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Abstract—Wireless networks increasingly utilize diverse spec- to select between independent networks operating in dissim
tral bands that exhibit vast differences in both transmisson range  jlar bands (e.g., smart-phone preference of WLAN to 3G;
and usage. In this work, we present MAWS (Mobile Access geq giso [1]). However, it does not account for the spatial,
of Wide-Spectrum Networks), the first scheme designed for spectral and temporal variations in channel quality and us-
mobile clients to evaluate and select both APs and spectrabinds p " " p ‘ > q ’ y :
in wide-spectrum networks. Because of the potentially vast age.(ii) Scanning dynamically prioritizes association options,
number of spectrum and AP options, scanning may be pro- e.g., in single-band scenarios spanning WLAN [2] to ve-
hibitive. Consequently, our key technique is for clients toinfer  hjcular WiFi [3]. Unfortunately, scanning either sacrifice
channel quality and spectral usage for their current locaton and  girtime that increases with the number of bands or, when
bands using limited measurements collected in other bandsna dditi | radi | df . . th
at other locations. We experimentally evaluate MAWS via a wile- addiional ra 'OS_ are employed for scanmng, |ncr_ease_s €
spectrum network that we deploy, a testbed providing accesto  POwer consumption of the energy-constrained mobile dient
four bands at 700 MHz, 900 MHz, 2.4 GHz and 5 GHz. To the (iii) Analysis of historical data can also be used to dy-
best of our knowledge, the spectrum of these bands is the wisle namically prioritize association options in mobile access
to be spanned to date by a single operational access network'single-band networks [4] and non-mobile access of multicha

A key finding of our evaluation is that under a diverse set .
of operating conditions, mobile clients can accurately prdict networks [5]. Unfortunately, [4], [5] require measurenmeat

their performance without a direct measurement at their curent ~ all frequencies and locations, which is prohibitive in wide
location and spectral bands. spectrum networks.
In this work, we present the following two contributions.
First, we propose MAWS (ldbile Access of Vide-Sectrum
Wireless networks operating in unlicensed spectrum cafetworks), the first scheme designed for evaluation and:sele
now utilize frequency bands ranging from 512 MHz (DTMion of association options by mobile clients of wide-spewt
white spaces) to 5.845 GHz, bands that exhibit vast diffeen networks. MAWS is a client-side access solution that caersid
in both transmission range and available airtime. Jointafse individualized throughput and delay performance objestiv
multiple diverse bands will therefore provide future netwo |n contrast to prior work, MAWS clients dynamically prior-
operators with flexibility in coverage provisioning, cajfac itize their association options without exclusively enyhg
planning and interference management. scanning or historical data for selection of APs and spettru
Mobile access of such wide-spectrum networks introducesThe key technique in MAWS is a method for mobile clients
two key challenges. First, mobile clients must assess dadtseto infer channel quality and spectral usage at their current
both APs and spectrum in a timely and efficient manner. Morgcation without taking a measurement there. To achie\s thi
over, in wide-spectrum networks, the number of associatiMAWS clients first employ limited-rate scanning to measure
options, i.e., AP-channel pairs, is significantly highearth the spectral usage and channel quality in as few as two
in single-band networks. Second, these association aptigfifferent bands at limited locations. Then, MAWS infers
may result in significant differences in client performancehannel quality and spectral usage for the remaining spectr
For example, links operating in lower frequencies may offeind space. To estimatdannel qualityin alternate bands and
higher channel quality and lower handoff rate (due to reducgécations than those measured, we introduce cross-spautta
attenuation and increased coverage), yet they are alsectubjspatial inference methods that couple the limited measure
to increased interference due to greater transmissionerangents with coarse-grained propagation models. To estithate
Thus, mobile clients must account for multiple COI’lﬂiCtingjsageof a channel, MAWS exploits any spatial and temporal
factors in selecting the association option that best ntbets correlation of a channel's usage and calculates a weighted
individual performance objectives. average of its measured usage at locations of prior visitshE
Prior work can be classified into three categori@sFixed weight is related to the distance to these locations as well
band prioritization is a simple mechanism for mobile cléentas to an estimate of the interference range in the respective
_ band. Finally, the inferred metrics are coupled with estéra
This research was supported by the NSF (CNS-1012831 andX1RG478 . . .
grants) and the European Commission (FP7 grant agreemez67a63 — ©Of the handoff rate under each association option to driee th
FLAVIA project). calculation of throughput and delay predictions.
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Second, we deploy a wide-spectrum network and expapectral usage at its current location for its availabledsan
imentally evaluate MAWS. Our testbed provides access despite the lack of a direct measurement. The key technique
the 700 MHz, 900 MHz, 2.4 and 5 GHz bands. These fotw infer channel quality is to estimate the cross-spectoal ¢
bands span a spectral range of 5.085 GHz; to the best of oelation of channel quality at each location and the cross-
knowledge, this range is the widest to be spanned to date bgpatial correlation for each band by coupling the sporadic
single operational access network. We employ our testbednmeasurements with propagation models. The key technique
conduct experiments in both outdoor and indoor environsjento infer spectral usage is to exploit the spatial and tenipora
under vehicular and pedestrian speeds respectively. correlation in the usage of each channel and to account that

