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Abstract—Significant progress has been made in understanding
the behavior of TCP and congestion-controlled traffic over CSMA-
based multihop wireless networks. Despite these advances, how-
ever, no prior work identified severe throughput imbalances in the
basic scenario of mesh networks, in which a one-hop flow contends
with a two-hop flow for gateway access. In this paper, we demon-
strate via real network measurements, testbed experiments, and an
analytical model that starvation exists in such a scenario; i.e., the
one-hop flow receives most of the bandwidth, while the two-hop
flow starves. Our analytical model yields a solution consisting of
a simple contention window policy that can be implemented via
standard mechanisms defined in IEEE 802.11e. Despite its sim-
plicity, we demonstrate through analysis, experiments, and simu-
lations that the policy has a powerful effect on network-wide be-
havior, shifting the network’s queuing points, mitigating problem-
atic MAC and transport behavior, and ensuring that TCP flows
obtain a fair share of the gateway bandwidth, irrespective of their
spatial location.

Index Terms—Experimental, fairness, IEEE 802.11, mesh, TCP.

I. INTRODUCTION

M ESH deployments are expected to provide broadband
low-cost mobile access to the Internet. The prevailing

architecture for large-scale deployments is a multitier architec-
ture in which an access tier connects end-user PCs and mobile
devices to mesh nodes and a backhaul tier forwards traffic to and
from a few high-speed gateway nodes. Different from WLANs,
the mesh backhaul tier topology is multihop; i.e., some of the
traffic traverses more than one wireless link before reaching the
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wired network. Clearly, for mesh networks to be successful, it is
critical that the available bandwidth be distributed fairly among
users, irrespective of their spatial location and regardless of their
hop distance from the wired gateway.

Significant progress has been made in understanding the be-
havior of TCP and congestion-controlled traffic over wireless
networks. Moreover, previous work showed that severe unfair-
ness and even complete starvation can occur in multihop wire-
less networks using CSMA-based MAC (e.g., IEEE 802.11a/b/g
MAC), and solutions have been proposed correspondingly (see
Section VI for a detailed discussion of related work). However,
despite these advances, no prior work has identified the basic
scenario in which congestion-controlled flows contending for a
shared gateway yields starvation.

In this paper, we analytically and experimentally show that
starvation (i.e., long-term and severe throughput imbalance)
occurs in a scenario in which two-hop flows share the same
gateway with one-hop flows. Interestingly, we also show that
the starvation phenomenon is not significantly affected by the
number of TCP flows involved, either one-hop or two-hop
flows, therefore resulting in a dramatic performance impair-
ment of all two-hop flows as soon as at least one one-hop flow
comes into play. Because the occurrence of such a combination
of flows cannot be avoided in a mesh network, we refer to this
fundamental scenario as the basic scenario. Moreover, this
scenario exists with both single-radio and multiradio architec-
tures (see the discussion in Section III). Note that starvation
of two-hop flows precludes the use of the mesh architecture,
which employs multihop paths by definition. Our contributions
are as follows.

First, we describe the protocol origins of starvation as a com-
pounding effect of three factors: 1) the MAC protocol induces
bistability in which pairs of nodes alternate in capturing system
resources; 2) despite the inherent symmetry of MAC bistability,
the transport protocol induces asymmetry in the time spent in
each state and favors the one-hop flow; and 3) most critically,
the multihop flow’s transmitter often incurs a high penalty in
terms of loss, delay, and consequently, throughput, in order to
recapture system resources.

Second, we perform experiments in the technology for all
(TFA) mesh network, an operational network deployed in a
densely populated urban area. We demonstrate the existence
of starvation under saturation conditions and show that only a
one-hop TCP flow in competition with a two-hop TCP flow is
sufficient to induce starvation.
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Third, we develop an analytical model both to study starva-
tion and to devise a solution to counter starvation. The model
omits many intricacies of the system (TCP slow start, fading
channels, channel coherence time, etc.) and instead focuses
on the minimal elements needed such that starvation mani-
fests. Namely, the model uses a discrete-time Markov chain
embedded over continuous time to capture a fixed end-to-end
congestion window, a carrier sense protocol with or without
RTS/CTS, and all end-point and intermediate queues.

The model enlights counter-starvation policy, in which only
the gateway’s directly connected neighbors should increase
their minimum contention window to a value significantly
greater than that of other nodes. This policy can be realized via
mechanisms in standard protocols such as IEEE 802.11e [2].
The model also characterizes why the policy is effective in that
it forces all queuing to occur at the gateway’s one-hop neigh-
bors rather than elsewhere. Because these nodes have a perfect
channel view of both the gateway and their neighbors that are
two hops away from the gateway, bistability is eliminated such
that the subsequent penalties are not incurred.

Finally, we experimentally demonstrate that the counter-star-
vation policy completely solves the starvation problem. In
particular, we realize this policy by employing the IEEE
802.11e mechanism that allows policy-driven selection of con-
tention windows. We redeploy a manageable set of MirrorMesh
nodes on site (mirroring a subset of the TFA mesh nodes) and
perform extensive experiments. We extend our investigation to
a broader set of scenarios and show that the counter-starvation
policy enables TCP flows to fairly share the gateway bandwidth
in more general scenarios.

In the remainder, we present an experimental demonstration
of starvation in Section II, an analysis of starvation’s cross-
layer protocol origins in Section III, an analytical model and a
counter-starvation policy in Section IV, the experimental evalu-
ation of such a policy in Section V, related work in Section VI,
and a conclusion in Section VII.

II. STARVATION IN URBAN MESH NETWORKS

In this section, we describe the basic topology for mesh net-
works and experimentally demonstrate the existence of starva-
tion in this basic topology.

A. Basic Topology

The basic topology of any mesh network is shown in Fig. 1,
in which two mesh nodes, and , are located two and one
hops away from the gateway, , respectively. Mesh nodes
and do not sense each other’s transmission— i.e., they are
hidden—and node forwards all the traffic between nodes
and . In particular, we consider the case of upstream TCP
traffic, in which both and transmit a TCP flow to .
Since downstream traffic is expected to be at least as important
as upstream traffic, we will show in Section V-D that similar re-
sults as the ones shown for upstream traffic also apply to down-
stream traffic, i.e., the same basic topology in which the gateway
transmits two TCP flows to A and B.

Note that this topology is necessarily embedded in any larger
mesh network topology given that mesh networks are defined
as multihop wireless networks with gateways. In general, nodes

Fig. 1. The traffic matrix in the basic topology. Mesh nodes� and�� do not
sense each other’s transmission. Packet exchanges between mesh nodes � and
�� are forwarded by mesh node �.

within a two-hop distance according to the adopted routing pro-
tocol, e.g., and in Fig. 1, can be either in transmission
range or not. In this paper, we consider the relevant case in
which those nodes cannot coordinate their transmissions; i.e.,
neither nor defers its transmission when the other is
transmitting. Throughout this paper whenever conducting mea-
surements on the basic topology (TFA network and MirrorMesh
network), we verified that nodes and are indeed hidden.
The set of experiments that we performed included the scan of
wireless signals detected by both node and node to verify
that neither one of them could see the other. We also verified be-
fore and after setting each experiment that nodes and can
transmit to two different receivers simultaneously and achieve
about the same throughput that can be achieved by each flow
while transmitting alone; therefore, and do not interfere
with each other—i.e., they are hidden nodes.

