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ABSTRACT
In this paper, we decompose a large- or small-scale multi-hop wire-
less network into embedded subgraphs, each consisting of four
nodes and two flow pairs. We systematically study all twelve pos-
sible topologies that arise according to whether the different nodes
are in radio range of each other. We show that under both a random
spatial distribution of nodes and random waypoint mobilitywith
shortest-path routing, a critical and highly probable scenario is a
class in which the channel state shared by the two flows is not only
incomplete (i.e., the graph is not fully connected), but there is also
asymmetry in the state between the two flows. We develop an accu-
rate analytical model validated by simulations to characterize the
long-term unfairness that naturally arises when CSMA with two-
or four-way handshake is employed as a random access protocol.
Moreover, we show that another key class of topologies consists
of incomplete butsymmetric shared state. We show via modeling
and simulations that in this case, the system achieves long-term
fairness, yet endures significant durations in which one flowdom-
inates channel access with many repeated transmissions before re-
linquishing the channel. The model predicts the time-scales of this
unfairness as a function of system parameters such as the maximum
retransmission limit.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network Archi-
tecture and Design—Wireless communication

General Terms
Design, Performance Evaluation

Keywords
CSMA, CSMA/CA, Fairness, Analytical Modeling

∗This research is supported by NSF ITR Grants ANI-0331620 and
ANI-0325971 and by Intel Corporation.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MobiCom’05, August 28–September 2, 2005, Cologne, Germany.
Copyright 2005 ACM 1-59593-020-5/05/0008 ...$5.00.

1. INTRODUCTION
To better understand the performance characteristics of large- or

small-scale multi-hop wireless networks, we begin with theba-
sic building blocks of pairs of contending one-hop flows. If all
four nodes of the two flows are within radio range, or if the two
senders are within radio range, a CSMA protocol with two- or four-
way handshake obtains fair performance that can be accurately pre-
dicted using existing models [4].

Unfortunately, all remaining two-flow topologies encounter per-
formance problems, including severe long-term unfairnessand short-
term unfairness on timescales of up to seconds. While the existence
of some problematic topologies is well known (see [2, 11, 12,17]
for example), this paper is the first to systematically and compre-
hensively identify and study via analytical modeling and simula-
tions all twelve possible configurations of two flows in a random
access environment. We compute the likelihood of each scenario
occurring in a random topology, develop models that accurately
predict each flow’s short- and long-term performance in eachsce-
nario where senders are not in range, and predict the impact of key
system parameters such as the maximum retransmission limit.

In particular, our contributions are as follows. First, we enu-
merate the twelve distinct scenarios and classify them intothree
groups based on their geometric properties: Senders Connected
(SC), Asymmetric Incomplete State (AIS), and Symmetric Incom-
plete State (SIS). We develop a spatial model that predicts the likeli-
hood of the scenarios and groups when nodes are placed randomly.
Moreover, we use simulations with random waypoint mobilityand
routing protocols to further characterize scenario likelihood. We
show that the problematic AIS and SIS groups should not be viewed
as rare “corner cases,” but rather characterize topologiesthat occur
with high frequency.

Second, we perform an extensive set of simulations to character-
ize the short- and long-term performance in each of the twelve sce-
narios. The experiments quantify the severe long-term unfairness
of the AIS class and the seconds time-scale short-term unfairness of
the SIS class. We describe the MAC mechanisms that lead to each
class’ performance limits. Moreover, we show how random way-
point mobility allows flows to alternate among classes, resulting in
improved long-term performance but velocity-controlled epochs of
poor performance in the AIS and SIS classes.

Third, we develop an accurate analytical model for the AIS class.
We begin with a general “decoupling model” of IEEE 802.11 which
provides key temporal embedding points that are critical for devel-
opment of a Markov model for topologies in which nodes are not
fully connected and performance is asymmetric. We generalize the
model to incorporate flows that are not continuously backlogged
and use simulations to validate the model’s accuracy.