Our experimental evaluation yields the following findingsthe spatial correlation increases with decreasing frecyen
First, for crossspectralinference, we find that our couplingFinally, our inference-based methodology is coupled with a
of propagation models with limited measurements is moreetric estimating each association option’s delay peréorce,
tolerant to the fading-induced deviation of measured RS®hich is also determined by the propagation charactesistic
when measurements are taken in the most separated banfishe option’s channel. Our inference-based methodology
Second, for crosspatial inference, we find that RSSI mea-allows MAWS clients to dynamically prioritize APs and mullti
surements from only two other prior locations suffice foband spectrum without exclusively employing scanning or
MAWS due to the adequate accuracy of propagation moddistorical values of channel quality and spectral usage. Fi
for the purposes of selectirdjversebands. Next, we evaluatediagrammatically illustrates the overview of MAWS.

MAWS'’ inference ofspectral usagéor vehicles and pedestri- Selections of AP, band and

ans in two networks with real users. We find that, despite the channel at each location

limited availability of measurements, our method can predi —

spectral usage with an error of 10-25%. Namely, while packet Throughput Metrics |
scale channel occupancy varies significantly, MAWS'’ passiv TS<2T
second-scale measurements can exploit substantial lspadia ?r:?::éigzcotfrasl.igng:-Ossts;-esnpéitr:aI Cméséigiiﬁ'l '822;3:59
temporal usage correlation. We show that despite MAWS’ T T
imperfect inferences and selections, it nonethelessnattai Link Signal Strength in Spectral Usage
throughput gains exceeding 100% over scanning, by sub- Certain Bands, Locations at Certain Locations
stituting most scanning time with transmissions. Morepver &L-i.r:\ited-ki;:;/.
compared to the common, near-zero-overhead practice af fixe Scanning Process

band prioritization, MAWS enables net throughput gainspf u
to 120% including overhead.

The rest of this paper is structured as follows. In Sec. I MAWS Architecture
we present MAWS. We describe our wide-spectrum testbed in
Sec. lll, and we experimentally evaluate MAWS in Sec. IV.
Finally, Sec. V overviews the related work, and Sec.
concludes this paper.

Fig. 1. Diagrammatic Overview of MAWS

Our work applies to wide-spectrum access networks with
obile clients. We consider that APs and clients are equippe
with either a single multi-band radio or multiple singlera
radios. Moreover, we consider that all nodes can access a
II. MAWS: M OBILE ACCESS OF common set of bands and employ the same MAC scheme
WIDE-SPECTRUMNETWORKS in all bands. Nevertheless, our work can easily be adapted to
the case where the nodes’ accessible bands are different; ou
work can also be extended for networks that do not employ the
same MAC scheme in all bands, by incorporating the MAC'’s
impact on throughput and delay performance in the evaloatio
of association options.
A. MAWS Overview Furthermore, we consider mobile clients to transmit packet

In MAWS, mobile clients make association and handoff gdia a single radio at a t@me, even if they are equipp(_ed with
cisions by predicting throughput and delay for each astiooia mu!UpIe §|ngle-band radios, to conserve energy gnd serea
option. To predict these two metrics, we propose a methoddi€lr lifetime. Moreover, we assume that mobile clientsno
ogy for mobile clients of wide-spectrum networks to estienatthe coordinates of their locations during their scanning an
channel quality and spectral usage. Specifically, mobiénts inference instances. Such localization can be realized via
employ a limited-rate scanning process via which they meas(¥-9-: Intermittent activation of _t_he prevailing GPS deslrcer_
channel quality, i.e., link signal strength, in as few as tW§)pectral fingerprinting.In addition, we assume that mobile
channels from two different bands. Via this process cﬁentlzlients have access to estimates of AP locations obtairea fr
also sparsely estimate across space each channel's usaagefaip'logging databas@®r announced by APs via their beacons.

the fr_ac_tlon of time that other nodes use this channel. Usmg.GPS_Enablecl Cell Phones Go Mainstream'” htp://www.m2gmom/
the limited measurements collected in other bands and alsee place Lab: http:/ils.intel-research.net/place-lab
other locations, a MAWS client infers channel quality and 3See for example: http:/wigle.net/

In this section, we preselAWS a scheme for mobile
clients of wide-spectrum networks to evaluate and selesit th
association options, i.e., pairs of APs and channels, wtech
span multi-band spectrum.



