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Abstract—A Multi-User MIMO (MU-MIMO) Access Point
(AP) can obtain a capacity gain by simultaneously transmitting
to multiple clients. This technique requires Channel State Infor-
mation (CSI) at the transmitting AP to set antenna gains and
phases to enable simultaneous reception through beamforming.
The AP must also select both the mode (number of transmit and
collective receive antennas) and the user set prior to transmission.
While the ideal mode and user selection is a function of CSI, CSI
must be estimated with an overhead intensive channel sounding
process. We design, implement, and evaluate Pre-sounding User
and Mode selection Algorithm (PUMA), a method for mode and
user selection prior to channel sounding. We show that even
without CSI, PUMA (i) exploits theoretical properties of MU-
MIMO system scaling with respect to mode, (ii) characterizes the
relative cost of each potential mode, and (iii) estimates per-stream
transmission rate and aggregate throughput in each mode for a
potential user set, all without CSI. Once PUMA has selected the
appropriate mode and user group, the chosen protocol’s channel
sounding method is used on the intended user subset to carry
out the transmission. We show that, on average, PUMA selects
the mode and group that achieves an aggregate rate within 3%
of the saturation throughput of what would have been achieved
by sounding all users (which would require significant additional
overhead). Moreover, we show that PUMA obtains 30% higher
aggregate throughput compared to the best fixed-mode policy
that uses the maximum number of available transmit and receive
antennas.

I. INTRODUCTION

MU-MIMO (Multi-User Multiple Input Multiple Output)

achieves substantial capacity gains by using precoding to

support multiple, concurrent data streams to a group of clients.

Precoding comprises of computing the transmitter’s antenna

gains and phases from the channel state information (CSI),

i.e., the channel matrix in which each element represents

the magnitude and phase offset for each transmitter-receiver

antenna path. In this way, each receiver can simultaneously

decode its streams [25]. Moreover, the recent IEEE 802.11ac

amendment promises multi-Gb/s rates via down-link MU-

MIMO with up to 8 transmit antennas at the AP [5], [12].

To realize these capacity gains, in addition to precoding,

the AP must also select the (i) mode: the number of transmit

antennas and collective number of receiving antennas, and

(ii) users: the set of receiving antenna(s), i.e., clients. For

each transmission, the ideal mode and user set is channel-

dependent and therefore their selection would require CSI for
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all receivers. However, due to large overhead, it is practically

infeasible to collect CSI for all potential receivers prior to each

transmission. For example, 802.11ac requires approximately

1.6 kb to 329 kb per client depending on the number of

transmitting and receiving antennas.1

Previous solutions ([11], [13], [18], [20]) focus on mode

and user selection after channel sounding is complete. These

methods pick the optimal user groups given full CSI of a set

of potential receivers or by relying on intermittent probing or

stale CSI to estimate the full CSI. The additional overhead

these methods require could substantially mitigate the benefits

of MU-MIMO transmissions. The key to efficient MU-MIMO

transmissions is the amortization of sounding overhead over

the transmitted data. Works such as [23] provide methods of

compressing the sounding phase thus increasing the amortiza-

tion of the sounding overhead. However, the benefits of these

algorithms are only realized after the transmission mode and

group are selected.

To achieve these goals while ensuring the efficient amor-

tization of sounding overhead, we present Pre-sounding User

and Mode selection Algorithm (PUMA), a method of mode

and user selection prior to channel sounding. The key tech-

niques of PUMA are threefold: (i) estimation of expected per-

user datarate based on theoretical MU-MIMO system scaling,

(ii) characterization of relative cost from overhead for each

potential mode, and (iii) calculation of expected aggregate

throughput for a potential group of users given a particular

mode. Through this pre-sounding estimation process, PUMA

selects the best mode and group of users by maximizing

throughput with respect to overhead.

Estimation of Per-User Datarate. By exploiting the prop-

erties of theoretical MU-MIMO system scaling, PUMA esti-

mates the potential datarate of a particular receiver prior to

sounding. Theoretical MU-MIMO system scaling is based on

the Degrees of Freedom (DoF) of the transmission mode. DoF

refers to how many more transmit antennas (M ) than collective

receive antennas (K) exist in a particular transmission mode.

The available DoFs manifests as the following tradeoffs

with respect to received SINR: increasing the number of

1The 802.11ac standard allows for a transmitter with up to 8 antennas, a
receiver with up to 4 antennas, and up to a maximum of 4 concurrent receivers.
The respective feedback overhead for 2 Tx antennas, 2 single-antenna Rx, 16
bits per angle, 20 MHz BW is 1664 bits, and for 8 Tx antennas, 2 four-antenna
Rx, 16 bits per angle, 160 MHz BW is 329,472 bits [12].



transmit antennas M increases the per-user SINR. Increasing

the number of receiving antennas K decreases the per-user

SINR but increases the number of parallel data streams (thus

resulting in additional, lower datarate, parallel transmissions).

Leveraging this tradeoff, PUMA computes the expected per-

stream datarate for a potential mode using only M and K
without CSI.

