast to the boards at the beginning of each
experiment, which is used to reset their clock. We verified
that our technique achieves clock offsets below a few micro-
seconds.

Testbed Setup.We conduct our experiments on a five-node
indoor testbed. In order to verify the robustness of MIDAS to
different node densities, we alternately deployed our nodes in
different topological configurations. We list the locations used
in our topologies in decreasing order of density, with reference
to Figure 2: in the single-hop topologyS1 all nodes are next to
each other close to positionb; in the multi-hop topologyM1
the nodes are located in the positions{a, b, c, d, e1}; in the
multi-hopM2 the nodes are in positions{a, b, c, d, e2}. Each
board transmits 1000-byte data packets, with constant inter-
packet time whose value depends on the experiment. Each
experiment run lasts 10 seconds and, where not differently
specified, the reported results are cumulative over 10 runs.

Fig. 2. Layout of our testbed deployment.

B. RSSI-based Busy Time Discovery

The challenge in the experiment setup is to devise a tech-
nique to consistently measure the node busy time, i.e., the total

4Multiband Atheros Driver for Wifi. Available at http://madwifi.org/

duration ofall and only the transmissions of a limited set of
neighboring nodes. In Section II-A, we argued that we cannot
use packet reception statistics to measure node busy time with
the needed accuracy because of packet losses. In this section,
we show how to use the received signal strength to discover
neighbors’ transmissions. The advantage of our technique is
that it does not rely on packet decoding, thus being resilient
to losses.

We identify the neighbor set of a node as the set of nodes
whose transmissions consistently exceed an RSSI threshold.
Because wireless links are heterogeneous, the received signal
strength varies from link to link; because of fading, it fluctuates
in time. The first issue requires each node to autonomously
calibrate its own threshold value, depending on the local
topology, so thatall and onlyneighbors’ transmissions consis-
tently exceed it. The choice of an RSSI threshold sufficiently
lower (resp. higher) than the average signal strength of every
neighbor node (resp. non neighbor node) permits to cope with
the temporal variations.

In order to demonstrate our calibration technique, we design
an experiment where we evaluate many possible RSSI thresh-
olds for each node in the topologyM2. In the experiment, each
node in the network takes turns of 10 seconds transmitting
broadcast packets at maximum rate, while the others measure
the fraction of time the RSSI exceeds a threshold. For each
transmitter, we perform the experiment 8 times, increasingthe
threshold of the potential receivers (i.e., all other nodes) from -
90 dBm to -66.2 dBm in steps of 3.4 dBm; for each threshold
value, we perform 10 iterations. In Figure 3, we show the
results we obtained for nodea; for the other nodes we obtained
similar results. The X-axis represents the threshold value,
while the Y-axis is the ratio between the total time the received
RSSI exceeds the threshold and the total transmission time of
the source node. The figure shows that, for certain values of
the threshold, nodea can discover almost all transmissions
from a set of nodes and almost none from the others. For
instance, for a threshold of -80 dBm nodea can discover
more than99% of the transmissions of nodesb and c, and
less than1% of those ofd and e2. This threshold defines a
neighbor set of nodea including b and c. The experiment
shows that it is possible to identify suitable RSSI thresholds
consistently exceeded by neighbor nodes, and rarely by non-
neighbors. In our experiment, the calibration procedure just
described was repeated once for each topology at the begin-
ning of each session, and the thresholds were left unchanged
during hour-long repetitions. To address unusual situations of
severe fading where fixed thresholds cannot be identified, we
are investigating a technique based on the evaluation of the
threshold crossing probability of each neighbor.

C. Testbed Results

Experimental Methodology. We evaluate the accuracy of
the inference tool, by assessing its predictions in different
testbed and simulation settings. At theend of each experiment
performed, we collecta singlereport from each node including
its transmission time and busy time, which represent the
parametersT and B in Problem (III-C). We compute the
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Fig. 3. Effect of the RSSI threshold on the busy time of node a
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Fig. 4. Activity Share inference (testbed).

optimal solution of Problem (III-C) corresponding to the
collected values using the Matlab solverfmincon. We establish
the accuracy of the Activity Share inference by comparing our
estimations with the ground truth provided by anomniscent
centralized approachbased on the collection of detailed traces
(see the Validation Tool above).