C. Inferring Channel Quality The interpolation formulas are provided in [12].

In this subsection, we present the two methods that MAWS2) Cross-Spatial InferencePrior measurements and prop-
clients employ for cross-spectral and cross-spatial @rfee agation models indicate that signal strength decays Itgari

of link signal strength, our considered channel qualityrinet Mically with the distancel from the transmitter node [7]:

Mobile clients employ the cross-spectral inference method d

at a location where they measure the RSSI of links in two Papm(d) = Papm(do) — 107log;, <d_0> to )

different-band channels and infer signal-strength valaethe

remaining frequencies. Otherwise, clients employ the ssrodn Ed. (2), Pasm(do) is the received signal strength at a

spatial inference method to infer the signal strength ok li reference distance from the transmittgy, o is a zero-mean

in a given band, using RSSI measurements collected in r@ussian random variable that represents shadowingthee.,

same band at other locations. deviation in P;p,, between similar propagation scenarios;
Both methods infer the average channel quality of a link #pally, 7 is the path loss exponent, a parameter representa-

a given location and frequency and do not capture locatiotite Of the propagation conditions in an environment. This

dependent and time_varying effects on Signa| propagaﬂoh S exponent iS dependent on frequency a.nd on the |Ocati0n and

as shadowing and multipath-fading. Nevertheless, outisolu cOmposition of obstacles [7]. Unfortunately, mobile cten

is environment-agnostic and practical, as it does not requflo not necessarily foreknow the path loss exponentand

a detailed description of the propagation environmenthsuthe extent of shadowing in every frequengyand at every

as terrain maps (see e.g., [6]). At the same time, our efqcation, and precise estimation of these parameters rejui

ployment of measurements can enable more accurate intere¥tensive measurement collection.

than alternatives employing neither information desagithe ~ We propose that mobile clients infer channel quality by

propagation environment nor measurements. utiIizing the limited RSSI measurements from previous lo-
1) Cross-Spectra| Inferencerior measurements and prop.cations to estimate path loss exponents for each band, and

agation models indicate that signal strength (denote®pis hence to apply the log-distance propagation model. To do so,

(71, [8], [9], [10]): of the AP locations. To estimate the path loss exponents,

clients apply regression analysis to the poi(ds, P, ;) for

fo each bandb, where P, ; is the measured RSSI in barid
S and at a distancd; from the AP. Our chosen function for

A frequency-exponent value of = 2 is widely employed for eqression analysis expresses the logarithmic decay oéisig

various environments (see, e.g., [7], [8], [9]), _Whlle R_Iha strength with distanceP(d) = 8 — v101log,,(d). We reduce

et al. suggest a frequency-dependent selectionvofwith e problem to linear least-squares fitting via the follagvin

a € {2,2.3,3} [10]. While an infinite number of functions \4riapie transformation: — —10log,, d. This process yields

P(f) can satisfy the relationship specified by Ed. (1) foggefficients~, and 3, approximated analytically for each

a given o, only one functionP;(f) represents how signaly,nq;, consequently, clients can infer the signal strength for a

propagates in each frequency over a lihkas a result of |iny of lengthd in bandb without scanning using the following

the location and composition of obstacles. Specificallynal function:Pb(d) = By—10 log, o (d). The detailed process and
strength decreases with frequency more rapidly as Obmm‘:trespective formulas are provided in [12].

increases. Unfortunately, clients do not necessarilykiooes
how channel quality depends on frequency for every link aml. Inferring Spectral Usage

every location, and precise modeling of these relatiorsship . . .
‘ . : Here, we propose a method for mobile clients to infer, at a
requires an extensive collection of measurements.

: : L . iven location, each channel’s usage, i.e., the fractiotinod
We propose that clients infer channel quality in a given fre; 9

. : o . hat the channel is used by other nodes.
guency and location by using their limited, same-locati®@BR o ) o

S A Exploiting cross-spatial and -temporal correlation: Our
measurements in different bands to characterize individua : S . . ,
. . . : : method exploits the correlation in sensing a signal at neigh
link models of inverse signal-strength proportionalityaioc-

power of frequency. To characterize the individual link ratsd Egggg;?cﬁ;{ng dgrlt(l'j]itshgr;{smcrl)i(()arnatlsci(r)]:‘reerl?(()ar::tlrnaltr:;es:Sd%oo
we interpolate, for each link, the RSSIP,; measured in ' ' P ge

frequencieg; with a function of the formP(f) = fﬂa+b. This I(;r]:rw|trcsizgrr:/li1$besr ilijﬁsczgile iﬁgﬂi{:igﬁ:&?ﬁ:gfg gt Ionatt
interpolation yields characteristic coefficients; and b; for P - 9P Y, 9

. ) . . equencyf is inferred at the current locatian as a weighted
each linkl. Consequently, clients can infer the signal streng{ﬁ d v 0 g

; : . : Zaverage of that channel’s measured usage at locagions
of link / in frequencies that are not scanned, using the function: g g atio

Po<i (1)

Pz(f)_ = % + bi. To enable a Iow-cor_nplexity_, analyt?cal . B ZZNZI wg(gi) * wy(gi, ge) 3
solution, we transform the problem to its equivalent linear if(ge) = 3)

N
least squares form by conducting the following variablagra 2i=1 s (gir c)
1

formation: z = 7o Thus, clients can analytically interpolateUsage estimates are denoted by< [0, 1], with greateru
the RSSI measurements with the functiB(z) = mz+b[11]. values denoting higher usage.