While estimating the expected throughput using the avail-

able DoFs is not perfect, it is sufficient for mode and user

group selection because the indoor Wireless LAN (WLAN)

environment usually results in well conditioned channel ma-

trices due to the prevalence of multi-path effects [4]. Thus, the

available DoFs has a greater effect on a user’s served MU-

MIMO SINR than the actual relationship between concurrent

users’ channel vectors [4].

Characterization of Potential Mode Cost. After com-

puting the expected datarate of a MU-MIMO transmission,

PUMA estimates the relative cost of realizing a particular

transmission mode. This estimation is based on the afore-

mentioned expected receiver datarate, the net transmission

overhead required for a particular MU-MIMO mode, and the

amount of available data (backlog) for each receiving node.

The ratio of transmitted data to overhead for a potential

mode manifests as the following tradeoff: increasing M and

K increases transmission overhead but also allows for in-

creased parallel data streams. Increasing the number of DoFs

(M − K + 1) results in increased per-stream datarate (due

to the aforementioned per-user SINR increase). Increasing

the amount of transmitted data aids in amortizing the MU-

MIMO transmission overhead (thus if less data is available

to transmit, the overhead cost for an MU-MIMO transmission

can outweigh the benefit of the amount of data transmitted).

Calculation of Group and Mode Specific Aggregate
Throughput. Given the maximum number of available trans-

mit antennas and all potential user subsets, PUMA computes

aggregate throughputs for each potential mode and user group.

Thus, every potential MU-MIMO transmission is assigned a

quantifiable metric for comparison and maximization. This

maximization seeks the best mode and user group based on

each user’s expected datarate, each user’s backlog, and overall

cost of serving each potential user group, only leveraging

information available prior to channel sounding.

We validate PUMA’s expected datarate calculation through

over-the-air (OTA) experimentation and evaluate the overall

performance of PUMA through OTA-trace based emulation.

We show that PUMA achieves an aggregate transmission rate

that is within 3% of a system that had full CSI for all potential

users. Additionally, we show that PUMA achieves at least a

30% higher aggregate throughput than any fixed-mode policy.

The remainder of the paper is organized as follows: Sec. II

provides an overview of the PUMA protocol. Sec. III discusses

PUMA’s functionality specifically with 802.11ac. Sec. IV eval-

uates the performance of PUMA with OTA experimentation

and channel-trace driven emulation. Sec. V describes related

work and Sec. VI concludes the paper.

II. PUMA OVERVIEW

The PUMA algorithm is executed before the start of any

MU-MIMO transmission with only a priori information; i.e.,

without any information garnered from previous multi-stream

communication or channel sounding. The necessity of using

only immediately available information for mode selection

stems from the highly volatile nature of an indoor WLAN

environment.

Although this multi-path rich, fading environment results

in well conditioned channels, indoor WLAN environments

can have an unpredictable coherence time [2], [4], [14].

The measured CSI can easily become stale between packets,

making previous transmissions unhelpful for predicting future

environments. Additionally, because of the high overhead

incurred from measuring CSI, it would be costly for the

transmission mode selection to rely on channel sounding. To

alleviate the effects of variable and costly CSI measurement,

PUMA selects the best mode and user group without CSI.

The following sections detail how, using the information

available before channel sounding (Sec. II-A), PUMA predicts

the per-user MU-MIMO datarate (Sec. II-B), computes a

potential group’s throughput (Sec. II-C), and finally selects

the appropriate user/group combination (Sec. II-D).

A. Available Pre-sounding Information

Before initiating an MU-MIMO transmission, the AP has

the following information: system state, queue state, and link
state. By leveraging this a priori information, PUMA enables

an AP to select the best mode. The system state and queue

state are used directly in protocol overhead calculation detailed

in Sec. II-C. Link state is leveraged in per-user data rate

prediction detailed in Sec. II-B. Combining these components,

PUMA estimates the throughput of any possible MU-MIMO

transmission an AP can execute.

System State. Before any transmission, the AP knows the

hardware configurations of itself and its clients. This includes

the available (maximum) number of transmit antennas Mmax

and the available number of associated users’ receive antennas

Kmax. PUMA leverages this system state for overhead com-

putation. While a greater number of overall antennas results

in increased data transmissions, it also significantly increases

sounding overhead.

Queue State. The AP is also aware of each receiver’s

backlog or queue size. The amount of available data directly

affects how much sounding overhead is amortized. If the

amount of available data for a particular user is relatively small

compared to sounding overhead, the potential gains of a MU-

MIMO transmission to that user are severely diminished. We

express the available data in terms of available packets b.
Link State. The AP is aware of each user’s link state

or omnidirectional SNR. The AP automatically gathers this

information from periodic beacon messages and updates this

information after each received packet. Unlike CSI, this metric

need not be instantaneous since received signal strength stays

coherent longer than multiple packet transmissions (approxi-



mately 90 ms at 0.9 kph [8]). PUMA leverages each client’s

link state to estimate the achievable data rate.

B. Predicting User-specific MU-MIMO Datarate

The first key technique of PUMA is the estimation of per-

user datarate. PUMA accomplishes this by computing the

expected SINR of an MU-MIMO transmission using only pre-

sounding information based on theoretical MU-MIMO system

scaling. PUMA then estimates the achievable rate using a

protocol specific minimum SINR table (such as Table I).