B. Measurements in TFA

Here, we experimentally demonstrate the potential for starva-
tion in the TFA network. TFA network is an operational mesh
network that provides Internet access in a densely populated
urban neighborhood in Houston, TX [1]. For each scenario ex-
perimentally examined in TFA network, we selected relevant
nodes that complied with the topology studied, artificially gen-
erated the required traffic (TCP or UDP) using Iperf v.1.7.0,
and measured the achieved throughput on each of the observed
nodes. Since all experiments on TFA took place in the presence
of the network’s normal user traffic, and in order to minimize
the interference with TFA users, we performed the experiments
during off-peak hours (3:00–6:00 a.m), when TFA user traffic
was negligible. Moreover, before and after each experiment, we
ensured that the links under investigation were fully operational
and that full throughput could be achieved when each link was
used alone; e.g., we generated traffic only from one node and
measured the end-to-end throughput achieved (achievable TCP
throughput). Throughout this paper, we only show experimental
results in which all participating links can reach about the same
TCP (UDP) throughput when isolated. In order to further under-
stand the channel activity throughout each experiment, we used
tcpdump v.3.4 and Kismet v.2006.04.R1 to collect MAC-level
traces at selected network nodes.

In the set of results presented in this section, the measurement
intervals used are 120 s, the maximum PHY rate is 11 Mbps, and
the radio band is channel 6 of the 2.4-GHz ISM band. Informa-
tion regarding TFA network, including the connectivity map,
and the specific nodes used for each experiment can be found in
[19].

In the basic set of experiments, we chose two TFA nodes
, which in addition to the gateway ( ), complied with

the basic topology as described in Section II-A. As explained in
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Fig. 2. TCP behavior in the basic topology, with (a) RTS/CTS disabled and
with (b) RTS/CTS enabled. Each pair of bars represents the achievable TCP
throughput and the TCP throughput resulting from flow contention for the
one-hop flow �� � �� � and the two-hop flow ��� �� �, respectively.

Section II-A, we experimentally verified that nodes and
were hidden from one another. Furthermore, by observing the
routing table throughout the experiments, we verified that all of

’s packets to and from the gateway were forwarded by node ,
and no other node was involved in the data forwarding. We si-
multaneously generated a TCP flow from the two-hop node
and a TCP flow from the one-hop node to the gateway ,
and measured the TCP throughput attained by each flow.

Fig. 2 depicts the throughput of the two flows with and
without contention. As can be seen in the figure, the achievable
throughputs on links and are about the
same; hence, the two-hop flow’s achievable TCP throughput
is about half of the one-hop flow’s one. Nonetheless, although
the two-hop flow can receive considerable throughput when
singly active, severe starvation occurs when the RTS/CTS
mechanism is off [Fig. 2(a)] as well as when the RTS/CTS is
enabled [Fig. 2(b)]. In particular, the one-hop TCP flow from
node dominates, whereas the two-hop TCP flow from node
receives nearly zero throughput in all experiments. Since we
verify that other network activities during our experiment are
negligible—i.e., we measured only a few kbps of control and
data traffic—the starvation observed in Fig. 2 can be only due
to the activity of nodes , , and , i.e., due to the high
collision probability experienced by ’s TCP DATA and ’s
TCP ACKs (or by their RTS frames).

A comprehensive measurement study was conducted in TFA
including diverse combinations of user activity and protocol
set. Due to space limitations, those experiments are omitted
from this manuscript and are fully reported in [19]. Nonethe-
less, the outcome of this set of experiments verifies that the basic
topology starvation is neither solely due to topology and MAC
behavior (hidden terminal problem), nor a straightforward con-
sequence of the traffic matrix, but rather the compounding effect
of topology, medium access mechanisms, and the behavior of a
connection-oriented transport protocol, that are required to in-
duce starvation.

III. STARVATION’S PROTOCOL ORIGINS

Here, we describe how the protocol mechanisms of medium
access and congestion control mechanisms interact to cause star-
vation in the basic scenario shown in Fig. 1. We analytically
model this scenario in Section IV.

Fig. 3. TCP DATA and TCP ACK contending for channel access. Nodes� and
�� cannot sense one another. Hence, collisions are possible at node�, either
involving the MAC frames carrying TCP packets or the respective RTS frames,
if the RTS/CTS handshake is enabled.

A. Protocol Origins

Medium Access and Bistability: The collision avoidance
mechanism in CSMA/CA causes bistability, in which node
pairs and alternate in transmission of multiple
packet bursts. In particular, the system alternates between a
state in which and jointly capture the system resources for
multiple transmissions while is idle, and a state in which

and transmit while is idle.
In order to understand the bistability, we first examine the be-

havior of two flows in the scenario shown in Fig. 3, where the
gateway node and two-hop node contend for transmit-
ting TCP ACK and TCP DATA, respectively.

Assume the transmission queues of and are back-
logged at a given time, and both nodes are in the minimum con-
tention stage. Since the two senders, namely and , are
hidden from each other, a transmission from one sender suc-
ceeds only when it fits within the other sender’s backoff interval.
Note that when the packet size of one sender is comparable to
or larger than the contention window of the other sender, the
probability of collision between the two senders is very high.
For example, in IEEE 802.11b with default parameters, the col-
lision probability between two RTS transmissions from the two
senders is 0.7, assuming that both transmitters are in the first
backoff stage. The collision probability for data packets with
RTS/CTS off is even higher (e.g., nearly 1 for packets larger
than 750 bytes in 802.11b). Thus, when both nodes are in an
early backoff stage, the system is likely to experience collisions.
After a series of collisions, the backoff window of both nodes
will become sufficiently large such that one of the nodes will
successfully transmit a packet, as shown in Fig. 4(a).

Assume, without loss of generality, that node finally suc-
ceeds in transmitting a packet. After this successful transmis-
sion, node resets its contention window back to its min-
imum size, while node keeps a high contention window. In
order for node to succeed in its next transmission attempt,
it must fit its packet in a small backoff interval of node ,
which is an unlikely event. After a resulting collision, the prob-
ability to succeed for each node is asymmetric because the con-
tention window of is much smaller than that of . This
process can recur many times such that only node man-
ages to transmit packets, while node keeps increasing its con-
tention window. When the contention window of is high,
can transmit multiple packets between two consecutive trans-
mission attempts by , as depicted in Fig. 4(b).

To summarize, when mesh node wins the channel,
it enters a success state in which it transmits a burst of packets,
while enters a fail state in which it does not succeed
in transmitting any packets. The success state can terminate for
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Fig. 4. Illustration of the multipacket capture of the channel by either node �
or�� . (a) Small contention window results in collision with high probability.
(b) Node �� succeeds to transmit a packet and resets its contention window.
It may transmit multiple packets due to the high contention window of node �.
(c) When node � reaches its maximum retry limit, it still collides with high
probability due to the minimum contention window of node �� ; hence, it
drops the packet and resets its contention window. Note that �� increases its
contention window due to the collision, which leaves high probability to node�
to succeed in its next transmission.