Finally, we develop a model to characterize the short-term un-
fairness that arises in the SIS class. Because this class achieves
long-term fairness, the steady state distribution is not ofinterest. In-
stead, we derive an expression for the expected time for the system
to switch between one flow dominating and the other flow dominat-
ing. The model incorporates effects of key system parameters such
as the maximum retransmission limit on the timescales of unfair-
ness. Simulation results indicate that the model is able to accurately
predict transition times ranging from 10’s of msec to 1 sec, with the
range accounted for by both the maximum retransmission limit and
whether or not RTS/CTS is used.

The reminder of this paper is organized as follows. In Section 2
we identify the twelve topologies for the flow pairs, classify them
into three groups, and conduct a spatial analysis to determine their
likelihood in a random network. In Section 3, we study via simula-
tions the impact of protocols on the fairness of the three classes and
describe the protocol-driven origins of this behavior. In Section 4
and Section 5, we model the AIS and SIS classes respectively.Fi-
nally, in Section 6 we discuss related work and in Section 7 we
conclude.

2. TOPOLOGY & NETWORK GEOMETRY
In this section, we first identify all feasible topologies inwhich

exactly two directional flows are communicating. Next, using a
grouping of these topologies, we perform a spatial analysisthat
characterizes the likelihood of each of these topologies occurring
under random node placement. Finally, we compare scenario like-
lihood via the model and simulations that incorporate mobility.

2.1 Two Flow Topologies
We consider four stations that are communicating pairwise,where

two senders are transmitting a one-way data flow to their two re-
spective receivers. When two stations are within radio range of
each other (i.e., the received SNR is above the carrier sensethresh-
old) we refer to them as having a connection or link between them.
Depending on the distances and propagation paths between the four
stations, a link may or may not be established between the two
flows.

Denote stationA as the sender for flowA and stationB as the
sender for flowB, and stationsa andb as their respective receivers.
Links are named by using the names of the stations that they inter-
connect. There are four possible inter-flow links:AB, ab, aB and
Ab. In a general topology, each one of these links may be presentor
not, yielding24 = 16 different scenarios. Notice that linksAa and
Bb are always present, given that senders are connected with their
respective receivers. However, scenarios where linkAb exists and
link aB does not are symmetric to those whereaB exists andAb
does not. After ruling out four such cases, we have twelve distinct
scenarios depicted in Figure 1. For example, Scenario 1 in Figure
1 depicts the case in which the two flows are out of radio range and
hence operate independently.

Omitting Scenario 1 which is trivial to analyze, we classifythe
remaining eleven scenarios into three groups as follows.

• Senders Connected (SC) - Scenarios 2-7, in which linkAB
is present.

• Asymmetric Incomplete State (AIS) - Scenarios 11 and 12,
in which senders are disconnected, and only one of linksAb
or aB is present (we assume it is alwaysaB), resulting in
asymmetric connection between the two flows.

• Symmetric Incomplete State (SIS) - Scenario 8, 9 and 10,
in which senders are disconnected, and either bothAb and
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Figure 1: Twelve scenarios for two flows sharing a wireless
channel.

aB are present or neither is present (in the latter caseab is
present) resulting in symmetric connection between the two
flows.

We will show that the flow pairs obtain dramatically different
performance profiles according to which of the three groups repre-
sent their topology. We demonstrate this using simulationsfor both
two-way and four-way handshakes in Section 3 and via analytical
models in Sections 4 and 5.

2.2 Spatial Analysis
Now we develop a model to compute the probability that each

scenario in Figure 1 occurs in a random graph. Our approach is
to view a scenario as three joint events, and to conduct a spatial
analysis to compute the probability of each of these events occur-
ring. We assume the four stations are uniformly distributedin the
network and that the size of the network is large enough so that bor-
der effects are negligible. We describe in detail only the derivation
for Scenario11. The same approach can be applied to predict the
occurrence probabilities of the other scenarios.