1) Post-Sounding Rate Estimation: Many works provide

expressions for the expected received SINR or aggregate

capacity of a MU-MIMO transmission (e.g. [25], [17]) such

as the following (where C is in b/s/hz):

C = max
wk,Pk

K∑
k=1

log2

(
1 +

∑K
j=1 Pj |hkwj |2

1 +
∑K

j=1,j �=k Pj |hkwj |2

)
. (1)

However, such methods are not suitable for our purposes

because they require post-sounding information (the measured

channel matrix) to obtain the channel matrix H . Instead, we

seek to estimate the expected performance of a MU-MIMO

transmission before the channel is sounded.

Given the significant overhead of channel sounding (which

we discuss specifically for 802.11ac in Sec. III), a transmitter

must serve whatever user it sounds to maximize performance

(to be described in Eq. (4)). Additionally, the channel state is

highly variable for the frequencies used in WLANs [4] and

thus channel sounding must occur before every packet trans-

mission (i.e., previously measured channel matrices cannot be

used reliably for future transmissions).

2) Pre-Sounding Rate Estimation: PUMA’s pre-sounding

rate estimation method is based on theoretical MU-MIMO

system scaling. PUMA exploits this scaling by estimating

the received SINR for a particular client and converting it

into an expected achievable datarate using a standard specific

minimum SNR table such as Table I.

The basis of Eq. (1) is the computation of SIR from the

multiplication of the h and w vectors. While the H matrix

represents the measured CSI, the W matrix is what the AP

computes from H to actually construct parallel streams.

A commonly employed MU-MIMO precoding technique,

Zero-Forcing [25], requires that the W matrix be computed

as the inverse of the H matrix. Beamforming itself is the

application of the W steering matrix through the channel H
or H · W . While a matrix times its inverse should result in

the identity matrix, the actual value of H and W may not

precisely meet this criterion due to per-user power allocation

or an ill-conditioned H .

Eq. (1) is based on this matrix multiplication H · W .

The additional computations are simply to convert SINR into

Shannon Capacity.2 Thus, the result of the matrix multiplica-

tion is the diagonal matrix L and is a representation of the

received SINR. Each diagonal element li corresponds to each

of the K receiving antennas and its magnitude encompasses

2Recall that the Shannon Capacity is computed as C = log2(1 + SINR).

the beamforming gain (or loss) with respect to the received

omnidirectional signal strength P/No [16].

Therefore, assuming equal per-user power allocation (and

normalized per-antenna power allocation), the actual SINR for

a beamforming transmission based on this measured H is:

SINR = 10 ∗ log10
(
P/No

M
|li|2

)
. (2)

This expression still leaves us in the same position as with

Eq. (1). However, instead of attempting to calculate |li|2, we

consider its distribution.

The distribution of the SINR determining |li|2 factor can

be shown to be Erlang for Rayleigh matrices [10]. The

distribution is dependent upon the dimensions of H (M and

K) and has mean (M−K+1)/K. Therefore, combining with

Eq. (2), we estimate per-user SINR as

E{SINRBF} = 10 · log10
(
M −K + 1

K

(P/No)

M

)
. (3)

While the resulting expected value computation of per-user

SINR shown in Eq. (3) is inherently less precise than Eq. (1)

because it does not use CSI, Eq. (3) exploits general system

scaling properties of MU-MIMO transmissions to produce a

sufficiently accurate result (verified in Sec. IV-B).

3) Model Rationale: This scaling is proportional to the

available DoFs of a particular transmission mode. A mode’s

DoFs refer to how many more transmit antennas there are

than receive antennas or M − K + 1. The larger this value,

the easier it is to construct interference free parallel streams.

An [M , K] transmission requires an M ×K channel matrix,

which is easier to accurately invert or otherwise decompose

when M > K since it will be better conditioned [24].

However, absolute DoFs do not reveal the full solution for

theoretical MU-MIMO received SINR scaling; instead we con-

sider normalized DoFs. For example, although both [M10, K9]

and [M3, K2] transmissions have equivalent absolute DoFs

(2), the per-user SINR increase would be far more noticeable

in the latter system because it has relatively more DoFs with

respect to K. Thus, MU-MIMO SINR should scale relatively

with (M −K + 1)/K.

4) Inferring Rate from SINR: PUMA’s SINR estimation

method, Eq. (3), only requires the M and K of a potential

mode and a particular user’s omnidirectional signal strength

(P/No) periodically updated from beacon packets and pre-

vious transmissions. Like CSI, the omnidirectional SNR can

become stale after a period of time. However, omnidirectional

SNR is far more robust to environmental variation than CSI.

Channel matrices used for MU-MIMO transmissions are de-

pendent on precise magnitude and phase offsets between each

antenna path. Given the wavelengths of the frequencies used

for WLANs and their physical interactions with obstacles,

slight variations in the transmission environment can render

a previously measured magnitude or phase useless. Instead,

SNR is a coarse grained measurement that is an aggregate of

all amplitudes and thus varies more slowly.



PUMA estimates the received SINR for each user in an

[M , K] system, which allows an AP to not only compare

an [M , K] system to an [M ′, K ′] system, but also estimate

an approximate MCS rate for each user using the SNR-MCS

tables provided by the standard (for 802.11ac see Table I).