Fig. 5. Illustration of bistability with alternation of ����� and ����� �
transmissions. Whenever � ��� � enters in the success state, a burst of
packets is transmitted by � ��� � and �. The length of the burst depends
on the value of the MAC maximum retry limit and on the backlog of the
transmission queue on � ��� �.

three reasons: 1) the probability of the node with higher con-
tention window to win is low but not zero; 2) the losing node
drops the packet and resets its contention window after it reaches
its maximum retry limit, as illustrated in Fig. 4(c); 3) the trans-
mission queue of the winning node is emptied.

Note that since node is in sensing range of both and ,
it contends fairly with the node that is in the success state and
interleaves its packets with the burst generated from this node.
This bistability is depicted in Fig. 5.

Asymmetry Induced by Sliding Window: TCP causes the
system to spend dramatically different times in the two stable
states. Specifically, TCP’s sliding window mechanism creates a
closed-loop system between each sender–receiver pair in which
the transmission of new packets is triggered by the reception
of acknowledgments. The basic scenario contains two nested
transport loops, one for each flow. We term the one-hop and the
two-hop loops as the inner loop and outer loop, respectively,
as depicted in Fig. 6(a). When in the stable state reported in
Fig. 6(b), in which bursts and is in the fail state,
both the outer and inner loops are broken, and hence, ’s
burst length is upper-bounded by ’s TCP congestion window.
Conversely, when bursts, as in Fig. 6(c), only the
outer loop is broken, and the inner loop is self-sustaining due
to the loop’s own ACK generation. Consequently, the duration
for and to jointly capture the channel is not bounded.
As a result, the system spends much more time in the state in

Fig. 6. Illustration of multiple control loops and a shared medium. (a) Two
overlapping TCP congestion control loops are formed by TCP flows generated
by � (outer loop), and � (inner loop). (b) When � enters the success state,
mesh nodes � and � can transmit TCP DATA, but they cannot receive TCP
ACKs from the destination�� . Hence, both control loops are open. (c) When
� enters the success state, only the outer loop is open, and the inner loop is
self-sustaining thanks to the TCP ACKs transmitted by node �� .

which captures the channel than in the state in which
captures the channel.

In order to demonstrate the asymmetry between the two
states, we positioned two sniffers next to nodes and . We
used Kismet to capture all transmission attempts by the two
nodes. We distinguish between transmissions initiated by trans-
port-layer (TCP) and link-layer transmissions originated by
the MAC. Accordingly, TCP transmissions include all new as
well as retransmitted segments due to TCP timeout expiration,
which are passed from the TCP layer to the MAC for trans-
mission. MAC transmissions include all transmission attempts
(successful and unsuccessful) by the MAC. In the following
figures, each TCP segment transmission will be represented by
the first MAC attempt to transmit that segment.

Fig. 7(a) shows the progress of TCP segment transmission
(new and retransmitted segments) from nodes and , over
a 120-s experiment. The -axis depicts the segment sequence
number, and the -axis describes the corresponding time each
segment was transmitted. It can be seen in the figure that new
segments from flow are continuously transmitted over time,
while segments from flow are intermittently transmitted, in-
cluding few long idle intervals. Fig. 7(b) depicts solely TCP re-
transmissions from the two nodes. As can be seen in the figure,
flow suffers from frequent TCP retransmissions, while flow
experiences only three TCP retransmissions within the 2-min
experiment. Note that since node is within transmission range
of both nodes and , all three retransmissions are due to
TCP ACK-drop at ’s MAC. The asymmetry between the
two flows in terms of both successful as well as unsuccessful
segment transmissions is clearly depicted by the two figures.

Severe Transition Penalties: Due to asymmetric bistable
states, nodes and experience different fail-state duration,
leading to a severe penalty only for the TCP flow originating
from node . We described the three possible ways a node can
exit its fail state. However, when is in the fail state, node

’s limited burst is not likely to drive to drop a packet.
Hence, will most likely exit its fail state by case 3); i.e.,
the transmission queue of is emptied. The penalty that node
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Fig. 7. TCP segment transmissions (new segment transmissions plus TCP re-
transmissions due to TCP timeout expiration) as captured by the sniffers next
to nodes� and�. MAC retransmissions (due to MAC timeouts expiration) are
not reported in the figures. (a) All TCP segment transmissions and retransmis-
sions. (b) Only TCP retransmissions.

Fig. 8. A sample of node�’s TCP (re)transmissions as captured by the sniffer
next to node �. The severe penalty incurred by node �, due to MAC packet
drop, can be seen in long idle periods due to long TCP timeouts for every TCP
retransmission. Note that this idle period is exponentially increased for multiple
drops of the same TCP segment because TCP timeouts are doubled after each
drop.

incurs is small due to short duration of its fail state. Fur-
thermore, this penalty is shared by both TCP flow and TCP
flow . On the other hand, when node is in the fail state, the
inner loop is self-sustaining; hence, the gateway queue is rarely
empty. Consequently, node most likely exits its fail state by
case 2), i.e, by dropping the packet. The penalty node incurs
is high, including both the long duration of its fail state (MAC
penalty) and TCP timeout, a duration that grows exponentially
with multiple drops of the same TCP segment. This penalty is
only paid by TCP flow .

Fig. 8 presents a sample of the TCP segment transmissions
and retransmissions (excluding retransmissions initiated by
MAC layer due to MAC timeouts). The severe penalty incurred
by node due to MAC packet drop can be observed in the
figure. For example, segment 318048 was retransmitted by the
transport layer four times, which induced long TCP timeouts
that resulted in long idle periods (in the order of seconds) due
to small TCP congestion window.

B. Broader Topology

A variation of the basic topology is shown in Fig. 9(a), where
and transmit a two-hop TCP flow and a one-hop TCP flow

to the gateway node , respectively. In this case, although
node does not forward traffic for node , the same reasoning
of starvation origins applies. The gateway and are out of

Fig. 9. Two-branch scenario and experimental TCP throughput with con-
tending flows. (a) The scenario is composed of two branches:�� � � ��

and includes a two-hop loop, and � � �� , characterized by a one-hop
control loop. (b) Despite the RTS/CTS handshake mechanism, a severe TCP
throughput imbalance occurs between a two-hop flow on the two-hop branch
and the one-hop flow on the other branch.

carrier sense range, yielding bistable behavior. When and
obtain the channel, the one-hop loop is self-sustaining. When
and obtain the channel, is in fail state, and both loops

are broken. Consequently, the burst size of is limited by its
congestion window.

To verify starvation in the scenario shown in Fig. 9(a), in TFA,
we select another one-hop node besides nodes , , and
[19]. As depicted in Fig. 9(a), two TCP flows are active on the
two branches, and . Fig. 9(b) de-
picts the result of the experiment and shows that starvation does
persist in this two-branch topology. As expected, the behavior
of the TCP flow pair and is strictly
analogous to the behavior of the pair and

discussed above.