We consider a simplified propagation model in whichr is the
radio range of a station.1 Let s denote the physical area (size) of
the network andT (·) represent a region of the plane satisfying cer-
tain geometric conditions. In particular,T (A) indicates the region
within radio range of stationA andT (Ā∩B) represents the region
within radio range ofB but outside that ofA. The distance between
stationA anda is denoted byd1. Similarly, the distance between
stationB andb is denoted byd2. The coordinates of stationz are
denoted byxz andyz , respectively, wherez ∈ {A, a, B, b}.

Node placement for Scenario 11 is shown in Figure 2, where the
angleβ indicates whether stationb is within T (A ∪ a). Scenario
11 can be decomposed into the following three events:(i) d1 ≤ r;
(ii) stationB is within T (Ā ∩ a) given that the first event occurs;
(iii) d2 ≤ r and stationb is within T (Ā∩ ā) given that the first two
events occur. Note that due to the symmetry of regionT (Ā ∩ a),
we only need to consider cases whereyB ≥ 0 and then apply a
multiplicative factor of 2.

We now compute the probability of each of the three events oc-
curring. In event(i), the probability of stationa falling into a
doughnut area comprised in the interval[d1, d1 + ∆d1] with A

1For simplicity, we assume that the transmission range is equal to
the sensing range for all stations. We remove this assumption later.
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Figure 2: Node placement and topology of Scenario 11. The
two circles centered atA anda indicate respective transmission
range of station A and a. The circle centered atB indicates
possible positions of stationb given the distance betweenB and
b is fixed.

at the center is given by

λ1 =
2π(d1 + ∆d1)

2 − 2πd2
1

s

=
2π∆d2

1 + 4πd1∆d1

s
.

(1)

When∆d1 → 0 we can neglect the second order term, obtaining

λ1 =
4πd1∆d1

s
. (2)

In event (ii), the probability of stationB falling into a small
square region inT (Ā∩a) defined by the interval[xB, xB +∆xB ]
on thex axis and[yB, yB + ∆yB ] on they axis is given by

λ2 =
∆xB∆yB

s
. (3)

In event(iii), the joint probability that the distance between sta-
tion B andb is within the interval [d2, d2 + ∆d2] and stationb is
within T (Ā ∩ ā), is given by

λ3 =
1 − β

2π
×
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2 − 2πd2

2

s

=
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2π
×
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2 + 4πd2∆d2

s
,
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whereβ is the angle shown in Figure 2. Neglecting the second
order term, this equation becomes

λ3 =
1 − β

2π
×

4πd2∆d2

s
, (5)

when∆d2 → 0.
From Equations (2), (3) and (5), the probability that Scenario 11

occurs givenxB, yB , d1 andd2 is

p′

11 = λ1 × λ2 × λ3

=
4πd1∆d1

s
×
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s
×

(1 − β)

2π
×

4πd2∆d2

s

= 8π
d1∆d1∆xB∆yBd2∆d2(1 − β)

s3
.

(6)

Finally the probability of Scenario 11 occurring is

p11 =

Z r

0

Z r

0

Z r+d1

d1

2

Z f2(d1,xB)

f1(d1,xB)

2 × p′

11 d(yB) d(xB) g(d2) d(d2) g(d1) d(d1),

(7)

whereg(.) is a given probability density function of the distance
between a transmitter and a receiver. Thex coordinate of any point

within T (Ā ∩ B) lies in the interval[ d1

2
, r + d1], which explains

the bounds of the third integral.
To solve Equation (7), we need to computeβ, f1(d1, xB) and

f2(d1, xB). As shown in Figures 3 and 4, computations forβ,
f1(d1, xB) andf2(d1, xB) are different when stationB falls into
different regions ofT (Ā ∩ a). Therefore, we need to computep11

in different regions and sum the results.
To computeβ, we consider Figure 3 which indicates that ifd2 is

fixed,T (Ā∩ a) can be divided by the dashed circle into two areas,
denoted byR1 andR2 respectively.β is computed differently in
R1 than inR2 because the circle centered atB intersects with other
circles differently in different regions. However, the computation
for β is trivial in eitherR1 or R2 although its expression is tedious,
so we omit it here.
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Figure 3: Different locations of station B lead to differentcom-
putations for β.