In Eqg. (3), individual weights are assigned to each usageSpectral usage: Additionally, clients passively estimate
estimate, as different pairs of locations exhibit dissémil spectral usage via periodical sniffing. Every, seconds,
spatial correlation in the usage of a channel. For instanadignts sniff a single channel; each sniffing action lasts; s.,
the probability that two locations share a common interferand channels are selected sequentially. As a result, lient
decreases with the distance of the locations. In additiocglculate usage estimates < [0, 1] for the respective center
this probability decreases with frequency, as the interfee frequency f, where u; equals the fraction of the sniffing
range also decreases. A weight assignment that capturesduiation that clients sense the channel as used by othesnode

abovementioned relationships is the following: F. Selection of Association Options

wy (i, ge) = max {Ip — d(ge, i), 0}, 4) Mobile clients may individually prioritize throughput \&rs
whered(g;, g;) is the Euclidean distance between two locadelay performance, as they may dissimilarly tolerate packe
tionsg;, g;; I, is an estimate for the interference range in barftelay, which includes handoff, transmission and contentio
b and its estimation follows. delay. Denot& as the delay sensitivity of a clienf,c [0, 1],

Estimating Interference Range: Multiple factors affect such that delay tolerance decreases with
the interference range of a client. In wide-spectrum netaor ~ Given the inferred and measured metrics of channel quality
selecting a lower-frequency band can yield a dramatic asze and spectral usage, MAWS clients estimate throughput and
in interference range. Of course, the interference range aflelay metrics for their numerous association options ah eac
depends on the location of the interferer and the client, isation, to select the one that best meets their performabe
distinct propagation conditions are determined by therabst jectives.
tion inbetween each pair of locations. Finally, the intesfee ~ Throughput Metric:  For association with APk in a
range may also vary over time, as a result of channel fadirgflannel centered at frequengy throughput is predicted via
Unfortunately, clients do not necessarily know the locatid estimates for the attainable link rate and the availablénzer
their interferers in each band or their interference ranigmeh of that frequency:
location, time and frequency.

We propose that m?)bile glients approximate a single inter- Tip(90) = Ri (Phoy (90), Wi) x [L —ug(g)], - (3)
ference range for each band by employing the cross-spatialEq. (5),W; is the channel width of the bandhat includes
method for channel-quality inference (see Sec II-C2). 8pecfrequencyf, and R; is the attainable rate under interference-
ically, clients utilize RSSI measurements to infer the ¢i@n free conditions. The dependence & on channel width
quality of client-AP links at different locations. Thusjesits and channel quality metrics, such as signal strength, can be
can estimate the maximum distantg from AP j at which empirically estimated. FinallyP ¢(g:) and us(g;) are the
signals are received at interfering power levels, in band  inferred or measured metrics of channel quality and usage fo

- location g;, respectively.
Tj = max {ij(d) - Pi”t} Delay Metric: Delay under each association option is esti-
We denote byl the average range of AP-generated interfefrated via a metric in_corporating determinant factors oayel
encel,;, averaged over all APs. In our scheme, clients coRerformance in a wide-spectrum network. Denddg ; <

sider I, as the estimate of their interference range in baand [0; 1] @s the delay metric for the client's association to AP
k in frequencyf.

E. Limited-Rate Scanning First, the metric incorporates the delay incurred by the se-

MAWS clients employ limited-rate scanning to sparseliection of an association option; selecting a differentdéor
measure the highly variable metrics of channel quality anle currently associated AP incurs a significantly shorétayl
available airtime across spectrum and space. Nonethelésan handing off to a different AP. Specifically, the channel
these coarse-grained samples suffice to enable, via our methitching delay is orders of magnitude lesser than handoff
ods, inference of these two metrics for a wide spectral adelay (e.g., 8Qus vs. 25-800 ms; values reported in [13], [2],
spatial range. In general, MAWS is a framework encompassif8]). The key reason for this difference is that handoffs in
a broad set of scanning parameters, which can be adjustedvidely employed MAC schemes such as 802.11a/b/g typically
client velocity and spectrum availability. require association handshakes.

Channel Quality: Clients periodically measure channel Moreover, the delay metric penalizes association options
quality by probing everyr., seconds. At each probing actionjncreasingly with frequency, as the handoff rate increases
clients select two bands to probe and probe any single charwéh decreasing coverage. Finally, the delay metric employ
of each selected band. Probing two bands minimizes the scarferred or measured metrics of channel quality and splectra
ning required to enable our cross-spectral inference afimbla usage to estimate the transmission and access delay (e.g.,
quality. Moreover, different pairs of bands are selectedrovcontention delay) under each association option. Due toespa
time to collect measurements enabling cross-spatialénfsg constraints, we provide the complete presentation of theeyde
of channel quality for all bands. By receiving probe resgasns metric in [12].
clients measure the RS$); ¢(g;) for their links to each AR Selection of Association Options:The throughput and
at locationsg; and frequencyf. delay metrics are weighted according to the client's delay



sensitivity to yield a joint metric that drives the seleactiof
association options and expresses the relevance of eaolm opt
to the client’s performance objectives:

Jh, () = T 5 (g¢) ¥ [1 = 6 X Dy, £(g1)] (6)

Finally, clients use a hysteresis threshojdto refrain
from invoking handoffs to candidate associatidis ) with
marginally higher joint metricg,, ¢ than that of their current
association AP...., feur). Hence, clients select a different
association(k, f), when:

Jkof > JAPeur four 1 Fig. 2. A 4-radio MAWS node

Selections are followed by a handoff to another AP wheA antennas for all bands, while APs employ 9 dBi antennas to
AP,,, and by a channel switching whén= AP, and f # provide a wider coverage.
feur Testbed specifications:Our platform is x86-based, us-
ing Gentoo Linux kernel 2.6.34. Nodes are equipped with
Atheros chipset mini-PCI interfaces from the Ubiquiti Net-
Similarly to many network architectures in which nodes utivorks XtremeRange series. These are the XR7, XR9, XR2 and
lize more channels than the number of their radios (e.9)[14KR5 radios, which operate in 760-780 MHz, 902-927 MHz,
nodes of wide-spectrum networks can coordinate throughp@01-2.483 GHz and 5.160-5.845 GHz, respectively. The
control channel. Specifically, two nodes can first exchang&®2, XR7 and XR9 interfaces use a 802.11g MAC, while XR5

packets in the control channel (such as RTS, CTS, prohfliows the 802.11a standard. The interfaces function with
requests); such packets specify another channel, in whigh &t h5k open-source driver.

nodes switch and they further exchange packets (such as data
packets, probe responses); subsequently, they switch tback IV. EVALUATION OF MAWS

the control channel. In this section, we evaluate MAWS using the deployment

This access model can be realized by a dedicated conffgkcribed in Sec. I1l. We study the individual components of
channel (e.g., [14]) or by dynamic control channels, whictyaws as well as their joint interaction. Thus, we assess the
can be established with channel-hopping protocols (E8]).[ 5ccyracy of the methods inferring channel quality and spect

While bandwidth reduction has been a counter-argument i@,qe and we compare MAWS with alternatives for mobile
control channels in single-band networks, spectral ré&sur 5ccess such as scanning and fixed-band prioritization.
abound in wide-spectrum networks.

G. Example Access Model

1. EXPERIMENTAL PLATFORM A. Inferring Channel Quality

. . . . To assess the accuracy of the cross-spectral and cross-
This section describes the wide-spectrum network thgtatial methods. we desian the following experiment. Fi
we deploy and utilize to experimentally evaluate MAW P ’ 9 g exp '

Our testbed provides access to four spectral bands: Eﬁéaloyasingle-AP wide-spectrum network, in which a mobile
700 MHz bang“ and the I1SM bands of 90p0 MHz 2.4 a.nd: i1ent collects RSSI measurements of its link to the AP; the

5 GHz. These bands span a spectral range of 5.085 Gﬁlzn_ant collects asingle RSSI measurement at each of multiple

to the best of our knowledge, this range is the widest to tI)cg}da‘uons and for each of the four bands of our testbed. Next,

; ) we provide only a subset of the collected measurements as
spanned to date by a single operational access network.

To evaluate MAWS, we deploy a two-AP network accessed., input to the two inference met_hods. Then, _the methods
. : . -~ infer RSSI values for the frequencies and locations that are

by a mobile and a static node. The mobile node is either . . .
L X . . not included in the subset. These inferred values are cadpar
moving in a car at vehicular velocity or is placed on a

. . . : ith the respective RSSI measurements. Specifically, weepla
cart while moving at pedestrian speeds, depending on the . ) A
. . . . he single AP on a third-floor balcony of Duncan Hall, in Rice
experiment. The other client is stationary and serves t

purpose of injecting traffic into the network. APs are place hiversity. The mobile client collects RSSI measurements a

. . 3 MHz, 912 MHz, 2.447 GHz and5.2 GHz. This experiment
approximately 15 meters above the ground at two differen . : Lo

. . . L s conducted twice, once outdoors with a car as a mobiletglien
balconies of Duncan Hall, at Rice University in Houston, TX,

) . . ; and once indoors with the client placed on a cart. In boths;ase
In our testbed, nodes are equipped with multiple singledba . . : :
. . e selected measurement locations yield client-AP litieg t
radios, one for each of the four bands to which access |s

provided. Fig. 2 illustrates a MAWS node, used for both ApgVera wide-range of factors affecting signal propagasieeh

and clients. Finally. the client nodes emplov low-aain. 5 dB* distance and intermediate obstruction. Fig. 3 depias th
‘ Y ploy gan, deployment and the selected locations. We collect all autdo

4The 700 MHz band is allocated for public-safety servicesweler, it was measur(:j'ments in the same day and all indoor in th.e next day;
not used at the deployment area. successive measurements are taken at least 15 minutes apart



\ \ ) L Ng — A . .
o \ « N @ that increases wnh%, where A; is the difference

\ ( .
\ ® s ?;@ ‘ between an RSSI mféasuifément and the time-average channel
° = "f ' “m a"” quality in frequencyf;. Thus, the tolerance of our method
= %70 to fading-induced deviation of the RSSI measurements from
"o their average value increases with the dissimilarity oftthe
3 probed frequencies.
_ 2e ® ‘ Finally, Fig. 4 illustrates that under an appropriate s@ec
(’é‘rf,und - of the probed frequencies, our method can infer the RSSI
oo res A RS A N values in other bands within 7 dB of the actual RSSI. To