C. Discussion

In mesh networks, the basic topology shown in Fig. 1 or its
variation shown in Fig. 9(a) is necessarily embedded in larger
scenarios such as long-chain and broad-tree topologies. In these
larger scenarios, although there are other factors that affect the
behavior of the contending flows, since all flows finally con-
verge to the gateway, the embedded basic scenario plays an im-
portant role in determining the throughput of each flow. Indeed,
as shown later in Section V, our extensive experiments demon-
strate it in a large set of scenarios, where one-hop flows starve
multihop flows.

Finally, we comment on the number of radios used in each
mesh node. In our work, we consider one backhaul radio with
or without a second access radio, thereby covering commercial
architectures of Tropos, Cisco, Nortel, and others. Neverthe-
less, with multiple radios, if the number of radios is not suffi-
cient to allocate orthogonal channels to every interfering wire-
less link, the results of this work are still pertinent. In fact, based
on the previous subsection, whenever a two-hop transmitter is
assigned the same channel with a one-hop transmitter, starva-
tion can occur.

IV. ANALYTICAL MODEL AND STARVATION SOLUTION

Our proof of starvation in the basic topology is tiered. In
Section II, we experimentally demonstrated the existence of
TCP starvation in the basic topology. A more thorough measure-
ment study of the starvation occurrence can be found in [19],
where we experimentally isolate the originating starvation fac-
tors by eliminating alternate explanations such as background
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Fig. 10. Queues at different mesh nodes and links in the basic topology.
Node � only transmits TCP DATA to � using queue � and link 1. Node �
maintains two different queues for the TCP DATA packets generated by �
(queue� , forwarding on link 2), and by� (queue� , transmitting on link 2),
plus a queue for TCP ACKs to be forwarded to node � (queue� , forwarding
on link 6). Node �� uses two different queues, � and � , to transmit TCP
ACKs on links 4 and 5 to nodes � and �, respectively.

congestion and topology (hidden terminals with UDP traffic will
not lead to starvation). In Section III, we logically explained
the origins of starvation in the basic topology. In this section,
we complete the validation of the starvation causes by analyt-
ically proving the compounding effects of medium access and
congestion control on TCP starvation in the same scenario in
which UDP has been shown to behave fairly [9]. More specifi-
cally, we employ a simplified system model that isolates the root
causes of starvation under the simplest conditions in which they
arise. Finally, driven by the model, we propose a counter-star-
vation policy based on the modification of the MAC contention
window.

A. System Model

As described in Section III, the DATA-ACK control loop in
the transport layer is a key factor in starvation. Consequently,
we model only one aspect of congestion control, the sliding
window. In particular, we consider a fixed congestion control
window and analytically show that the combination of CSMA
MAC and transport-layer sliding window congestion control
alone is sufficient to induce severe throughput imbalance. We
show experimentally that dynamic congestion control windows
with adaptive timeouts (e.g., TCP) amplify the throughput im-
balance, which can result in complete starvation of some mul-
tihop flows, e.g., the two-hop flow in Fig. 1.

As for the medium access, we consider an idealized physical
layer in which node pairs and can communi-
cate without channel errors. We do not consider physical-layer
capture effect; i.e., we assume that overlapped transmissions
fail. We consider the binary exponential backoff scheme, as
defined in the 802.11 standard [11], and we denote by
the current contention window of node , and by
and the initial and maximum contention window
for a generic node , respectively. We model the transmission
attempt of a backlogged node during an idle slot as a Bernoulli
trial, yielding a geometric distribution of the backoff interval
as used in other analytical works (e.g., [9], [15], and [18]).
Consequently, at the beginning of each idle mini-slot, a back-
logged node with contention window attempts a new
transmission with probability . Note that the
resulting average backoff window exhibits the same average as
the one defined by the 802.11 standard.

We assume that a node maintains a separate queue for each
subflow; e.g., node maintains three queues: two separate
queues for uplink TCP DATA originating from and locally
generated by and a third queue for downlink TCP ACKs to
node . The resulting queuing system in the basic topology is
shown in Fig. 10. We modeled a round-robin scheduling disci-
pline without memory constraints by assuming that each time a
node gains channel access, backlogged queues are served with
equal probability. We will show that while this system model
omits many aspects of our experimental system, it nonetheless
captures the behavior of the system and predicts the severe
fairness imbalance between one-hop flows and two-hop flows.

B. Model Description

With the assumptions stated in Section IV-A, the system evo-
lution can be modeled as a Markov chain embedded over con-
tinuous time at the mini-slot boundaries in which the channel is
idle from any transmission. Note that these time epochs char-
acterize the beginning of eight different channel activity states,
including three DATA transmission states occupied by an up-
stream transmission on link 1, 2, or 3; three ACK transmission
states occupied by a TCP ACK transmission on link 4, 5, or 6;
one collision state for collisions between frames transmitted by

and ; and finally one idle state in which all the nodes
count down their backoff counters and no transmission occurs.
A schematic illustration of different channel activity states is
given in Fig. 11, where the embedded time epochs in which we
sample the system are pointed by arrows placed below the tem-
poral axis. Note that the idle states last exactly one mini-slot as
the next mini-slot defines a new state. Also, note that our model
captures the behavior of CSMA with RTS/CTS handshake en-
abled as well as without RTS/CTS; the difference between the
two will be in the duration the system spends in each state.

We label a transmission state using the index of the link on
which this transmission occurs. For example, channel activity
state 4 refers to transmission on link 4. We denote the duration
of the transmission states, the collision state, and the idle state
by , , and , respectively.

We denote the length of the transmission queue for link as
. Let denote the aggregate queue length at

node , and let and be the fixed congestion windows
for flows and , respectively. Note that
and are constant values. Because the middle node is in radio
range of the two other nodes, the collision probability between
the middle node and one of the other two nodes is very small,
compared to the collision probability between and .1 We
therefore assume that the middle node never doubles its backoff
counter; i.e., . Finally, the length of , ,
and can be expressed with as
follows:

(1)

1To collide, the middle node has to send the first packet of a data transmission
within the propagation delay of one of the outer nodes, given that both nodes
choose to transmit on the same mini-slot.
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Fig. 11. Illustration of channel activity states. States represented by the label
“DATA” include three DATA transmission states (transmissions on links 1,2,
and 3 in Fig. 10). States represented by the label “ACK” include three ACK
transmission states (transmissions on links 4,5, and 6 in Fig. 10). “Collision”
state relates to the packet collisions between data (or RTS) frames generated by
nodes � and �� . In “Idle” state, no transmitter is active.

Therefore, we represent the system state as a six-dimensional
array , where
denote the current backoff stage of nodes and , respec-
tively.

C. Transition Probability Computation

In order to compute the transmission probability matrix, we
need to compute the probability of each possible contention out-
come from each state. In the following subsection, we will only
show a representative example of how to compute the transmis-
sion probability matrix. The rest of the transmission probabili-
ties can be similarly computed.

Consider a system state in
which ; i.e., each queue of Fig. 10 is backlogged. Note
that this state is the most complex due to the fact that all nodes
are backlogged; hence, all three nodes contend for channel ac-
cess at the next state-switching time. Accordingly, each node

attempts to transmit a packet with proba-
bility . Let denote the duration of this
contending packet expressed in the number of mini-slots (RTS
or data packet, depending on the handshake mechanism used).
The next state is a successful packet transmission by node iff:
1) attempts to transmit in the next mini-slot, 2) the middle
node does not attempt to transmit in the next mini-slot, and
3) the gateway does not attempt to transmit in the next
mini-slots. Thus, the successful transmission probability of the
two-hop node is given by

which is the transition probability from the current state to
.