An example of the results obtained from a single run
on topologyM2 is shown in Figure 4. In the Figure, we
present the scatterplot of the predicted and actual (ground
truth) Activity Share obtained in the single run. Each value
k on the X-axis denotes anetwork state~D corresponding to
the binary representation ofk (once mapped the bit indices
0 through 4 to the nodes positioned ina, b, c, d, and e2,
respectively, e.g.,k = 20 maps to the network state{10100},
i.e., where only nodese2 andc transmit). The graph shows an
excellent agreement between the inferred Activity Share and
the actual Activity Share obtained from the traces. Further, we
can observe that a number of states have very short durations:
these typically include simultaneous transmissions of nodes
in carrier sensing range, which occur less frequently than the
others.

Sensitivity to Network Density. Network density can
highly affect the accuracy of the Activity Share estimation. In
order to infer the Activity Share, it is challenging to estimate
the duration of overlapping transmissions of non-neighboring
nodes, by combining their transmission reports with the busy
timeshare reports of their common neighbors. On the one
hand, the lower is the density, the more tightly the busy

timeshare reports constrain the overlapping transmissions of
non-neighboring nodes, but also the fewer reports reflect such
events. For example, if a nodez has only two transmitting
neighborsx and y (where x and y are not neighbors),z’s
busy timeshare report permits to exactly recover the share of
time that transmissions ofx andy overlapped, asTx+Ty−Bz.
However, if a node has three transmitting neighbors (which are
non-neighbors to one another), based on the busy timeshare
of the node it is not possible to determine the amount of
overlapping transmissions of any two or all three of them.
In fact, the higher the density, the more combinations of
overlapping transmissions of a node’s neighbors are consistent
with the node’s busy timeshare report. On the other hand, the
higher is the density, the larger is the number of nodes that
observe the transmitting activity of a given set of transmitters.
Accordingly, more constraints can be imposed on the Activity
Share estimation based on the diversity of the reports of differ-
ent neighbors. In order to investigate the influence of network
density on the Activity Share accuracy, we run experiments
on all three different topologies of our testbed: topologyS1
which is densest, as all nodes are connected to one another,
topologyM1 which is less dense, and topologyM2 which is
the sparsest.

Figure 5 shows the CDF of the normalized relative error
of the Activity Share estimation, where the relative error
committed in a state is weighted by the Activity Share of that
state, i.e., proportionally to the duration. The X-axis indicates
the normalized relative error committed, while the Y-axis is
in (non-dimensional) time ratio units. For instance, the point
in (0.1, 0.7) indicates that the network spends70% of the
time in states where our inference tool commits an error of
10% or less. All plots show that our inference technique
is remarkably accurate under all density conditions; further,
S1 is the most accurate solution, while theM1 plot mostly
dominatesM2. The respective average normalized relative
errors, i.e., the relative error committed in a randomly sampled
instant, are4.6% for S1, 9.9% for M1, and11.5% for M2.
These results are obtained for broadcast packets; however,
similar values have been obtained using one-hop unicast flows,
i.e., 4.8% for S1, 6.1% for M1, and 7.7% for M2. We
conclude that the Activity Share inference tool is accurate
under all density conditions: in low density, a small number
of reports reflects overlapping transmission events, but they
impose tight constraints; in high density, the large report
diversity compensates for the looser constraints imposed by
the reports.

The influence of network density on the Activity Share is
revisited by simulating larger topologies and the results can
be found in Section V-D.