To determinef1(d1, xB) andf2(d1, xB), we further divide re-
gion R1 andR2 in Figure 3 into smaller regions. LetΓ denote
such a value that whend2 = Γ, xQ = d1, wherexQ is thex axis
of the intersectionQ shown in Figure 4. Whend2 ≤ Γ, T (Ā ∩ a)
is divided into five areas labeled by I, II, III, IV and V as shown in
Figure 4(a). Whend2 > Γ, T (Ā ∩ a) is divided into five differ-
ent areas shown in Figure 4(b).f1(d1, xB) andf2(d1, xB) can be
determined within each of the five regions and Equation 7 can be
solved numerically. Similar toβ, f1(d1, xB) andf2(d1, xB) are
easy but tedious to obtain, thus we omit their expressions here.
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Figure 4: Different value of d2 decides how to further divide
T (Ā ∩ a) into different regions.

A similar analysis can be conducted for computing the probabil-



ity that each of the other 10 scenarios in Figure 1 occurs, denoted
by pi, wherei ∈ {2, 3, 4 . . . 12}.

2.3 Comparing Scenario Likelihood
We now compare the likelihood of the three classes occurring. In

the context of a multi-hop wireless network, it is especially interest-
ing to evaluate the probability of each of the three classes occurring
between direct neighbors as a function of hop distance. We assume
that the distance between transmitters and receivers is constant, and
we computepi as a function ofd, whered = d1 = d2.

We can obtain results independent of flow density by comput-
ing the conditional probability that a particular Scenarioi occurs,
given that some connection exists between the two flows, i.e., they
are not isolated. This is then the probability of Scenarioi occurring
conditioned on the event that any of the scenarios except Scenario
1 occurs. Thus it is given bypi/p, wherep =

P12
i=2 pi. Results

validated by Monte Carlo simulations are shown in Figure 5 asa
function of the normalized hop distance, which is the actualdis-
tance between a sender and a receiver divided by the radio range.
Simulations are run dropping two pairs of nodes at a given distance
from each other uniformly at random in a square area with wrap-
around (to avoid border effects), and seeing which case theymap
into (excluding Scenario 1). By so doing, results are insensitive of
area size and node density.

We observe that Scenario 11 (belonging to the AIS class and one
with problematic performance) emerges as the dominating scenario
when the distance between sender and receiver increases.
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Figure 5: Probability of each of the eleven scenarios occurring
as a function of normalized hop distance.

Denote the respective probabilities of the Senders Connected
(SC), Asymmetric Incomplete State (AIS), and Symmetric Incom-
plete State (SIS) classes occurring asεSC , εAIS andεSIS . We have
εSC = {p2+p3+p4+p5+p6+p7}/p, εSIS = {p8+p9+p10}/p,
andεAIS = {p11 + p12}/p. The three probabilities above are re-
ported in Figure 6 as a function of the normalized hop distance.

Results indicate that the AIS and SIS classes account for a signif-
icant fraction of all possible scenarios. Increasing the hop distance,
the likelihood of class AIS approaches that of the SC class despite
accounting for two vs. six scenarios. The ratio between AIS and
SIS probabilities is about 2.

In multi-hop wireless networks, the distribution of hop distances
depends on the routing protocol deployed. From Figure 6, it is
clear that routing protocols can have a significant impact onthe
probability of each class occurring. To evaluate this impact, we
conducted simulation experiments to measure the hop distance dis-
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Figure 6: Probabilities of the two groups, assuming identical
transmission and sensing range.

tribution resulting from the operation of current routing protocols in
large-scale networks with mobility. In our simulations, weconsider
300 stations randomly deployed in a 2000 m× 2000 m area. A ran-
dom waypoint model [22] is used to simulate mobility, and connec-
tions are randomly established among the nodes. The routingalgo-
rithm considered is Distance Sequence Distance Vector (DSDV)
(we tested other routing algorithms and obtain similar results). To
compute the normalized hop distance distribution, we calculate the
hop distance of every link traversed by each packet and divide it
by the maximum transmission range. After averaging the results
of several simulation runs, we obtained the distribution ofnormal-
ized hop distances reported in Figure 7. Compared to the results in

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

P
ro

ba
bi

lit
y

Normalized distance

Figure 7: Hop distance distribution in a multi-hop wirelessnet-
work.