All of the possible next states and their transition probabili-
ties can be computed similarly and are summarized in Table I.
When collision occurs, both the two-hop node and the gateway
increase their backoff to the next stage, e.g., after collisions

for binary exponential backoff. If the
backoff stage reaches the maximum retry limit , it is reset
to 0, which explains the modulus operator. When a node with
more than one nonempty queue wins contention, these queues
have equal probability to transmit their head-of-line packet,
which explains the division operator.

D. Throughput Computation

After computing all transition probabilities for matrix , we
can numerically solve the Markov chain and obtain the sta-

TABLE I
TRANSITION PROBABILITIES WITH ALL QUEUES BACKLOGGED

tionary distribution , where
and is the total number of system states given by

(2)

Following the classification of channel activity states into
transmission states on link , collision state ,
and idle state , we now compute the binary matrices for
the channel activity state . These matrices
have the same dimensions as the transition matrix and can
be computed as follows. Suppose the system makes a transi-
tion from state to state , where and are indices of the
system state. When making this transition, if a successful data
transmission on link occurs, we set ;
otherwise, it is . Similarly, when making this tran-
sition, if a collision occurs, we set . If none of
the nodes attempts a new transmission, we set .
Let , , be the matrix obtained
by multiplying element-by-element the matrices and , i.e.,

. Note that the generic
matrix element denotes the transition probability from
system state to due to an event related to the channel ac-
tivity state ; e.g., denotes the probability of moving
from system state to due to collision . The occurrence
probability of each channel activity state can be computed as

(3)

The throughput of the two flows originating from nodes and
is then expressed in packets per second as

(4)

in which is the average duration of the channel activity
states, and and are the average duration of channel
activity states 6 and 4, which represent the transmission states
for links 6 and 4, respectively. To compute the duration of the
collision state, we assume that, on average, the colliding packet
starts in the middle of the packet that is transmitted first.
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E. Model Evaluation

As previously explained, the model captures the system be-
havior under static sliding window congestion control mecha-
nism. In this subsection, in order to evaluate the contribution of
each factor to the starvation phenomenon, we compare the re-
sults obtained by the model with three other platforms.

First, analogously to the model, we fix the TCP congestion
window in the ns-2 simulator and run the same setup. Note that
even though the TCP-congestion window is fixed to the same
value as the model, the simulator mimics all other TCP mecha-
nisms, such as timeouts and cumulative ACKs, which are not in-
cluded in our model. For instance, whenever a packet is dropped,
the simulated system will experience a TCP timeout before re-
transmitting the packet. Note that this timeout grows with each
packet drop. Also, note that in ns-2 the transmission attempt
of each backlogged node is uniformly distributed over the cur-
rent MAC contention window, according to the IEEE 802.11
standard [11], and not geometrically distributed as assumed in
the model. Second, we run legacy TCP New Reno over ns-2.
Note that this platform captures the complete TCP suite, in-
cluding the dynamic congestion window. Third, we compare
the model to measurements taken in TFA with artificial back-
logged traffic injected to both nodes and , where TCP New
Reno adaptive congestion control is used. Note that in TFA, be-
sides the impact of nonmodeled factors of TCP, we also eval-
uate MAC and PHY influences on starvation. We term the three
platforms under comparison as ns-2-Fixed TCP Win., ns-2, and
TFA, respectively.

The parameters used in both the model and the simulator are
the default parameters of IEEE 802.11b. Because the six-dimen-
sional Markov chain leads to a large state space as shown by (2),
we numerically solve the model for ; i.e., both
flows are modeled as having a fixed congestion window of three
packets. Accordingly, we fix the TCP congestion window in the
ns-2-Fixed TCP Win. also to three.

Fig. 12 clearly shows starvation in all four platforms under
investigation. The throughput of the two flows as predicted by
the model is close to that obtained from the simulations and
in TFA. The slight drift of throughput from flow
to flow can be explained by accounting for addi-
tional parameters not included in the model or in the simula-
tions. In fact, accounting for TCP parameters, such as adaptive
TCP timeouts, when moving from the model to ns-2-Fixed TCP
Win. degrades the throughput received by flow due
to the higher penalty incurred by node after each packet drop.
Moreover, the cumulative ACK mechanism of TCP prevents
the one-hop flow to slow down as a consequence of TCP ACK
losses (dropped by ), while it cannot help the two-hop flow
recover from TCP DATA losses (dropped by ), as exemplified
in Fig. 8. This further magnifies the throughout imbalance be-
tween the one-hop and the two-hop flows. Allowing dynamic
congestion window when moving from ns-2-Fixed TCP Win.
to ns-2 further degrades the performance of flow .
Specifically, high packet loss induces node ’s flow to maintain
the minimum congestion window (see Fig. 8), whereas node ’s
flow can rapidly increase its congestion window to a high value.
As a result, can push more packets than to the gateway, even

Fig. 12. Analytical model predictions compared to simulation and TFA. Un-
modeled mechanisms in the transport, network, MAC, and PHY layers only
aggravate the starvation problem.

when the inner control loop is broken. Finally, as can be seen in
Fig. 12, in the TFA measurements, the addition of the unmod-
eled factors related to the MAC layer, e.g., slowing down trans-
missions due to EIFS and Aurotate Fallback, as well as factors
related to the PHY layer, such as the fading channels, further
amplify the starvation problem. In fact, since link quality and
losses in influence both flows, while link affects
only flow , the degradation due to channel quality or
the transmission rate slowing-down due to MAC mechanisms
affects flow much more than flow .

F. Starvation Solution

We now address improving fairness in wireless mesh net-
works. By reducing the backlog of nodes and , we can re-
duce the collisions probability between them and consequently
reduce the severe penalty incurred by node . Considering that

’s load consists of TCP ACKs, by increasing the minimum
contention window of node , we reduce the rate of packets
delivered to while providing node more opportunities to
forward its traffic to node , consequently reducing the backlog
of both nodes and .

Hence, we vary the minimum contention window of
the middle node and evaluate its impact on throughput via both
model and simulations. We observe in Fig. 13(a) that the model
not only accurately predicts the throughput, but also confirms
our analysis regarding node ’s minimum contention window.
In particular, the figure shows that increasing the contention
window of node has the desired effect of removing starvation
and indeed providing fairness among the two flows. When the
contention window is very high (e.g., 512), fairness is achieved
at the unnecessary cost of throughput reduction. However, when
node ’s minimum contention window is modestly increased
to 64 or 128, fairness and high throughput are simultaneously
achieved. Regardless, note that the sum of the throughput of the
two flows is reduced when starvation is removed. This is nec-
essarily the case because the two-hop flow consumes twice the
resources of a one-hop flow in order to deliver the same amount
of throughput. Consequently, we propose the following policy
to counter starvation.