Sensitivity to Traffic Load. Similarly to network density,
traffic load can also affect the accuracy of the Activity Share
estimation, since it influences the overlapping transmissions
sensed by a node. The higher the traffic load, the larger is
the amount of overlapping transmissions, which challenge the
estimation of the Activity Share by enlarging the feasible
state space. In fact, as noted earlier, in case of overlapping
transmissions, several combinations of Activity Shares may
generate identical observations (i.e., node busy and transmis-
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Fig. 5. Inference sensitivity to network density (testbed).
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Fig. 6. Inference sensitivity to traffic load (testbed).

sion timeshares). However, light traffic conditions increase the
free airtime observed by a node, which in turn weakens the
coordination attained by carrier sensing, by decoupling the
transmitting patterns of the nodes and leaving larger room
to randomness. We study the impact of traffic load on the
Activity Share inference tool, by running the experiment on
a fixed topology with various traffic loads. Specifically, we
iterate scenarioM1 three times, fixing the unicast traffic loads
of all nodes to 400 kbps, 1.2 Mbps, and 2 Mbps (also in this
case, each experiment is repeated 10 times).

Figure 6 depicts the CDF of the normalized relative error
of the Activity Share estimation. As can be seen in the
figure, the Activity Share inference tool attains a very low
normalized relative error. Furthermore, the variations among
the three plots are minimal, and are comparable with the
results attained for the fully backlogged case. In particular,
the average normalized relative error is4.6%, 4.0%, 4.5% for
400 kbps, 1.2 Mbps, and 2 Mbps, respectively.We conclude
that, even though heavier traffic challenges the Activity Share
inference by increasing the amount of overlapping transmis-
sions, while lighter traffic increases randomness, the accuracy
of our solution is largely independent of the traffic load of the
nodes.

We defer the investigation of the sensitivity of the inference
tool to large topologies and non-uniform traffic patterns, to the
simulation section.

Sensitivity to Report Interval Length. In the previous
experiments, we used report intervals of 10 seconds, i.e., each
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Fig. 7. Inference sensitivity to short report intervals (testbed).

nodek sent one report every 10 seconds including the busy
and transmission timesharesBk andTk thatk measured during
the same interval. The report interval introduces tradeoffs of
reporting overhead (favoring long intervals), responsiveness
to network changes (favoring short intervals), and obtaining
statistically significant data (favoring long intervals).We as-
sess how short report intervals affect the performance of the
inference tool, by measuring the accuracy in the scenarioM1,
for various report interval lengths, varying from 20 s to as low
as 100 ms, for fully backlogged unicast traffic.

The experiments show that the inference tool is accurate also
for short report intervals (Figure 7). In particular, as thereport
interval decreases from 20 s to 500 ms, the accuracy decrease
is minimal. When the report interval is further reduced, and
is set up to (as small as) 100 ms, i.e., the reported values
are based on approximately 20 packets sent by each node, the
accuracy declines. The average normalized errors are4.1%,
7.6%, 10.2%, and 29% for the cases of 20 s, 2 s, 500 ms,
and 100 ms, respectively.We conclude that, in order to better
capture the network dynamics, the network manager can adapt
the duration of the report intervals, with a small penalty on
inference accuracy.Note that since each report includes only
two entries, the overhead is minimal. For example, in our
implementation, the reportsRk include only two floating point
values for a total of 16 bytes, i.e., they easily fit within a single
packet, and can be aggregated or even piggybacked in regular
traffic.

Throughput Prediction Accuracy With Heterogeneous
Concurrent Load. We evaluate the accuracy of the model
in Section IV, by comparing its predictions with testbed
experiments in the topologyM1 with single-hop flows{a →
c; b → a; c → a; d → b; e1 → c}. For each set of experiments,
we consider a target under-served link whose traffic is fully
backlogged, and we perform a baseline run, measuring the
throughput of the target link when all others transmit at rate
randomly chosen in the [400 kbps, 900 kbps] interval. At the
end of the baseline run, we collect the node reports, infer
the Activity Share, and predict the throughput increase of the
target link obtained by rate-limiting any of the four conflicting
nodes of a fixed quantity (400 kbps). Then, we perform four
additional runs on the testbed (one per conflicting node), alter-
nately rate-limiting a different conflicting node for the same
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Fig. 8. Throughput increase estimation for concurrent nodes with loads in
[400 kbps, 900 kbps] (testbed).