C. Computing Expected Throughput

The second component of PUMA is the analysis of the

selected MU-MIMO protocol specifically with respect to its

aggregate throughput (R) using renewal arguments.

Other than the inferred expected rate (detailed in Sec. II-B),

the main components of expected throughput calculation are

node backlog (the number of available packets to transmit per

receiver) and net transmission overhead. By combining node

backlog (client dependent), net overhead (mode dependent),

and the expected rate (client and mode dependent), PUMA

computes the expected goodput of any possible MU-MIMO

transmission. Thus, PUMA provides a quantifiable metric

for any possible transmission, allowing an AP to accurately

compare potential mode and group selections.

The throughput R for any wireless transmission is generally

represented as the amount of data to transmit divided by the

total transmit time (including overhead):

R = LD/(TD + TOH). (4)

The total amount of transmitted data across all streams LD

given the maximum packet length Lp is:

LD =
∑

i∈K
bi · Lp. (5)

The overhead time TOH is:

TOH = TS + TCF + TACK (6)

where TS is the channel sounding time, TCF is the channel

feedback time, and TACK is the receiver acknowledgment

time. Thus, TD, the total data transmission time given the

per-user rate ri is:

TD = max
i∈K

(bi · Lp)/ri. (7)

We express TD as a maximum value in case the protocol

(e.g., 802.11ac) supports different per-user packet aggregation

rates bi or different per-user modulation rates ri.

Through this formulation of aggregate goodput, we see that

the value of TOH limits the performance of a MU-MIMO

transmission. A larger user set K served with more antennas

M results in a larger amount of transmitted data LD but it

also results in a larger amount of overhead TOH (which, like

LD, also scales with M and K). The appropriate mode is one

that maximizes R by efficiently balancing LD and TOH .

While the basis of PUMA’s overhead analysis is applicable

to any standard, we focus on 802.11ac in Sec. III.

TABLE I
REQUIRED SNR (FOR 90% PACKET RECEPTION RATE).

MCS Rate NDBPS
∗ SNR(dB) MCS Rate NDBPS

∗ SNR(dB)

0 BPSK 1/2 117 1.1 5 64-QAM 2/3 936 17.2
1 QPSK 1/2 234 4.1 6 64-QAM 3/4 1053 18.4
2 QPSK 3/4 351 6.7 7 64-QAM 5/6 1170 19.7
3 16-QAM 1/2 468 9.6 8 256-QAM 3/4 1404 23.9
4 16-QAM 3/4 702 12.8 9 256-QAM 5/6 1560 25.5

∗ NDBPS(number of data bits/symbol) for each MCS with 80 MHz channel bandwidth.

D. PUMA Algorithm

PUMA seeks to jointly minimize the effects of TOH and

maximize the value of R from Eq. (4). Essentially, for a set

of per-user rates ri and per-user backlog bi, PUMA computes:

max
M∈Mmax,K∈KR

R(M,K, b, r) (8)

where Mmax is the maximum possible number of transmit

antennas and KR is the subset of all potential associated

receivers with packets in their queues.

One method of maximizing this expression is an exhaustive

search. The value for b is set per-user and the value of r is

dependent upon how many other concurrent users exist.

Thus, the overall search space is:

Mmax∑
M

M∑
K=1

(
KR

K

)
. (9)

This number of potential combinations can be exhaustively

searched as long as KR is not too large. Limiting KR can

be done in any number of ways such as truncating users with

small bi, fairness, or other QoS constraints.

Thus, the exhaustive search method is feasible. When an

AP is ready to transmit, the algorithm is executed as follows:

1) Generate KR ∈ Kmax (associated receivers with packets

in their queues).

2) ∀M ∈ Mmax and sets of K ∈ KR (where K ≤ M ),

compute the expected per-user SINR for each [M , K]

combination as shown in Eq. (3).

3) Using the standard’s receiver sensitivity table for 90%

packet reception, estimate the MCS for each K in every

potential group to generate a list of all possible M , K,

MCS combinations.

4) Using Eq. (4) with protocol specific values, calculate the

expected aggregate throughput for each M , K, user group

dependent MCS combination and choose the largest.

While multiple potential modes ([M , K] combinations)

could have equivalent expected throughputs if they have iden-

tical frame aggregation values or similar link qualities, the

probability of this occurring is relatively low and the final

selection can be chosen randomly.

III. PUMA WITH 802.11AC

While PUMA’s basic mechanism is applicable to any ran-

dom access MU-MIMO protocol, we demonstrate its function-

ality with 802.11ac. The two protocol-dependent components

of PUMA are datarate inference from expected SINR and

potential mode aggregate throughput calculation.



A. Datarate Inference from SINR

After computing the expected SINR from Eq. (3), PUMA

employs protocol-specific minimum SNR tables to infer the

expected per-user datarate. With this per-user datarate, PUMA

computes the expected aggregate throughput of any possible

mode and user group.

Table I is 802.11ac’s minimum SNR table for ensuring a

90% packet reception rate. For each user and potential mode,

PUMA selects the Modulation and Coding Scheme (MCS)

index whose corresponding SNR is less than or equal to the

expected value calculated using Eq. (3). The corresponding

number of data bits per symbol (NDBPS) is the per-user datarate.