Counter-Starvation Policy: All nodes that are directly con-
nected to a gateway, or gateways in case of multiple gateways,
should increase their minimum contention window to a value
greater than that of all other nodes. The exact window that
should be selected is dependent on topology, traffic patterns, and

Authorized licensed use limited to: Rice University. Downloaded on December 16, 2009 at 18:27 from IEEE Xplore.  Restrictions apply. 



1840 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 17, NO. 6, DECEMBER 2009

Fig. 13. System behavior versus the minimum contention window of node �:
(a) analytical model predictions compared to simulation; (b) queue behavior.

network objectives that can include, for example, different fair-
ness objectives (e.g., MaxMin fairness versus proportional fair-
ness versus combination of fairness and network utilization).

Analysis of the model’s state probabilities further reveals the
effect of the policy on the system queues. Fig. 13(b) shows that
as the minimum contention window of the one-hop node in-
creases, the probability that both and are empty dra-
matically increases. Thus, the model indicates that the counter-
starvation policy results in minimal queuing at the gateway and
two-hop node for flows employing a sliding window protocol.
Without these queues, the MAC protocol’s bistable behavior is
broken and, in turn, the “penalty to exit the fail state” is very
rarely incurred.

V. EVALUATION OF THE COUNTER-STARVATION POLICY

In this section, we evaluate our contention window policy’s
ability to counter starvation. As described in Section IV, the
policy sets the minimum contention window of the gateway’s
immediate neighbors to a value significantly larger than all other
nodes. To evaluate our solution, we use an on-site deployment
termed MirrorMesh.

A. MirrorMesh Testbed

To implement our policy, we need to change the min-
imum contention window of all of the gateway’s immediate
neighbors. However, since this functionality is not supported in
the current deployment of TFA, we deploy a few auxiliary nodes
to experimentally evaluate the counter-starvation policy on the
field. We refer to the platform as MirrorMesh, as we perform
all experiments in the same area as TFA in order to inherit the
TFA’s propagation environment.

MirrorMesh nodes are desktop PCs with a Linux operating
system (kernel 2.6) and Atheros wireless card (Madwifi v. 0.9.2
driver) that allows to be changed. Each desktop PC con-
nects to an external omnidirectional antenna. The antennas used
are the same as the ones used in TFA and are placed outdoors to
emulate as closely as possible the real TFA network. Although
different from the TFA nodes with respect to the wireless card
and Linux kernel, they retain the behavior of network protocols
such as TCP. All parameters for MAC and physical layer are
according to IEEE 802.11b standard [11], except the minimum
backoff window, which is set to 16 by default in Atheros chipset.
MirrorMesh contains no user-generated background flows such
that the only traffic is that generated by our tests.

The MadWifi driver adopts a different input direct memory
access (DMA) buffer for each network device and also an ad-

Fig. 14. RTS/CTS enabled. (a) Starvation with default�� and counter-
starvation policy results in the basic scenario of MirrorMesh. (b) Aggregate net-
work utilization with different values of �� .

ditional input buffer for locally generated packets. Therefore,
Atheros/Madwifi cards will classify the traffic originating at
node and the traffic originating at node as two different
types and will therefore operate a per-flow queuing. Further-
more, in order to concentrate on the minimal condition that
can result with severe throughput imbalance and to prune any
other effect that can further degrade the two-hop throughput,
and since both links ( and ) can always em-
ploy the 11-Mbps physical-layer rate, we fix the transceivers to
the highest modulation rate.

B. Validation for the Basic Topology

Here, we experimentally validate our counter-starvation
policy on MirrorMesh. In this set of experiments, we measure
per-flow throughput and network utilization for the basic
topology, both for the default and for increased
as recommended by the counter-starvation policy. Each experi-
ment lasts 120 s and the packet size is set to 1500 bytes unless
stated otherwise.

We consider the scenario depicted in Fig. 1, in which nodes
and both transmit packets to the gateway node, . As in

TFA, we first verify that all links are operational and that and
are hidden nodes.

RTS/CTS On: In this experiment, we enable RTS/CTS and
set of nodes , , and to the default value of
16. Fig. 14(a) depicts a severe throughput imbalance and con-
firms that the system behavior for this scenario is consistent be-
tween MirrorMesh and TFA. We increase of node
to 128 and repeat the experiment. The result is also shown in
Fig. 14(a), which indicates significantly improved throughput
for flow . In this case, and share the
gateway bandwidth almost equally. Fig. 14(b) shows the aggre-
gate utilization in which we observe that the increased
of only leads to slightly dropped utilization. Note that when
we compute the network utilization, we take into account the
fact that some packets need to traverse multiple hops before
reaching the gateway. For the scenario depicted in Fig. 1, we
count ’s throughput twice because its transmitted packets need
to traverse two links that cannot be active simultaneously.

The adoption of as baseline for all nodes, as
recommended by the IEEE 802.11 standard [11], leads to sim-
ilar results, as shown in Fig. 15. Here, we first set to 32
for , , and and collect the measurement results. Then,
we increase of node to 128 and 256 and report the
results for the three cases. We observe from the figure that the
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Fig. 15. Experiments in MirrorMesh with default minimum contention window
set to �� � ��, as for commercial devices. (a) Starvation and counter-
starvation policy results in the basic topology. (b) Aggregate network utilization
with different values of �� .

Fig. 16. RTS/CTS disabled. (a) Starvation with default�� and counter-
starvation policy results in the basic scenario of MirrorMesh. (b) Aggregate net-
work utilization with different values of �� .

nature of the starvation problem remains, yet our solution is
equally effective.

RTS/CTS Off: Fig. 16 reports results for the case that
RTS/CTS is disabled. We consider for all nodes
as well as for node . The results indicate that
the counter-starvation policy is equally effective and allows
equal throughput distribution among the two contending TCP
flows, even without RTS/CTS. The reason is that, as discussed
in Section IV, our solution results in having all queued packets
at . Consequently, the hidden nodes, and , are not
backlogged such that the probability that both and
have packets to send simultaneously and collide is negligible,
irrespective of the RTS/CTS mechanism.

Adoption of Small Packet Size: Because realistic traffic does
not have only 1500-byte packets, we next test the impact of
packet size on the starvation problem and on our solution.
As shown in Fig. 17, the mere adoption of small packet sizes
(500-byte packets) does not significantly affect the starvation
problem. When RTS/CTS is on (upper part of the figure),
contending packets are RTS control frames rather than data
packets. However, a severe unfairness is experienced with the
default configuration, which is completely eliminated
by setting to 128. When RTS/CTS is disabled (lower
part of Fig. 17), the system throughput is increased, but the
unfairness between one-hop and two-hop flows is even more
severe. Again, the adoption of nearly equal-
izes the throughput of the two TCP flows.

Note that our analysis in Sections III and IV confirms that
smaller data packets do not mitigate the starvation problem and
that the counter-starvation policy is equally effective.

Fig. 17. Starvation and counter-starvation policy results with 500-byte TCP
packets. (a) and (b) depict the results for MirrorMesh with RTS/CTS enabled,
whereas (c) and (d) relate to MirrorMesh operating without RTS/CTS. Aggre-
gate utilization is shown in (b) and (d).