400 kbps quantity, and we record the actual throughput gain
of the target link. Finally, we compare the actual throughput
gain obtained in the testbed with the throughput gain predicted
by our model.

Figure 8 shows the CDF of the relative error for all
possible target link/conflicting node pairs for 10 repetitions
of our scenario (200 predictions in total). The long tail of
the distribution is due to few combinations for which the
actual gain is very small (on the order of a few kbps);
in those cases, even an error of few packets is decisive in
relative terms. In terms of the absolute error, the predicted
throughput gain is on average less than 72 kbps different
from the actual throughput gain (i.e.,18% of the rate-limiting
value of 400 kbps, or around26% of the average actual
throughput gain of approximately 280 kbps).We conclude
that, despite rate-limiting different conflicting nodes can have
largely different impacts on the throughput of an underserved
link, our prediction tool adequately captures the heterogeneous
effects.

D. Simulation Results - Inference Tool

In order to evaluate the inference tool on various topologies
including a larger number of nodes, we performed an extensive
set of ns-2 simulations following the inference experimental
methodology adopted in the previous section. In this section,
we first compare testbed and simulation. Then, we evaluate
the accuracy loss due to the state space reduction discussedin
Section III-D; all the results in the remainder of the paper im-
plement such enhancement.We also investigate the sensitivity
of the inference technique to network density, unsaturatedand
real traffic conditions, and its robustness to report losses, and
short report interval lengths.

Simulation Settings. We consider scenarios where each
node generates 1000-byte UDP packets directed toward a
single neighbor, with constant inter-packet time. The traffic
is generated for 100 s at a fixed rate. We use the FreeSpace
propagation model, with node transmission and interference
ranges equal to 210 m. We generate scenarios with a certain
network density (i.e., where each node has on average a
predetermined number of neighbors), by deploying the nodes
in random positions, and scaling the size of the deployment
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Fig. 9. Activity Share: simulation vs testbed.

area. Except for the experiment in Figure 9, which is obtained
using 802.11a at 6 Mbps, all results in this section are obtained
using 802.11b at 11 Mbps data rate in order to experiment
with different conditions. We refer to the analogous simulation
results obtained for 802.11a at 6 Mbps as needed.

Comparison between Testbed and Simulations.The sim-
ulations introduce simplifications about actual channel prop-
agation and abstract operational details, such as the WARP
board’s packet processing time. For this reasons, our first
experiment compares the simulations and testbed results. We
consider the topologiesS1 andM2 used in the testbed section
and fully backlogged nodes. Using theomniscent centralized
approach, we extract the Activity Share from the traces of
simulation and testbed, and we compare them. Figure 9 shows
the actual Activity Share (Y-axis) for all 32 possible states
(X-axis) sorted similarly to Figure 4.5 The plots show an
excellent agreement between the two environments; the small
discrepancies are due to non-ideal packet processing times
and carrier sensing relationships in the testbed.

Effect of the Protocol-based State Space Reduction.The
next experiment evaluates the effect of the protocol-based
reduction discussed in Section III-D. We generate a random
topology of 10 nodes, with an average number of 7 neighbors
per node, and we compare the Activity Share obtained using
the reduced (labeled “Protocol-based Reduction”) and the
entire2N state spaces (labeled “Power Set”).

Figure 10 shows the scatterplot of the Activity Share. The
X-axis is the actual value of the Activity Share, while the
Y-axis is the estimated value; each mark represents a single
state. As expected, the solution including the power set is
more accurate (crosses are closer to the line than circles).The
concentration of circles on the X-axis close to the origin are
due to the states including adjacent nodes transmitting, that
the protocol-based reduction excludes. Note that the actual
Activity Share values of those states are not significantly larger
than 0, as the simultaneous transmissions of neighboring nodes
are relatively unlikely. The power set solution benefits from
accounting for the unlikely states, not only in the prediction of
the Activity Share of those states, but also of states including
only independent sets of transmitters.We conclude that the
accuracy of the inference tool increases by re-introducingthe

5Note that for scenario S1 the actual node mapping is immaterial.
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Fig. 10. Inference with protocol-based reduction.

states excluded by the protocol-based reduction, since those
states contribute to the reported measurements.