Note that the difference between MCS index’s SNRs is

as large as 4.4 db (MCS 4 vs. 5). Although PUMA’s SINR

estimation method is inherently less accurate than a post-

sounding method since it does not utilize CSI, each MCS’s

large SNR ranges immensely reduce the resulting effect of

this error (see Sec. IV-B).

B. Aggregate Throughput Calculation

Aggregate throughput calculation is dependent on protocol

overhead in addition to per-user expected datarate and backlog.

Analysis of the 802.11ac specification allows for PUMA to

precisely compute the expected aggregate throughput for a

potential mode and user group. We express each segment of

an 802.11ac transmission as generally described in Eq. (4)–

(7). An example of an 802.11ac MU-MIMO transmission is

depicted as a timeline shown in Fig. 1. After the expected

backoff duration EBO=139.5μs (or 15.5 slots at 9μs/slot) and

DIFS=34μs, the AP begins transmitting.

Channel Sounding (TS). The transmitter first announces

to all users in transmission range which specific subset is

to expect the upcoming transmission with the Null Data

Packet Announcement (NDPA=7.4μs) followed by the Null

Data Packet (NDP). The NDP contains the sounding pilots used

by the receivers to estimate the channel state between itself

and each transmitting antenna (thus it scales with M ).

Channel Feedback (TCF). Each receiver must sequentially

reply with the Compressed Beamforming Report (CBFR) re-

turning a compressed, per subcarrier version of the sounding

pilots to the transmitter in the form of angle pairs (12 or 16

bits each for MU-MIMO, 10 or 12 bits for SU-MIMO). The

number of angle pairs scales with the number of transmitting

antennas M and the number of receiving antennas for that

particular node (the 3 × 1 vector in the example shown in

Fig. 1 requires two angle pairs per subcarrier).

The 80 MHz bandwidth has 234 usable subcarriers. One

compressed angle set can be used to indicate groups of 1, 2,

or 4 subcarriers. This results in a very high overhead due to

channel feedback. The example timeline is scaled to 16 bits of

feedback with a subcarrier grouping factor of 2. Each receiver

has 3,744 bits to transmit back to the AP at the base rate (MCS

0, see Table I) to ensure that the report is not lost.

While the M=3 antenna transmitter sent the NDP in 7.4μs,

each receiver must spend 144μs responding with its CBFR.

Between each CBFR, the AP sends a short polling packet

requesting the next user to send its report.

Data Transmission (TD,LD). Finally, the AP forms con-

current data streams at varying frame aggregation and MCS

rates. If one stream finishes early, the remaining time until

the longest stream completes is wasted. PUMA’s throughput

formulation shown in Eq. (4) accounts for the potential of

unequal stream lengths. Instead of arbitrarily trying to avoid

this scenario, PUMA searches for the option with the largest

throughput. Because this wasted airtime does have a negative

effect on throughput, the probability of such a transmission

occurring is low. Nevertheless, PUMA can handle this scenario

without explicitly considering it.

Block Acknowledgment (TACK). Once the data transmis-

sion has completed, each receiver must sequentially reply with

block acknowledgments (BA=6.4μs). Thus, this component of

the overhead scales with K.

C. Example PUMA Transmission

Fig. 1 depicts the timeline of two separate transmissions

from a 3-antenna transmitter to either three (Fig. 1(a)) or two

single antenna receivers (Fig. 1(b)). Each stream consists of

10 aggregated full size (1,500 byte) packets. As previously

discussed, the overhead (channel sounding, channel feedback,

and acknowledgment) for both transmissions is sent at the base

rate although the resulting data rates are different.

PUMA first calculates the expected datarate of each user.

For this example, let each of the three potential users have

18 dB omnidirectional SNRs. Using Eq. (3), PUMA computes

expected SINRs of 8.4 and 13.3 dB for users in the [M3, K3]

and [M3, K2] modes respectively. By referencing Table I,

PUMA selects MCS 2 for [M3, K3] and MCS 4 for [M3, K2].

Once the per-user datarates are computed, PUMA computes

the aggregate throughput of the potential modes given the

expected datarate and node backlog as shown by the to-

scale timelines in Fig. 1. Through this computation, PUMA

identifies that the aggregate throughput of the [M3, K3]

transmission is 145 Mbps while the aggregate throughput for

the [M3, K2] transmission is 161 Mbps. Thus, PUMA selects

the [M3, K2] transmission mode.

This example highlights a common yet counterintuitive

result that PUMA identifies. A MU-MIMO transmission does
not always benefit from using the most antennas. Not only

does the protocol overhead increase with additional antennas,

but also the per-user MU-MIMO SINR decreases resulting in

lower per-user datarates.

D. Numerical Analysis of Mode Selection

To observe the expected performance and gain an intuition

into the effects of M and K, we present a numerical example

of PUMA specific to 802.11ac. We consider four separate

[M4, K1:4] systems. To evaluate the best case performance for

each [M , K] system, all receivers have equivalent omnidirec-

tional SNRs and transmit at the maximum frame aggregation

rate (b=64) for maximum overhead amortization.
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(a) Three concurrent streams at MCS 2. R = 145 Mbps.
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(b) Two concurrent streams at MCS 4. R = 161 Mbps.
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Null Data Packet
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� NDP Null Data Packet
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Fig. 1. Example 802.11ac transmission timeline with 3 antenna transmitter sending multiple, 10 aggregated packet streams at 80 MHz (to scale).