add perspective to this difference, we empirically comphee
Fig. 3. Measurement Locations link rates attainable under two RSSI values that diffef7lnB
i _ . (see [12]). We find that the difference of the rates is upper
1) Cross-Spectral InferenceDuring each scanning action,yonded byl 7% of the highest attainable rate; moreover, the
MAWS clients probe two channels belonging to differentomnared rates are equal under half of the possible values
bands (see Sec. II-E). Here, we assess how accuratelyscligg} two RSSI differing by 7 dB. While a non-negligible

can infer channel quality for the remaining, non-scannetiba ooy, sych inferences nonetheless suffice for MAWS' silact
and how this accuracy can increase under appropriate®@lechpiacives without sacrificing additional airtime in scamm

of the probed channels. Thus, the input of our inferenggee sec, IV-C)Finding: Using only two RSSI measurements
method consists of two same-location RSSI, measured in g gifferent bands and an appropriate selection of pbe
of the four frequencies considered in the experiment; fer taqencies, MAWS clients can infer same-location channel
same location, the inferred RSSI values for the remainirm Mjuality in other bands within 7 dB of the actual dBm value.
frequencies are compared with the respective measurements) Cross-Spatial InferenceMAWS clients can infer the
We repeat the experiment for each location and for eveghannel quality in a given band and location using same-
possible combination of input selection, i.e., for everpice  pang RSSI measurements from other locations (Sec. 1I-C1).
of two channels out of the four in which measurements afgere, we assess the error of this inference as a function of
collected. To distinguish between different input scem@We  the number of RSSI measurements and the robustness of our
associate each combination with a measure of dissimilarifyethod to inaccurate knowledge of the AP locations. Towards
between the propagation characteristics of the two chasen fihis end. we first consider all possible subsats of the N
quenciesfi, fo. This measure is driven by models suggesting.ations depicted in Fig. 3N:,| € [2, N —1]. For each band,

the inverse proportionality of channel quality to ampower oy inference method employs the single RSSI measurement

0l (o) (fy o) (uf) | length of the client-AP link.

of carrier frequency (Eq. 1), and it is given WF - 75l at each of theN;,, locations, estimates a distinct path loss
exponent and infers channel quality at the remaimhg N;,
L B N indoor s locations. The inferred values are compared with the resgec
3 _. (fe.fa) Outdoor s .
g8 30 ] RSSI measurements, which are not employed by our method.
ET (f,. 1,): probing f,, f, .
c5 5| =773 MHe | We apply our methodology separately for the two different
LS (farf) =912 Mz environment scenarios, i.e., indoor and outdoor. Moreaver
" L C . 4 . .
%g 20 f4=5.2 GHz repeat the experiment under different values,od parameter
5% 15| (fafo) 1 representing the difference between the assumed and thad act
o]
2
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. T,
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the difference. Fig. 4 depicts the average such absoluteyal gg o eee——t ‘ ‘ ‘ ‘ '
averaged over all instances of inference, as a function ef th 2 46 8101214161820 2 4 6 8 10 12
iccimilari i # of RSSI measurements # of RSSI measurements
dissimilarity of the two probed frequencies. The resultsvah 2) Outdoor Environment b) Indoor Environment

in Fig. 4 are obtained forr = 2 (see Eq. (1)). Fig. 4 indicates
that the accuracy of our interpolation-based inferencenotet ~ Fig- 5. Impact of RSSI Availability on Inference of Channeliality
increases with the degree of dissimilarity of the two probed We calculate the difference between the dBm values of
frequencies. Specifically, we show in [12] that our methodctual and inferred RSSI, and the absolute value of the
infers the time-average channel quality of a link with aroerr difference. Fig. 5 depicts the average such value in infgrri



channel quality at theV — N, locations as a function of the 03 " Podestian/indoors GHy
number of RSSI measuremernits, . The figure depicts results = o5 | Jedestrian/indooriz.4 GHz w
from cross-spatial inferences in one band (900 MHz), whil '

we observe similar trends and findings for all other bands.
Fig. 5 indicates, two RSSI measurements at different lonati
enable inference of channel quality withih— 6 dB of the
value inferred via RSSI measurements Ah— 1 locations.
Moreover, our method’s accuracy increases with link length
(longer links in the outdoor case) as signal strength deeﬂeag
logarithmically with distance; thus, for a giventhe difference =
P(d + €¢) — P(d) decreases withi. Finding: Inference of o s 10 20 25 30 35 40 45
channel quality with two RSSI measurements is marginally Sniffing Period (sec)

less accurate than inference with the highest number of meagiy 6 impact of Sniffing Rate on Usage Inference, (; = 100 ms)
surements.
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usageumq, = max{us(g;)} that is measured during each
B. Inferring Spectral Usage experiment. Fig. 6 depicts this normalized metric of averag