Multi-TCP Streams Scenario: Based on the explanation
given in Section III, one might expect that the throughput dis-
tribution between the two mesh nodes might be more balanced
if instead of a single TCP stream, each node sent multiple
TCP streams. Specifically, since by sending multiple flows, the
penalty paid by node is expected to be spread between the
flows, the aggregate throughput of node is expected to suffer
less from the causes discussed in Section III. In order to check
if the throughput imbalance is indeed unique to injecting a
single TCP stream per node, we generate various combinations
of multiple TCP streams from each node and , destined
to . Note that generating multiple TCP streams from each
mesh node emulates aggregate user traffic per node.

Thus, we repeated the basic experiment, only this time we
generated multiple TCP streams from both nodes and .
Specifically we generated between one and ten streams from
each node and checked different combinations. In Fig. 18,
the labels – on the horizontal axis denote the setup in
which nodes and generate and TCP streams, re-
spectively. Hence, results labeled as 1-0 and 0-1 represent
the achievable TCP throughput, i.e., the maximum attain-
able TCP throughput, respectively for node and node ,
whereas the other labels point to the contention of multiple
flows generated by both and . In the experiment, be-
sides varying the number of TCP streams generated from
each node, we also varied node ’s ; specifically, we
ran the experiment for three different minimum contention
windows, namely , which are
the default minimum contention windows suggested by the
Atheros chipset, IEEE 802.11 standard, and by our solution,
respectively. Fig. 18(a)–(c) depict the results for the three
different examined: 16,32,128, respectively. In the
figure, for each examined, we plot both the aggregate
throughput per node in the leftmost graphs (a.1, b.1, and c.1)
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Fig. 18. Behavior of multiple contending TCP flows under different values of
�� . (a.1) and (a.2) respectively depict the per-node aggregate throughput
and the network utilization when �� � �� (Atheros default). (b.1) and
(b.2) report the case of �� � �� (IEEE 802.11 default). (c.1) and (c.2)
show the effects of the counter-starvation policy, i.e., �� � ���.

and the utilization, which is reported in the rightmost graphs
(a.2, b.2, and c.2).

Fig. 18(a) and (b) clearly depict that under the default
(Atheros chipset and IEEE 802.11 standard, respec-

tively) deployed by node , starvation persists regardless of
the number of TCP streams generated by each node. Note
that even though the asymmetric setups 5-1 and 10-1 slightly
improve the throughput achieved by node , the trend in which
node receives most of the available throughput is kept; i.e.,
the throughput achieved by the single flow sent by node is
much higher than the aggregate throughput attained by all the
five or ten streams generated by node . Fig. 18(c) shows that
our suggested solution, which assigns node a ,
dramatically improves the throughput attained by node also
for the multiflow setup [Fig. 18(c.1)], while hardly affecting
the utilization [Fig. 18(c.2)]. Furthermore, Fig. 18(c.1) reveals
that in the asymmetric scenarios, the aggregate throughput of
node is much higher than ’s throughput, allowing a much
fairer sharing of bandwidth on a per-flow basis rather than
merely on a per-node basis.

The reason why even the multiflow setup suffers from severe
throughput imbalance is twofold. First, note that as far as the
aggregate throughput attained by node is concerned, there is
gain by spreading the penalty between all the streams sent by
node [e.g., Fig. 18(a.1)]; however, this gain only affects the
transport layer and not the MAC layer. In fact, TCP parameters
such as congestion window and TCP timeouts are individual
per flow and will not directly affect other TCP flows. In con-
trast, MAC penalties related to long delays due to high backoff
stages will affect all the flows passing through node regardless

Fig. 19. Two-branch topology. TCP flow � is a two-hop flow between hidden
nodes � and �� . TCP flows � and � are one-hop flows.

Fig. 20. Results for the two-branch topology. (a) Starvation and counter-star-
vation policy in MirrorMesh with default�� � ��, and various��
for nodes � and � . (b) Aggregate network utilization with different values of
�� � �� .

of the stream currently being served. Second, even concerning
the transport layer penalty, it is important to note that there is
a tradeoff between the gain and the loss due to the multiflow
setup. In particular, it is true that each stream will have to pay the
penalty less frequently in order to gain channel access; however,
due to the multiple flows generated by node , the values of TCP
parameters like RTT and timeouts are high even without con-
tention and penalty due to packet drops. Hence, the penalty is
much higher than for the case of single flow—e.g., each packet
drop doubles a timeout that is high anyway and decreases a con-
gestion window that is small in the first place.

C. Extending the Basic Topology: Two Branches

Next, we use MirrorMesh to evaluate the counter-starvation
policy in the two-branch topology as discussed in Section III.
The scenario of this experiment is shown in Fig. 19, in which
three flows are active on two branches. Results in Fig. 20 con-
firm that the two-hop flow from is starved, whereas one-hop
flows from and almost equally share the bandwidth.
We then invoke the counter-starvation policy by increasing

for both of the gateway’s one-hop neighbors, and
. As shown in Fig. 20, our solution dramatically improves

the two-hop flow throughput. This is because increasing the
of all one-hop nodes slows down all the first-hop nodes,

giving more opportunities for node to forward its traffic to
node with less interference from the ACKs sent by the .

D. Downstream Traffic

So far, we have considered upstream data traffic. Here, we ex-
perimentally show the presence of the starvation problem and
the effectiveness of our solution also for downstream flows.
We reverse the direction of the flows in Fig. 1 such that DATA
packets are transmitted from to nodes and and TCP
ACKs are transmitted from and to (Fig. 20). Note
that the compounding effect described in Section III-A, due to
the MAC layer hidden terminals and the transport-layer control
loops enforced by the sliding window congestion control, re-
main the same as in the uploading scenario despite the direction
reversal.
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Fig. 21. Downstream flows in the basic topology. (a) Starvation and counter-
starvation policy results in MirrorMesh. (b) Aggregate network utilization with
different values of �� .

Fig. 22. TCP flows in four-hop chain topology.

Fig. 21 shows the throughput and receive when
is 16 for all three nodes as well as when is set to 128
and 256. As anticipated, starvation indeed occurs in the down-
load scenario, and enlarging the one-hop contention window al-
lows the two-hop downstream TCP flow to receive significantly
higher throughput than with the default window. Interestingly,
even though the trend is the same as with the upstream results,
the aggregate network utilization is affected (degraded) notice-
ably more than in the upstream case.

E. Larger Scenarios via Simulation

We use the ns-2 simulator to validate our solution in more
general scenarios. We begin our simulations with a longer chain
topology where spatial reuse is present. We then perform simu-
lations on a topology in which three branches are connected to
the gateway, with each branch further diverging. In all simula-
tions, we use TCP New Reno for congestion control and IEEE
802.11b for medium access control. We use the default ns-2
MAC and PHY layer parameters, fixing the transmission rate
to 11 Mbps.

Four-Hop Chain Topology: In this scenario, four mesh nodes
are connected to a gateway in a chain topology. Each node

,2,3,4 generates a long-lived TCP flow to the gateway,
as depicted in Fig. 22. Each node can directly transmit to the
node(s) located immediately on its right or left in the figure. Fol-
lowing the ns-2 terminology, each node is in transmission range
with its immediate neighbor and out of carrier sense range with
all other nodes. Hence, spatial reuse is possible in the topology
depicted in Fig. 22; e.g., nodes 1 and 4 can transmit simulta-
neously to the gateway and to node 3, respectively. In these
simulations, we explore whether this factor changes the nature
of the starvation problem and the effectiveness of the proposed
counter-starvation policy.