For a range of omnidirectional SNRs, we infer the expected

per-user datarate given M and K using Eq. (3) and Table I.

We then calculate the expected aggregate throughput using

Eq. (4) considering 802.11ac-specific overhead and show the

performance for each of the four [M4, K1:4] systems in Fig. 2.

The mode that results in the highest aggregate throughput is

marked for each omnidirectional SNR.

The key intuition gained from this numerical example is the

effect of channel sounding overhead with respect to M and K.

While increasing M slightly increases the size of an individual

CBFR, additional K increases the number of CBFRs. Thus, to

efficiently amortize the overhead induced from increased M
and K, the channel state must support high per-user datarates.

The theoretical properties of MU-MIMO system scaling

highlighted in Eq. (3) show the effect of higher order modes

on per-user SINR. For example, an [M4, K4] system results

in a per-user SINR approximately 12 dB less than the omni-

directional SNR. Thus, a per-user omnidirectional SNR much

higher than 12 dB is required to perform a [M4, K4] at a high

datarate. The aggregate throughput for a [M4, K4] system in

Fig. 2 is non-zero at 14 dB, begins to contend with the other

modes at 19 dB, and consistently outperforms all other modes

starting at 30 dB.

The results for higher order modes in this numerical ex-

ample further highlight the counterintuitive result shown in

Fig. 1: increasing the number of parallel streams is not
always the most efficient transmission mode. Additionally,

because MCS defined datarates are discrete, the aggregate
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Fig. 2. Theoretical expected throughput (Eq. (4)) of a M4 antenna transmitter
to K1:4 parallel single antenna receivers with b=64. For each omnidirectional
SNR, maximum expected aggregate throughput represented by square marker.

throughput curves for each mode are jagged and result in

many intersection points. Thus, each mode does not have a

clear SNR range where it exhibits the maximum throughput,

necessitating PUMA’s dynamic selection method.

PUMA’s complete analysis of MU-MIMO system scaling

and protocol specific overhead allows for the appropriate mode

selection decision given the current state of the system. In fact,

Fig. 2 graphically represents a PUMA enabled AP’s decision

engine and the markers represent the decisions themselves: the

dynamically calculated, maximum throughput mode.

IV. EXPERIMENTAL EVALUATION

A. Experimental Methodology

We first characterize the performance of PUMA through

OTA transmissions to verify PUMA’s datarate inference

method and generate realistic channel traces. We then utilize

this realistic OTA data for channel-trace driven emulation.

1) OTA Experimentation: We conduct OTA experiments

using the WARP software defined radio [1] utilizing a Zero-

Forcing Beamforming framework developed in [4] and ex-

panded in [19]. To perform our experiments, we modify

WARPLab, a system that allows for baseband signals to

be proccessed in MATLAB, downloaded to the board, and

transmitted over-the-air. Because the 802.11ac standard allows

up to 8 spatial streams, we connect two 4 antenna WARP

boards together to make an appropriate transmitter.

We place 8 receiving antennas in 8 different non-line of

sight locations to emulate a typical indoor wireless LAN

environment as shown in Fig. 3. We then serve every com-

bination of [M1:8, K1:8] to get a variety of different channel

environments for each topology and measure the SINR.

The resulting variability of omnidirectional SNR measure-

ments resulted in an overall mean of 18.3 dB and standard

deviation of 5 dB. This allows us to verify the model using a

wide range of P/No values.

2) Channel-Trace Driven Emulation: We construct a dis-

crete time event emulator in MATLAB to evaluate the efficacy

of our mode selection algorithm. For simplicity, we consider

a topology wherein an M4 antenna transmitter serves a subset

(K1:4) of 8 possible single antenna receivers. We consider K1:4

because 802.11ac supports only up to four concurrent receivers

(but up to 8 collective receive antennas).
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Because we seek to isolate the effects of mode and user

selection, we design an emulation engine that ignores col-

lisions and retransmissions. Transmissions are executed as

packets become available on a first-come first-serve basis. At

the beginning of every transmission event, each mode and user

group is selected based on how many available packets are

in each receiver’s queue (up to 802.11ac’s 64 packet frame

aggregation maximum). Packets are modeled to arrive as a

Poisson process and the input traffic is defined as aggregate

offered load (cumulative generated traffic) to all receivers.

We use our measured, OTA omnidirectional SNR values at

each node as a channel trace to determine the expected per-

user MCS. The variation in the measured values allows us

to consider heterogeneous channels with different omnidirec-

tional SNRs on the AP to client links

Since the 802.11ac standard supports unequal length parallel

data streams and unequal per-user datarates, we allow the

emulator to transmit parallel payloads with different MCS

rates and frame aggregation sizes. Each emulation was run for

100 emulated seconds. The emulation was conducted assuming

an 80 MHz bandwidth and 4 μs symbol times. The CBFRs

were quantized at 16 bits per subcarrier and a subcarrier

grouping of 2. The AP is allowed up to 4 transmit antennas

and it serves a group of 8 single antenna receivers (Mmax=4

and Kmax=8).