Sensitivity to Network Density. This subsection revisits
the issue of network density on large topologies. In contrast to
Section V-C, we run our scheme on the reduced state space.
We evaluate the normalized relative error between inferred
and actual Activity Share, for 30 topologies of 10 and 15
nodes, with average node neighbors from 3 to 13 and fully
backlogged traffic. Recall that the normalized relative error
is the relative error committed in a state weighted by the
Activity Share (i.e., proportionally to the duration) of the state.
Figures 11 and 12 show that our inference tool is accurate
under different densities, e.g., the network spends more than
70% of time in states whose relative error is below20% for
all tested densities in 10-node topologies. Figure 11 shows
that for 10 nodes a density increase from 3 to 5 improves
the accuracy of the inference tool, while for density 7 the
performance decreases. The average normalized relative errors
are12.2%, 10.2%, 17% for densities 3, 5, and 7 respectively.
We ran this experiment also using 802.11a at 6 Mbps, and we
obtained normalized relative errors of13.7%, 12.5%, 15.2%,
respectively. Figure 12 shows a similar trend for 15-node
networks; the accuracy grows for density increase from 3
to 7, but it reduces for density 13. The average normalized
relative errors are18%, 14%, 26%, for densities 3, 7, and 13
respectively. Both figures clearly depict the existence of an ac-
curacy tradeoff related to the network density. As explained in
Section V-C, the denser the network the more constraints can
be imposed on the Activity Share estimation. However, as the
network approaches a clique, the probability of simultaneous
transmissions of neighboring nodes increases, thus generating
network states that are excluded by the protocol-based state
space reduction. For example, the accuracy degrades for 10-
node networks with density 7, and for 15-node with density
13. In contrast, in 15-node networks with density 7, nodes in
close proximity likely observe different channel busy intervals,
due to the diverse sets of carrier sensed nodes; thus, their
simultaneous transmissions are less frequent. Notice that, as
shown later in more detail, traffic intensity has a similar
effect on the validity of the protocol-based approximation,
and that fully backlogged traffic is a worst case due to
higher occurrence of adjacent node transmissions.We conclude
that, although the protocol-based reduction is accurate in
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Fig. 11. Inference sensitivity to density (10 Nodes).
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Fig. 12. Inference sensitivity to density (15 Nodes).

all evaluated settings, high network densities challenge the
validity of its approximation.

Sensitivity to Traffic Load. Not only the network density
affects the occurrence of states excluded by the protocol-
based approximation, but also the traffic intensity. In fact,
as the traffic decreases, the probability that carrier sensing
nodes transmit simultaneously decreases. Figure 13 shows the
bar graph of the average normalized relative error between
inferred and actual Activity Share, for 10 nodes, density from
3 to 7, and target transmission rate from 300 kbps to fully
backlogged for each node (in a single scenario, all nodes are
subject to identical target transmission rates). The graphshows
that the error increases with the target transmission rate for
each density value. Furthermore, the error increases with the
network density, because of the reasons explained above. In
particular, as the density increases the network becomes fully
backlogged for lower transmission rates (the effect is evident
in the case of 900 kbps for density 7).We conclude that as the
network traffic decreases the performance of our methodology
improves, because of the increased accuracy of the protocol-
based approximation.

Robustness to Real Traffic Distribution. In our previous
experiments, all traffic sources generate packets according
to predefined inter-packet distributions. In this experiment,
we investigate how critical this assumption may be for our
inference technique to operate in real traffic scenarios. In
order to reproduce real traffic, we replay actual traffic traces
collected within UCSD Jigsaw project [5] in our simulation
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Fig. 13. Sensitivity of the Activity Share estimation to traffic load (10 Nodes).
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Fig. 14. Inference robustness to realistic traffic.