[14], in which the impact of routing protocol is not considered, our
simulation experiments suggest that in a multi-hop wireless net-
work, about 40 percent of normalized distances are within the [0.9,
1] interval. This can be explained by the fact that routing proto-
cols select minimum-hop paths to reach the destination. Combined
with the results in Figure 6, this means that current routingproto-
cols make the scenarios of classes AIS and SIS more likely to occur
in a random network, by favoring larger hop distances when choos-
ing next hops. The occurrence probabilities of classes SC, AIS and
SIS under routing can be computed from Figures 6 and 7, assuming
random distribution of two-hop flows.

In the previous analysis, we assumed identical transmission and
sensing range for all stations. In a real network, however, sens-
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Figure 9: Short-term normalized throughput for the twelve scenarios. The ‘× ’marks correspond to two-way handshake simulations;
the dot marks correspond to four-way handshake simulations.
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ing range and transmission range of a station are usually different.
In order to examine the impact of this factor, we vary the sensing
range of the nodes, while keeping the transmission range fixed. We
assume the distance between senders and receivers is equal to the
transmission range. Results are shown in Figure 8, as a function of
the ratio between sensing range and transmission range. Although
the occurrence probabilities of the AIS and SIS classes decrease
when the ratio between sensing range and transmission rangein-
creases, the probability of class AIS occurring is significant over
the whole range of values encountered in practice. The ratiobe-
tween AIS and SIS is always around 2.

3. IMPACT OF MAC PROTOCOLS
In this section we qualitatively assess by simulation experiments

the performance of IEEE 802.11 in the two-flow subgraphs identi-
fied by the spatial analysis of Section 2. Our objective is to iden-
tify the critical performance issues that can arise when a typical
CSMA-based MAC protocol is employed to arbitrate channel ac-
cess between the two flows.

The main channel access mechanisms implemented in the IEEE
802.11 standard [7] are the “basic access” two-way handshake with-
out RTS/CTS and the four-way handshake with RTS/CTS. We study
how both access methods perform in each of the twelve possible
scenarios comprising two flows.

We consider a data rate of 11 Mbps, and a fixed packet size
of 500 bytes. Both flows are continuously backlogged with UDP
traffic. We measure the average throughput of each flow during
consecutive periods of 0.4 seconds. Each simulation experiment
lasts 20 seconds, thus we collect 50 throughput samples for each
flow. In Figure 9, we plot the normalized throughput of flowB
versus the normalized throughput of flowA in each measurement
interval. The “×” marks correspond to the two-way handshake
access method; the dot marks correspond to the four-way hand-
shake. Dashed lines represent ideal fairness, since they consist of
the points where the throughput of the flows are equal.

Omitting Scenario1 in which the flows are isolated due to spatial
reuse, we make the following observations on the other 11 scenar-
ios.

• For the Senders Connected (SC) class consisting of Scenar-
ios 2-7, most of the throughput points reside close to the
dashed line, indicating that neither short-term nor long-term
fairness problems exists.



• For the Asymmetric Incomplete State (AIS) class consisting
of Scenarios 11 and 12, the variance of the throughput points
is small. However, these points largely deviate from the fair-
ness line, indicating severe unfairness at all time scales and
flow starvation.

• For the Symmetric Incomplete State (SIS) class consisting of
Scenarios 8, 9 and 10, the throughput points are symmetri-
cally scattered around the dashed line, indicating short-term
unfairness, but in the long term, the throughputs of the two
flows are the same.

Since the SC class does not encounter fairness problems and be-
cause its performance can be analyzed with existing techniques [4],
we will not further consider it. We focus instead on the problematic
AIS and SIS classes. In Sections 4 and 5 we will develop a detailed
analysis of these two classes. Here we provide a qualitativeexpla-
nation of the behavior observed in the simple experiments ofFigure
9.