Fig. 23 depicts the simulation results for two cases: when
all nodes have and when —i.e.,
the minimum congestion window of the gateway’s one-hop
neighbor is increased to 128 following the counter-starvation

Fig. 23. ns-2 Simulation in a four-hop chain topology. (a) TCP throughput with
�� � �� for all nodes and with the one-hop changed to 128. (b) Aggregate
network utilization with different values of �� .

Fig. 24. A dense random topology used for ns-2 simulations. A single gateway
GW is connected to 19 one-hop nodes. In turn, the one-hop nodes offer connec-
tivity to 14 randomly located two-hop nodes. All nodes but GW are establishing
fully backlogged TCP connections to the gateway.

policy. We observe that with all nodes having the same min-
imum contention window, the one-hop node receives an order
of magnitude larger throughput than the sum of the throughput
received by all other nodes. In contrast, by changing for
the gateway’s neighbor to 128, all mesh nodes receive similar
throughput.

Note that in a longer chain topology, though spatial reuse is
possible, nodes farther away from the gateway have less for-
warding responsibility and are more lightly loaded. In contrast,
nodes that are one and two hops away from the gateway still
share the medium with all flows and, consequently, are the bot-
tleneck. Thus, the starvation problem in a longer chain has the
same nature as in the two-hop chain topology, and our solution
is just as effective in eliminating starvation.

Dense Topology: Finally, we consider a scenario in which
multiple nodes on several branches are connected to the gateway
such as depicted in Fig. 24. The key issue is whether in a dense
network the one-hop nodes could be silenced by the transmis-
sions on other branches, thus leaving more transmission op-
portunities to their successor nodes, i.e., the multihop nodes,
and subsequently eliminating starvation without requiring the
counter-starvation policy.

We test the scenario in Fig. 24, in which each mesh node
is simultaneously transmitting TCP traffic to the gateway.
Fig. 25(a) and (b) show the cumulative distribution function
(cdf) of the throughput obtained by the one- and two-hop nodes,
respectively. The figure depicts the throughput CDF results for
different assigned to all the one-hop nodes.

As expected, based on the explanation given in Section III-B,
using the default contention window ( for all
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Fig. 25. Cumulative distribution function of (a) one-hop nodes and (b) two-hop
nodes, i.e., the fraction of nodes that receives not more than � kbps throughput
in the network topology depicted in Fig. 24.

nodes), starvation persists in this scenario; i.e., Fig. 25(b) shows
that no two-hop node attains more than 12 kbps and more than
90% of the two-hop nodes attains less than 2 kbps.

Based on our counter-starvation policy, we increase the
minimum backoff window of all one-hop nodes. We
observe in Fig. 25(b) that with this policy, the bigger the

assigned to all the one-hop nodes, the higher the
throughput attained by the two-hop traffic. Hence, for example,
with equal to 128 and 256, 2% and 20% of the nodes
respectively receive more than 12 kbps, which is more than
what any node received with . Increasing the

to all the one-hop nodes to 512 will allow 57% of the
nodes to receive more than 12 kbps. The average throughput
attained by all two-hop nodes is 0.67, 2.25, 7.52, and 14.26 kbps
for , 128, 256, and 512, respectively. This gain,
which is more than 300%, 1100%, and 2100%, respectively,
was obtained at the expense of the one-hop nodes, which on
average attained 164, 144, 90, and 63 kbps for ,
128, 256, and 512, respectively. Nonetheless, even though
the two-hop flows gained hundreds percent more throughput
than the default flow, due to the limited capacity of a single
GW to support many nodes, the effectiveness of the solution
is limited—i.e., the bandwidth of the two-hop flows is still
relatively low.

VI. RELATED WORK

One-Hop Flows: We refer to a flow as a one-hop flow if
the source of the flow can reach its destination within one hop.
One-hop flows can exist in both one-hop topologies, in which all
nodes sense each other’s transmission, and multihop topologies,
in which they do not. One-hop flow studies showed both analyti-
cally as well as by simulation that in a fully backlogged scenario
without flow control mechanisms (e.g., UDP traffic), network
resources can be shared unevenly between contending flows. It
was shown that MAC mechanisms ranging from binary expo-
nential backoff to the use of carrier sense itself can cause un-
fairness [3], [4], [8], [9]. Moreover, MAC-level solutions to un-
fairness among one-hop flows have been previously proposed,
including suggested modifications to exponential backoff [4],
[22] and the handshake mechanism [4]. Likewise, in the context
of 802.11e (which addresses QoS and service differentiation),
some proposals allow different system parameters (Contention
Window, and , etc.) for different traffic classes
[16], [17], [20], thereby achieving performance differentiation.

In contrast, we consider multihop flows, which yield a signif-
icant difference from one-hop flows. For example, the memory
introduced due to receipt and subsequent forwarding of the same

packet adds multiple dimensions to the modeling problem as we
describe in Section IV.

Multihop Flows: Poor performance of multihop TCP flows
has been previously established [10], [21]. Furthermore, severe
unfairness has been observed when multiple TCP flows compete
for the same wireless medium [12], [23]–[25].

To improve performance of congestion control in multihop
wireless networks, proposals include hop-by-hop distributed
congestion control [26] and joint redesign of congestion control
and medium access [5], [7]. Transport-level counter-starvation
policies have also been proposed in which the TCP protocol
is modified by adaptively slowing down the transmission rate
[6], [13], limiting the TCP transmission window [6], [21] or
modifying RED [6], [25]. Finally, a simplified model of IEEE
802.11 MAC and TCP features for multihop flows can be found
in [14], where a single TCP flow is modeled over a two-hop
chain assuming that the TCP transmission window is fixed
and neglecting MAC collisions (and hence, neglecting binary
exponential backoff issues).

Differently from prior work, this paper shows that it is the
sliding window congestion control and IEEE 802.11 MAC that
jointly induce unfairness. Even with the TCP window fixed to its
optimal value suggested in [6], TCP can still perform poorly and
lead to unfairness. In addition, neither of these prior works iden-
tified nor modeled starvation in the basic topology discussed
here, which is the minimum and fundamental topology that in-
herently exists in mesh networks. Moreover, our counter-starva-
tion policy only modifies basic MAC protocol parameters and
does not require any transport, network, or MAC protocol mod-
ifications, nor does it necessitate any control message exchange.

VII. CONCLUSION

In this paper, we show that the interaction of one-hop TCP
flows with two-hop TCP flows is sufficient to induce starvation.
We measure starvation in an operational multitier urban mesh
network and describe how the starvation’s originating factors
stem from interaction between the transport layer’s congestion
control and the MAC layer’s collision avoidance. We analyti-
cally model the system and utilize the model to devise a simple
counter-starvation policy in which nodes one hop away from
the gateway increase their minimum contention window. We fi-
nally implement and empirically validate the solution not only
via simulation, but also on MirrorMesh, a network redeploy-
ment within the same urban environment.
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