environment. In particular, we randomly select 10 nodes from
the UCSD traces, and we play 10 seconds of their traffic
on a network topology obtained as follows. Two nodes are
considered disconnected if the considered traces include five
overlapping transmissions of data packets from the two nodes
(in order to safely consider synchronization errors and simul-
taneous neighbor transmission events, we consider the over-
lapping valid only if its duration exceeds 100µs); otherwise,
the two nodes are considered disconnected. Each simulated
node generates packets according to the transmission timesof
the UCSD node it represents in the trace. Figure 14 shows
a scatterplot of the measured Activity Share vs. the inferred
Activity Share for 10 repetitions of the experiment, with traffic
from 10 different time intervals. Note that, in order to visually
capture a large range of Activity Share values, we plot both
axes in logarithmic scale; for this reason, for small valuesof
the Activity Share the error is visually magnified, although
it is only a few percent. The plot shows that also in these
real traffic conditions, our inference technique achieves very
accurate results. Quantitatively, the average normalizedrelative
error is about3%. We conclude that our inference technique
is robust to real traffic conditions, i.e., it is accurate also in
case the traffic is not generated according to a predefined
distribution.

Robustness to Incomplete Information. In the case of
severe network congestion, some of the reports could be lost.
We evaluate how report losses affect the accuracy of the
inference tool, by simulating the loss of up to five out of the
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Fig. 15. Inference robustness to missing reports.

ten reports transmitted in 10-node networks, with densities
of 3, 5 and 7 (i.e., where each node has on average 3, 5,
and 7 neighbors, respectively). Figure 15 shows the average
normalized relative error of the Activity Share computed out of
all possible states obtained from 30 random topologies, where
we evaluate the lack of all possible combinations of missing
reports (bars indicate85-th percentiles). We observe that the
performance gracefully degrades as the number of missing
reports increases. This is because the reports of neighboring
nodes are related: for instance, part of the busy time of
neighboring nodes is generated by transmissions of common
neighbors.We conclude that our inference technique is robust
to report losses, due to inherent redundancy of node reports.

Report Interval Length. In this section, we extend the
result obtained in the testbed experiments to larger topologies.
Furthermore, differently from the testbed experiment, we use
the state space reduction which, as shown above, may affect
the accuracy of our solution. Specifically, in the previous
simulations, we used report intervals of 100 s, i.e., each
nodek sent one report every 100 s including the busy and
transmission timesharesBk and Tk that k measured during
the same interval. This result assesses the accuracy of our
inference technique in a 10-node network, with density 5, for
report interval lengths as low as 50 ms. Figure 16 shows that
the inference tool is accurate also for short report intervals.
In particular, as the report interval is decreased from 100 s
to 2 s, the accuracy decrease is minimal. When the report
interval is small and set to 50 ms, i.e., the reported values
are based on approximately 10 packets sent by each node, the
accuracy decreases. The average normalized errors are10%,
11%, 14%, and25% for the cases of 100 s, 2 s, 500 ms, and
50 ms, respectively.Our simulations confirm the conclusions
we obtained in our testbed results; the slight performance
decrease is mainly due to the state space reduction and to
the more complex interactions of larger topologies.

E. Simulation Results - Throughput Prediction Tool

We investigate the performance of the prediction tool with
ns-2 simulations with the same experimental methodology
used to evaluate the throughput prediction accuracy in Section
V-C. We start by running MIDAS on a ten node random
topology with density 3. Node transmission rates are set to
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Fig. 16. Inference robustness to short report intervals.
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Fig. 17. Throughput increase estimation for scenarios withdensity 3.

600 kbps. As in the experimental case, we pick one target
underserved link, we increase its load until it is fully back-
logged, and successively repeat the experiment, rate limiting
each time a different conflicting flow by 400 kbps; we iterate
this procedure for all links in the network. In Figure 17,
we compare the scatterplot of the predicted throughput gain
with the actual throughput increase collected for 10 different
random topologies. The X-axis index identifies the actual
throughput increase for a saturated link by rate-limiting one of
its conflicting nodes, while the Y-axis represents the predicted
value for the same rate-limiting action, e.g., a point on the
diagonal represents a perfect match between the actual and
the predicted throughput gain of the tagged link; points above
and below the diagonal represent an overestimate and an
underestimate of the predicted over the actual throughput gain
of the tagged link, respectively. The graph shows an excellent
agreement between the prediction and the simulation. It is a
notable finding that by rate-limiting different conflictingnodes
of the same fixed amount, the throughput increase of the target
link can range from7% to 172% of the rate-limited quantity
400 kbps, i.e., from 28 kbps to 688 kbps. In the remainder of
this section, we evaluate how the prediction accuracy depends
on network density and traffic load.