Origins of AIS Long-Term Unfairness. Figure 10 shows ex-
ample topologies of Scenarios 11 and 12 of the AIS class. The
core property of the AIS class is the asymmetric view of the chan-
nel state possessed by the two flows. When transmitters are not
in range of each other, channel state information is necessarily in-
complete because transmitters cannot sense when the other flow is
transmitting. This lack of information affects the two AIS flows
in very different ways because of the asymmetry of the topology.
In particular, flowA lacks the necessary information to compete
fairly with flow B, while flow B does not suffer from the incom-
plete channel state information. This disparity is due to the fact
that senderA does not sense any packets belonging to flowB, and
consequently, completely ignores the activity of the otherflow. On
the other hand, senderB can hear the control packets sent by node
a (CTS and/or ACK), and hence can detect the activity of the other
flow. While senderB knows exactly when to start contending for
the channel, senderA has to discover an available time-slot ran-
domly, without any coordination with senderB. This fact results
in many transmission attempts of senderA without any response
back from receivera, most often becauseA attempts to transmit
in the middle of a transmission of flowB, when receivera can-
not receive correctly the packets sent byA, or is not able to reply.
Consequently, senderA is forced to timeout and to repeatedly dou-
ble its contention window. As a result, the probability of flow A
capturing the channel is significantly smaller than that of flow B.

A a
B b

(a) Scenario 11.

A a

B

b

(b) Scenario 12.

Figure 10: Example topologies of the AIS class.

Origins of SIS Short-Term Unfairness. Figure 11(a) reports
an example topology of Scenario 8 of the SIS class. The classic
“hidden terminal” problem [2, 12], depicted in Figure 11(b), is a
special case of Scenario 8 when the two flows have the same re-
ceiver. The core property of the SIS class is the symmetric view

of the channel state possessed by the two flows while the channel
state information is incomplete. This property results in short-term
unfairness but long-term fairness. The origin of the short-term un-
fairness lies on the binary exponential backoff mechanism coupled
with the large packet loss probability that characterizes all scenar-
ios of the SIS class. The large packet loss probability is dueto
incomplete channel state information. In particular, a sender does
not sense the other sender’s activity, thus it can start transmitting the
first packet of the two-way or four-way handshake while the other
sender is also attempting to transmit. Indeed, a sender doesnot
stop decrementing the backoff counter as soon as the other sender
starts transmitting. This fact significantly increases thecollision
probability of the flows. After experiencing a collision, a source
doubles its contention window, thus reducing the chances ofat-
tempting a new transmission in the next available slot. On the con-
trary, a source resets its contention window to the minimum value
after a successful transmission, increasing the likelihood of a new
transmission attempt in the near future. Thus, in all scenarios of
the SIS group, the system endures significant durations in which
one flow dominates channel access with many repeated transmis-
sions, while the the other flow is forced to repeatedly doubleits
contention window significantly reducing the chance to seize the
channel. However, this problem affects the two flows equally, be-
cause the geometric relationships in the scenarios of the SIS group
are symmetric. The two flows alternate capturing the channeland
dominating over the other flow. Therefore, flow pairs belonging
to the SIS group do not suffer from long-term unfairness (essen-
tially because of symmetry). Instead, simulations show significant
short-term unfairness, as illustrated in Figure 9, which isclearly
undesirable as it can adversely affect delay-sensitive applications,
such as voice.

A a

Bb

(a) Scenario 8.

MU2

MU1 AP

(b) Hidden terminal prob-
lem.

Figure 11: Example topologies of the SIS class. (b) is a special
case of (a), when two Mobile Units (MU1 and MU2) are sending
packets simultaneously to the same Access Point (AP) in infras-
tructure mode, as encountered in the classic ”hidden terminal”
problem.