B. Expected SINR Calculation Accuracy

We validate the accuracy of PUMA’s SINR estimation

method used for datarate inference. Our experiment consists

of performing 8 OTA transmissions for all [M1:8, K1:8]

topologies as discussed in Sec. IV-A1.

Using the measured omnidirectional SNR for each receiver,

we use Eq. (3) to predict the per-user SINR for each receiver.

Perfect SINR results are not expected as Eq. (3) is based

on general MU-MIMO system scaling as opposed to CSI.

However, the resulting error is almost zero mean and with

a standard deviation of 2.43 dB as shown in Fig. 4. This error

is tolerable because the standard deviation is approximately

equivalent to SINR range for each modulation rate shown in

Table I. The use of the MCS table diminishes this error by

effectively truncating it. We explore the effect of this error

mitigation in Sec. IV-C.

Thus, the expected value equation for per-user SINR is

accurate even without considering measured channel matrices.
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Fig. 4. Measured estimation error of Eq. (3). μ=0.36, σ=2.43 dB.

This holds true for indoor Wireless LANs because the channel

vectors are relatively orthogonal, meaning that the channel ma-

trices used for MU-MIMO transmissions are well conditioned

(as experimentally verified in [3]).

C. PUMA Expected Datarate Calculation Accuracy

Using our trace-driven emulation methodology, we compare

PUMA against a post-sounding, exhaustive search baseline.

This baseline method forgoes the use of the SINR estima-

tion algorithm and employs the actual measured MU-MIMO

SINRs. This effectively represents the best case result of

using Eq. (1) post-sounding after exhaustively measuring each

potential receiver’s CSI. Fig. 5 shows the comparative results

of our emulation.

A perfect transmitter would send the incoming packets at a

rate equivalent to their arrival at the AP. However, because

of the overhead time TOH in Eq. (4) required for each

packet transmission, this is not possible. Instead, we show that

PUMA transmits at the highest feasible portion of that rate by

selecting transmission modes that maximize the SINR and thus

the MCS while minimizing the transmission overhead. When

the aggregate throughput saturates, the maximum possible

throughput is achieved.

Observe in Fig. 5 that full knowledge of channel state

from an exhaustive sounding process only results in a 3%

increase in saturation throughput. Additionally, over all ag-

gregate offered loads, knowledge of full CSI only results in a

maximum 7% increase in throughput. Note that the exhaustive

search method’s performance does not consider the overhead

incurred from sounding all potential receivers (like PUMA,

it only considers sounding overhead from the users actually
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Fig. 5. Comparison between PUMA and post-sounding, exhaustive search.
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Fig. 6. Comparison between PUMA and fixed modes ([M2:4, K1:4]).

served for each transmission). Had the full sounding overhead

been considered, the performance of the exhaustive search

method would perform significantly worse and its saturation

throughput would be far lower.

Fig. 5 also highlights PUMA’s datarate inference method’s

robustness to error. Fig. 4 shows that the variation between the

measured and estimated SINR values has a standard deviation

of 2.5 dB, approximately equal to the SNR range of each

MCS. However, even given this error, we observe that the

performance difference between estimating the MU-MIMO

SINR and measuring it is minimal. This is a direct result of

the effective truncation of the estimated SINR metric, using

the minimum SINR table. This truncation essentially smooths

the estimated SINR metric and results in similar performance

to full knowledge of the MU-MIMO SINR without a post-

sounding, exhaustive search.

D. Mode and User Selection Performance

We now compare PUMA to fixed mode selection indicative

of the default method used in 802.11ac. Specifically, we

compare the performance of PUMA to static [M2:4, K1:4]

topologies in Fig. 6 for a range of offered loads. For each

possible M , we show the best fixed K value for sake of

presentation. These static modes are all potential choices for

PUMA’s exhaustive search and thus observing how these parts

contribute to our collective algorithm illustrates how well

PUMA handles varying M , K, bi, and measured omnidirec-

tional SNR values.

So as not to unfairly disadvantage the fixed modes, we

permit the fixed [M , K] topologies to serve any number

of users less than or equal to K. For example, given our

omnidirectional channel measurements, when M=3, Kmax is

3 but individual transmissions can be K2 or K1, depending

on how many users have packets available in their queues.

Although PUMA is inherently a combination of all fixed

modes, observe that for any given offered load, no fixed mode

performs comparably to PUMA (except at 10 Mbps where all

methods are equal). This result suggests that it is not only

enough to know the “best” [M , K] combination given some

offered load but also it is necessary to dynamically select

between potential modes before every transmission, depending

on user backlog and omnidirectional SNR.

The relationship between user backlog and omnidirectional

SNR is the key interaction the fixed mode topologies fail

to consider. Due to the sounding overhead incurred from

MU-MIMO transmissions, larger frame aggregation rates are

required to properly amortize the cost of employing paral-

lel streams. Thus, users with lower omnidirectional SNRs

(resulting in lower achievable datarates) must have more

backlogged packets to be efficiently grouped in an MU-MIMO

transmission. PUMA considers this interaction and thus does

not transmit to low omnidirectional SNR users in higher order

modes until the user’s backlog is large enough. Thus, the

MU-MIMO sounding overhead efficiently and dynamically

amortizes the sounding overhead for each transmission.