Sensitivity to Network Density. As previously shown,
network density influences the accuracy of the Activity Share
inference, which is the basis of throughput prediction (see
Section V-C). In addition, network density determines the
number of neighbors and neighbor’s neighbors (potentially
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Fig. 18. Throughput prediction sensitivity to density (600kbps).

hidden terminals) that respectively affect the link busy time
and collision probability, which in turn are key to our pre-
diction tool. We investigate these effects by evaluating our
predictions for all possible target link/conflicting node pairs
in 10 topologies with 10 nodes, and densities of 3, 5, and 7,
with node transmission rates of 600 kbps. Figure 18 shows the
empirical CDF of the relative error between the predicted and
actual throughput increase. The plot for density 3 (i.e., for
topologies with 3 neighbors per node) is the most accurate,
while the case for density 5 is the least; the average relative
errors are17%, 26%, 22% for densities 3, 5, and 7, respec-
tively. Surprisingly, the accuracy in throughput prediction does
not exactly reflect the accuracy in the inference of the Activity
Share (we checked that the trends in Figure 11 were respected
also in this set of scenarios). The main reason is that our
model is more accurate in the computation of the fraction of
busy time than of the collision probability, since the former
imposes less stringent assumptions (see Section IV-B). Thus,
the case of density 3, where the number of hidden terminals
is restricted by the degree of the receiver, is most accurate.
In terms of the absolute error, i.e., the difference betweenthe
actual throughput gain and the predicted gain, the predicted
throughput gain is within 80 kbps (i.e.,20% of the rate-
limiting value of 400 kbps) from the actual throughput gain
in 83% to 92% of the cases.We conclude that the accuracy
of the prediction model increases as the number of hidden
terminals decreases, because of the less stringent assumptions
we impose on the computation of the fraction of busy time of
the under-served link.

Sensitivity to Traffic Load. In this experiment, we inves-
tigate the effect of traffic load on the accuracy of our predic-
tions, by repeating the simulations above for node transmission
rates of 900 kbps. Figure 19 shows the same ranking among
the curves relative to different densities as for the case of
600 kbps. However, the accuracy obtained for 600 kbps is
higher than for 900 kbps. This is due to two reasons: first,
the Activity Share inference technique based on the protocol
state-space reduction is more accurate for lower traffic loads
(see Figure 13); second, in terms of the relative error the
prediction of small throughput gains is more challenging than
the prediction of large gains. As the neighbor load increases,
rate-limiting actions produce on average a lower benefit for
the under-served link, thus increasing the influence of the less
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Fig. 19. Throughput prediction sensitivity to density (900kbps).

accurate results for lower gains on the CDF. For example, for
density 5 and 600 kbps, on average the under-served link gains
0.6 of the rate-limiting amount (i.e., 240 kbps out of 400 kbps
in this experiment), while for the case of density 5 and 900
kbps the under-served link gains0.4 (i.e., 160 kbps out of 400
kbps). This explains why the relative error is larger for 900
kbps than for 600 kbps.

F. Simulation Results - Real Network Topology

In this experiment we consider the topology of a real
mesh network, TFA [3], deployed in south-east Houston.
The topology consists of 18 backhaul nodes whose actual
connections, as reported by WIANA [21], are depicted in
Figure 20; the coverage area is3km2, and the average node
degree is6.58. All nodes are equipped with 802.11b cards; the
node denoted asGW , the gateway, is also wiredly connected
to Internet via a 100 Mbps fiber. We considered a scenario of
upload activity of the nodes, and the destination of each link
is chosen according to the shortest path toward the gateway.