Impact of Mobility. In a network where stations move ran-
domly, a flow is expected to belong to different local subgraphs
constantly changing over time. Will this mobility alleviate the un-
fairness problem observed in Figure 9? We conducted a simulation
experiment where 40 stations move according to the random way-
point model in a 1000x1000 region with a speed uniformly dis-
tributed in a [7, 15] m/s interval. 20 connections are established
between randomly chosen pair of stations. Figure 12 shows that
although mobility averages out unfairness over time-scales of 120
seconds, severe unbalance is observed during time windows of 10
seconds, in which two dominating flows starve all of the other
flows. This means that severe fairness problems still existsover
time scales associated with the speed of the nodes.
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Figure 12: Flow throughput comparison between a 10 second
snapshot and a 120 second snapshot.

4. ASYMMETRIC INCOMPLETE STATE
In this section we develop an analytical model to study the be-

havior of flow pairs belonging to the Asymmetric Incomplete State
(AIS) group, comprising Scenarios11 and12 of Figure 1. Exam-
ples of topologies that satisfy the geometric properties ofthese two
scenarios are illustrated in Figure 10(a) and 10(b). In bothcases,
flow B achieves a significantly higher throughput as compared to
flow A for CSMA both with and without RTS/CTS (see Figure 9).
The only difference between the two cases is that in scenario12 the
receivers are in radio range of each other, whereas this is not true in
scenario11. Below, we show how this topology difference affects
performance.

Our objective is to analytically compute the throughput of the
two flows to both characterize the root cause of the starvation of
flow A and to evaluate the impact of key system parameters on the
extent of the starvation.

The remainder of the section is organized as follows. In Section
4.1 we introduce a general model of the behavior of a backlogged
source employing the standard 802.11 DCF. This model will beap-
plied in Section 4.2 to the particular scenarios of the AIS group. In
Section 4.3 the analysis is extended to the case of non-backlogged
sources in order to assess the impact of the starvation problem in
more general network scenarios. Finally, numerical results and
simulations are presented in Section 4.4.

4.1 General Decoupling Model of an 802.11
Station

Our modeling framework for the AIS group contrasts with exist-
ing techniques (e.g., [4]) in that we account for the fact that, in a
general topology, the channel state as perceived by a station can be
different from node to node. In [4], all stations are assumedto be in
range of each other so that they share a common view of the chan-
nel. In contrast, we build a model representing the channel state as
seen by each individual source, instead of the channel stateshared
by all nodes. Yet, in the scenarios of the AIS group, the behavior of
each station can still be decoupled from that of the other stations,
as done in [4]. This property significantly simplifies the analysis of
the interaction among the two flows, as we show below.

Channel State as Seen by a Single Source.The behavior of
an arbitrary station employing a CSMA protocol such as the DCF
function of 802.11 can be abstractly represented by a temporal di-
agram such as the one illustrated in Figure 13. We identify4 dif-
ferent states :(i) idle channel;(ii) channel occupied by successful
transmission of the station;(iii) channel occupied by a collision of

the station;(iv) busy channel due to activity of other nodes, de-
tected by means of either physical or virtual carrier sensing (i.e.,
NAV).
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Figure 13: A station’s channel view and embedded discrete
time renewal process.

The durations of the time intervals during which the channelre-
mains in the four states above are denoted byσ, Ts, Tc, andTb, re-
spectively. In Figure 13, the time instants of a possible state change
are pointed to by arrows placed below the temporal axis. While σ
is a constant equal to one 802.11 time slot, the duration of the other
intervals can be variable (with general distribution) depending on
the access mechanism (basic access or RTS/CTS), the frame size,
and the sending rate of the transmitting node(s).

Analysis of the Behavior of a Single Source.In order to ana-
lyze the behavior of a station, we make the fundamental assumption
that the channel evolution can be described by a renewal process:
at each switching time the next state does not depend on the cur-
rent state, and the four states occur with fixed probabilitiesΠs, Πc,
Πσ andΠb. The resulting process is thus semi-Markov. Notice in
Figure 13 that the durations ofTs, Tc andTb comprise an idle slot
at the end of the interval, which occurs deterministically,so that
it is not considered as an individual event of the overall stochastic
process (hence these special slots are marked with a dotted arrow
in Figure 13).