A concern for PUMA is its potential to unfairly starve

users that have consistently less backlogged traffic or poor

omnidirectional SNRs. However, unfair scheduling is not a

detrimental effect of PUMA, rather, it is a complementary

issue. In the most basic sense, PUMA enumerates a list

of selections (potential modes and user groups), assigns a

metric to each, and selects the best. Our current metric is

the aggregate throughput of the system determined by user

backlog and expected datarate. To ensure a fair transmission

system, an AP can employ any existing proportional fair

scheduling algorithm (e.g., [15]) and adjust PUMA’s metric

accordingly. This would manifest as simply adding a scaling

factor generated by a fair scheduling algorithm to step 4 of

the PUMA protocol described in Sec. II-D.

Given the measured channels from our experiments, PUMA

provides an aggregate saturation throughput increase of ap-

proximately 65 Mbps or 30% over the best fixed mode

([M3, K1:3]). The improvement in the saturation region with

higher offered loads is of key importance for high congestion

scenarios. While the other scenarios all saturate to similar

aggregate throughputs (albeit at different rates), PUMA’s 30%

saturation throughput increase illustrates how efficient over-

head amortization through adaptive mode selection based on

user link state and backlog allows the same AP to improve

the performance of a given topology.

Finally, PUMA’s user selection mechanism is a direct result

of step 4 of the algorithm discussed in Sec. II-D. Once all

potential mode and user groups are enumerated and assigned

an aggregate throughput metric, the best mode and user

combination is selected. However, the best mode and user

combination is not guaranteed to be unique. PUMA’s aggregate

throughput metric is dependent on per-user omnidirectional

SNR and backlog. Thus, multiple mode and user combinations

may be assigned the same aggregate throughput metric (e.g.,

the simplified example shown in Fig. 1). In such cases, a

random selection or additional fairness metric can be used.

Nevertheless, real systems rarely have homogenous traffic

arrival rates or per-user omnidirectional SNRs. Thus, although

PUMA cannot guarantee a unique mode and user combination,

it provides a unique selection with high probability.

V. RELATED WORK

Frame Aggregation. Numerous works consider the effects

of frame aggregation in MU-MIMO systems. For example, [7]

develops a frame aggregation technique and [6] examines the



effects of frame aggregation specifically with 802.11ac. While

PUMA selects the most efficient mode based on the number of

packets in each receiver’s queue, frame aggregation techniques

are complementary to PUMA since these techniques can

weight or rule out the initial set of potential users.

Implementing a frame aggregation technique with PUMA

simply requires the modification of step 1 outlined in Sec. II-D.

The selection of KR from Kmax can be based on a rule

more sophisticated than user packet availability. Additionally,

once the list is generated, the values of bi can be weighted

accordingly to implement a frame aggregation protocol.

User Grouping and Selection. Several works focus on

user grouping and selection based on channel state and/or

unequal transmission length [11], [13], [18], [20]. These works

use theoretical expressions similar to Eq. (1) to estimate the

aggregate capacities of potential user sets.

The information required to employ these modeling tech-

niques is the channel state. However, obtaining the channel

state itself is the overhead that limits the performance of

802.11ac MU-MIMO. Real WLAN environments are too

variable to accurately employ stale channel information and

the overhead required for channel feedback limits the number

of users that can be sounded at a time.

While these algorithms are potentially more accurate than

PUMA due to the additional information they require, procur-

ing this information given protocol overhead render them

impractical to deploy. Also, due to the volatile nature of indoor

WLANs, even once that information is collected, it has a high

probability of being outdated further reducing its accuracy.

PUMA balances the tradeoff between obtaining the necessary

information and the time taken to obtain that information, and

thus is more plausible for a true 802.11ac WLAN deployment.

The authors of [22] propose a user selection method that

requires substantial modification of 802.11ac’s CSI collec-

tion exchange to implement a distributed user group probing

method. While this method is an improvement over the afore-

mentioned works with respect to sounding overhead, it is not

802.11ac compliant. PUMA, however, is 802.11ac compliant

since the additions do not conflict with any standard mandates,

allowing for full interoperability with any 802.11ac device.

Mode Comparisons. Survey works exist that compare

different MIMO modes such as MU-MIMO and frame aggre-

gation [9] or MU-MIMO and multiple SU-MIMO [21]. Both

works highlight the tradeoffs between these schemes but do

not provide algorithms for exploiting those tradeoffs such as

PUMA. Additionally, neither work verifies these differences

with measured over-the-air transmissions.

VI. CONCLUSION

We present PUMA, a mode and user selection algorithm

that allows an MU-MIMO system to efficiently transmit

multiple streams by using only pre-sounding information.

PUMA estimates the aggregate throughput of all potential

mode and user group combinations without knowledge of

the channel state. First, PUMA infers the per-user datarate

of each user in a potential mode by exploiting theoretical

MU-MIMO system scaling properties. PUMA then computes

the aggregate throughput of each potential mode and user

group combination by considering protocol specific overhead.

A PUMA enabled AP selects the best mode and user group

based only on information available before channel sounding

begins. Given the large amount of overhead required by an

802.11ac transmission, appropriate mode and user selection is

the key enabler to reaching gigabit wireless speeds.
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