Inference Tool. Figure 21 compares the values of the
Activity Share entries inferred by our solution with the actual
values. All network nodes send fully backlogged traffic at 11
Mbps (as shown above, this represents a worst case for the
inference tool). The X-axis index identifies the network states,
while the Y-axis represents the Activity Share, i.e., the ratio
of time the network spent in a state. The X-axis is sorted
according to increasing values of the actual Activity Shareof
the states and, for the sake of readability, represent only the
237 states with highest Activity Share. The graph shows again
an excellent agreement among inference and simulation.

Throughput Prediction. Similarly to the case in Figures
18-19, we evaluate the accuracy of our methodology by pre-
dicting the throughput increase on any target link, achievable
by limiting the transmission rate of any conflicting node;
we consider all possible target link / conflicting node pairs.
Figure 22 shows the empirical CDF of the absolute error
between the throughput increase predicted by the methodology
and the actual throughput increase. The X-axis represents the
absolute error in terms of packets per second, while the Y-axis
represents the fraction of predictions. In this experiment, the
target transmission rate is 600 kbps for all links excludingthe
target link, which is fully backlogged; the rate limitationis

50 packets per second (where the size of each packet is 1000
bytes). This permits to obtain appreciable throughput increases
for several of the examined target link / conflicting node pairs.
The figure shows that in81% of the predictions the absolute
error is less than 10 packets per second.

Fig. 20. Topology of the TFA network deployed in Houston, Texas.
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Fig. 21. Activity Share Inference for the TFA network (fullybacklogged
nodes).
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Fig. 22. Throughput Increase Prediction for the TFA network(transmission
rate 600 kbps).

VI. RELATED WORK

Wireless Network Monitoring. Performance monitoring of
single-hop WLANs has recently attracted research interest[5],
[16]. The proposed approaches reconstruct a global trace ofall
network packet transmissions by combining offline detailed
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traces reported by sniffers spread throughout the network.
These solutions can provide a comprehensive survey of the
network activity. However, they require the delivery ofdetailed
tracesfrom all (or at least most of) the nodes, which severely
hinders the normal operations of multi-hop wireless networks.
In our work, we show that we can attain very accurate results
with the use of small time-averaged reports. Furthermore, [5],
[16] do not address the problem of identifying the origins of
poor link performance and rate-limiting the most hindering
nodes.

802.11 Throughput Models. Several 802.11 throughput
prediction models have been proposed in the literature [2],
[4], [9], [11], [12], [17], [19], [20]. Their goal is either to
compute the throughput of the network links given their traffic
demands, or to compute the feasible region of the network. In
contrast, we use measurements to infer the network behavior,
particularly the coordination between node transmissionsand
the causes of poorly performing links, and use this under-
standing to improve the throughput of under-served links. Our
scheme relies on active offline link profiling, such as [12], [19],
to identify the carrier sensing and interference relationships
between the nodes. In addition, we introduce passive online
measurements during normal network operations, to capture
the complex node interactions determined by the actual trans-
mission patterns. Recently, [13] proposes a method to replace
active offline profiling with passive online estimations using
traces collected by deployed sniffers. While [13] does not
characterize the coordination between conflicting nodes, nor
predicts the effects of rate-limiting actions, we can leverage
the result therein for passive link profiling.

VII. C ONCLUSIONS

In this paper, we present a management framework for
wireless networks called MIDAS. MIDAS addresses the prob-
lem of identifying the conflicting nodes that cause under-
performance of a target link. We introduce the key concept
of Activity Share that captures the coordination among the
conflicting nodes. Since the Activity Share cannot be locally
measured by the nodes, we show how MIDAS infers it using
time-aggregate, passively collected measurements reported by
the nodes. Finally, we design a throughput model based on the
Activity Share that MIDAS utilizes to predict the benefit of
rate-limiting conflicting transmissions. Our results showthat
MIDAS infers the Activity Share with an average normalized
relative error as low as4%, and predicts the throughput gain of
an under-served link corresponding to alternative rate-limiting
actions with an error lower than20% of the rate-limited
quantity.
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