To assess the accuracy of MAWS in inferring spectral usadror, as a function of the sniffing period, fog,i;y = 100 ms.
we design the following experiment. A MAWS node traversednder realistic traffic patterns, the usage of a frequency is
the coverage area of a network providing access to real useif§ngly correlated across space and time. Thus, despte th
at channek. Using kismet the node continuously sniffs this€Xisting variations in the usage of a frequency, the average
single channek. We discretize time in seconds; with eacthference errore of our method ranges within 10-25% of
second;, we associate a single locatignchosen among the the maximum measured usage, even under a very infrequent
possibly many visited during;. For each of the second-longSniffing period, e.gr = 45 s. We consider that the usage
time-intervalst;, we calculate the fraction of time;(g;) that ©Of N channels can be inferred with such an accuracy by
the center frequency of channek is sniffed as busy, i.e., the Periodically and sequentially sniffing the channels evgrys
fraction thatkismetreports packet transmissions in Then, (our wide-spectrum testbed can operate in up to 40 channels)
we consider a subset of the entire sniffing process, a subs@ding: Under realistic traffic patterns, mobile clientarc
representing periodic sniffing instances, which last; s. infer spectral usage along their trajectory with an average
and repeat everyr,; s. These sniffing instances compris€or of 10-25% of the maximum measured value.
the input of our inference method (Sec. 1I-D), which yields _ _
usage inferences;(g;) for f, at each locatiow;. We compare C. MAWS vs. Alternatives for Mobile Access
the inferred usagé s(g;) with the actualus(g;), for eachi. Here, we compare MAWS with two alternatives for mobile
We generalize our single-frequency assessment for the caseess{i) exclusive employment of scanning, afig fixed-
of a wide-spectrum network wittN' channels, considering aband prioritization. Association based on scanning alare c
sniffing pattern where a client sniffs a different channedrgv result in more accurate estimates of channel quality and
T Seconds and the same channel ewsry w,; seconds.  spectral usage than our inference-based methodologyhwhic

Networks with real users: To evaluate our inferenceis subject to inference errors. However, this accuracy coate
method, we conduct experiments in operational networkd ugfe cost of sacrificing airtime that increases with the numbe
by real clients. We consider two networks that provide agcesf scanned channels. Alternatively, clients can omit stann
to two different bands(i) The TFA network, an operational,and employ static band prioritizations, similarly to today
urban mesh network consisting of approximately 20 AR®mmon practice for selecting between different networks
and providing access to channel 11 of the 2.4 GHz baraperating in diverse bands. However, such an approach is
During the experiments, clients maintain vehicular speedblivious to the underlying usage and channel quality oheac
while sniffing this channel, to traverse the network coveradpand at any given location.
along a4.1 km route within 800 s(ii) A university network  Towards these two comparisons, we design the following
providing indoor access to the 2.4 and 5 GHz bands in Duncexperiment. We place two MAWS APs at different locations
Hall, Rice University. We conduct the experiment once faof the university campus, and a mobile client experimeyptall
each band, sniffing channel 6 in the 2.4 GHz band and chanm&asures its throughput performance via a Upd?f session.
48 in the 5 GHz band. In these two experiments, the clieSpecifically, we repeat the measurements along the same
traverses the network coverage at pedestrian speeds alorigpctory for each possible selection of AP and spectratiba
200 m route, within260 s. All experiments are conducted(eight combinations for two APs and four bands). Moreover,
during hours that actual users access the networks. we repeat the experiment under different usage values for

For each of the three velocity/band scenarios, we calculaach band; thus, we control band usage by conducting the
the inference erroe(g;) = |ts(g:) — us(g;)| at each location experiment at hours that no actual users access the medium
gi. Moreover, we calculate the average inference egor and by injecting controlled traffic via another, static olie
averaged over all locationg, as a fraction of the maximum In all scenarios, the client can passively measure RSSI from



its associated AP via the exchanged data packets. Finafhore channels than single-band networks (e.g., 11). Inimult
we repeat the experiment for different durations of pedodband networks, the MAWS gain can reach up to 140% for 40
inactivity, i.e., pausing of thgerf session; such idle intervalschannels; specifically, it increases linearly with the nemaf
represent the airtime sacrificed to estimate channel gualid channels, as so does the airtime consumed by scanning, while
usage in other channels. the accuracy of our inference methods remains the same (see

As our platform is limited to only 2 APs and 2 clients,Sec. IV-A, IV-B). Finding: Throughput gains over exclusive
we utilize the collected measurements to emulate cliert pemployment of scanning can exceed 100%.
formance under each mobile-access scheme in larger-rletwor2) MAWS vs. Fixed-Band PrioritizationiVe consider three
scenarios. For our emulation, we consider a linear trajgctoversions of fixed-band prioritization: selection of the legt-
and a placement of 10 APs. Each AP is placed in suftequency band (among those available), selection of the
a manner that its relative position to a certain segment lofvest-frequency, and highest preference of the 2.4 GHd ban
the trajectory is representative of the experiment coratlictwith arbitrary preference order for the remaining bandsewh
for measuring throughput performance. Moreover, the Afmultiple APs provide coverage at the same location and in
placement enables multiple scenarios of coverage ovengpp the most preferred available band, we consider that these
In our emulation model, many different association optioribree policies select the highest-RSSI AP. We consider the
exist in each location of the trajectory; our experimentgehal0-AP network scenario for many different cases of spectral
measured the channel quality of each option and the offereshge, which is controlled in our experimental methodalogy
throughput under many scenarios of spectral usage and sdafe- assign the empirical throughput performance to MAWS
ning frequency. Our emulation model assigns to each lotaticlients as described; moreover, we assign to each fixed-
the AP-channel pair chosen by each mobile-access schemelad prioritization policy the respective throughput esu
associates the respective empirical throughput. measured under no periods of inactivity (no scanning cost).

1) MAWS vs. ScanningAs MAWS has errors in inferring : ; :
channel quality and spectral usage, we perturb the actual 120 Yo AW HOes oney mo
measured and controlled values of these metrics according® ,,,| & AWY/stovestFreueney =
the inference errors quantified in Sec. IV-A and Sec. IV—B’§
In contrast, we consider that the scanning-only alteredtas 2
error-free measurements of channel quality and usage. Bath eo |
schemes select their own association options at each docatic
according to Eq. (6), fof = 0. Then, the MAWS throughput at %

80 -

each location is given by the one measured under the selected 20 | é
association during periodic inactivity fa@t,; +2 x tprop S., o - ‘
as MAWS periodically sniffs one and probes two channels. -10 S 0 5 10
. 5 . . Difference between traffic injection rate in the most preferred band
Moreover, scanning’s throughput is given by the one meassure and rate in remaining bands (Mbps)
during periodic inactivity ofV x t,,,..;, whereN is the number Fig. 8. MAWS vs. Fixed Band Prioritization

of channels in the network.
160

Fig. 8 depicts the throughput gain of MAWS over each
o100 ms —— of the fixed-prioritization policies. The x-axis represetiie
L 1 difference between the rate of injected traffic in the highes
preference band?,,..; and the rate for all remaining bands

R,s. Finding: Despite scanning, MAWS yields significantly
higher throughput performance than fixed-band prioritiaat

| 1 when the usage of the statically preferred band is equal or

140 +
120
100
80
higher than that of the remaining bandshe reason is that

MAWS incorporates estimates of spectral usage and channel
quality in the selection of association options, despites¢h

estimates being imperfect. Specifically, the MAWS gain due t
the incorporation of spectral-usage estimates increasesly

60

40

Throughput Gain vs. Probing (%)

20 +

0
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Number of Channels with the additional traffic rate in the statically preferreand,;
Fig. 7. MAWS vs. Exclusively Scanning for an additional rate ofill Mbps, the gain can reach up to

) ) ) . 120%. Under identical band usage, MAWS incurs gain due
Fig. 7 depicts the throughput gain of MAWS as a functiog, yhe incorporation of channel-quality estimates; suchaia g

of the number of channels, ff, o, = 25 MS,tsniy =100 MS  increases with the frequency of the most preferred band and
and a scanning period of 1 second. To add perspective, it reach up to 25%.

depicts an analytically calculated gain for different \eswof

torob. We find that the airtime sacrificed by scanning over- V. RELATED WORK

whelms its advantage against MAWS, i.e., the more accurateRelated work can be classified intG) mobile access of
evaluation of association options, when the network opsriat  single-band networks, angi) non-mobile access of single-



measurements collected in other bands and at other losation
i We experimentally evaluate MAWS using a four-band wide-
A. Mobile Access S ;
pectrum network that we deploy. Our evaluation reveals tha
IEEE Standards: The 802.21 standard enables handoMAWS vyields significant throughput gains over alternatives
between different network technologies [16]. In additiorfor mobile access.
802.11p is a standard for vehicular communication in the
dedicated spectral band of 5.9 GHz [17].
i . i i [1] M. Stemm and R. Katz, “Vertical handoffs in wireless degrnetworks,”
Overlaid Cells: In Cellu'?‘r networks, mulltlple ovgrlald Mobile Networks and Applicationsol. 3, no. 4, pp. 335-350, 1998.
layers Of_ coverage are provided by cells of different S'm t [2] V. Mhatre and K. Papagiannaki, “Using smart triggers forproved
operate in the same band. In such networks, cell selection is user performance in 802.11 wireless networks,Pioc. ACM MobiSys
; i i i - Uppsala, Sweden, June 2006.
d!’lven.by C“er.]t velocity (e.g._, see [18]). A.t the Sa.me timma [3] A. Giannoulis, M. Fiore, and E. W. Knightly, “Supportingehicular
bile C“ent_s widely employ fixed-band pnoqﬂzapon t_o set mobility in urban multi-hop wireless networks,” iroc. ACM MobiSys
between independent networks operating in dissimilar §and Breckenridge, CO, June 2008.
_ a . 4] P. Deshpande, A. Kashyap, C. Sung, and S. Das, “Preelintisthods for
(e.9., smart phon_e preference of W LA_N to 3G; See also [1” improved vehicular WiFi access,” ifProc. ACM MobiSys Krakow,
Non-Cellular Single-Band Networks: In our prior work, Poland, June 2009.
vehicular clients of multi-hop wireless networks prolorgg@  [5] S. Yin, D. Chen, Q. Zhang, M. Liu, and S. Li, “Mining speatn usage
ciations to better performing APs by accounting for diSlﬂ'EBi data: A large-scale spectrum measurement stuB¥%E Transactions on

. . Mobile Computingvol. 11, no. 6, pp. 1033-1046, June 2012.
in offered AP throughput [3]. Deshpande et al. propose the dig] j. Robinson, R. Swaminathan, and E. W. Knightly, “Assesst of
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