At the end of an idle slot, the station decrements its backoff
counter, and starts transmitting in the next interval if thecounter
reaches zero. Letτ be the probability that the station sends out
a packet after an idle slot, under the assumption that it is always
backlogged (we will remove this assumption later in the section).
Let p be the probability that a transmission of the station is not suc-
cessful. The probabilityp is usually referred to as theconditional
packet loss probability [4]. We also introduceb, as the probability
that the channel becomes busy after an idle slot due to activity of
other nodes (assuming that the station does not start transmitting).
Using these probabilities, we can specify the occurrence probabil-
ity of each of the four channel states at the switching instants as
follows,

Πs = τ (1 − p),

Πc = τ p,

Πσ = (1 − τ ) (1 − b),

Πb = (1 − τ ) b. (8)

Computation of the throughput. Using renewal theory, the
throughput of a station (expressed in packet/s), is given by

TP =
Πs

∆
, (9)

where∆ is the average duration of a channel state (in seconds).
The final expression for the throughput of a station is then given by

TP =
τ (1 − p)

τ (1 − p)T̄s + τp T̄c + (1 − τ )(1− b)σ + (1 − τ ) bT̄b

.

(10)
Now, the probabilityτ is a deterministic function ofp, which

depends only on backoff parameters such as the window size, the
number of backoff stages, etc. For 802.11, the expression ofτ as a
function ofp has been first computed in [4]. More recently, it has



been shown that one can easily write similar expressions ofτ as a
function ofp for a large class of backoff mechanisms, employing
arbitrary window distributions and backoff multipliers [13].

The complete expression ofτ for 802.11, which takes into ac-
count the maximum retransmission limit jointly with the maximum
window size, is given by

τ =
2q(1 − pm+1)

q(1 − pm+1) + W0

ˆ

1 − p − p(2p)m′
`

1 + pm−m′q
´˜ ,

(11)
whereq = 1−2p, W0 is the minimum window size,m is themax-
imum retry limit, andm′ is the backoff stage at which the window
size reaches its maximum value,m′ ≤ m.

The average durations̄Ts and T̄c of a successful transmission
or of a collision in which the station is involved are also known a
priori (see [4]). It turns out that the only unknown variables are the
occurrence probabilityb of a busy period, its average duration̄Tb,
andp, the conditional packet loss probability. These quantities are
specific to each station, and their values derive from the interaction
of the station with the rest of network.

In the next section, we apply the above modeling technique tothe
study of the AIS scenarios. However, we remark that this method-
ology has general applicability to modeling long-term throughput
of flows in arbitrary networks with any number of nodes. In com-
plex topologies comprising more than two flows, evaluation of the
variablesb and T̄b for each node turns out to be the most difficult
task, whereas their computation is quite simple in scenarios com-
prising only two flows. While our study in this paper is restricted to
two-flow scenarios, computation ofb and T̄b in more general net-
work scenarios can be found in [9]. The analysis of all possible
combinations of flow pairs provides instead the basis to evaluate
the packet loss probabilityp (the other fundamental variable that
we need to compute the throughput) of a node in an arbitrary topol-
ogy. That is, two-flow scenarios are the building blocks thatcan be
used to evaluate the collision probability of a transmitterin any net-
work topology: a transmission on a link is successful if it does not
collide with any other transmission on neighboring links. There-
fore, the careful analysis of all flow pairs presented in thispaper is
the necessary first step toward the throughput analysis in arbitrary
networks.

4.2 Analysis of AIS Flows
Now we apply the general model introduced in Section 4.1 to

independently study the behavior of the two transmitting nodesA
andB in the scenarios of the AIS group. We add an indexA or B
within brackets to all quantities defined in Section 4.1 to distinguish
between the values of the two stations. For example,τ (A) is the
transmission probability of nodeA. For simplicity, we assume that
the payload size of all data frames is constant. The analysiscan be
extended to the case of variable payload sizes.

We start by considering the behavior of flowA. As described in
Section 3, senderA does not detect any activity on the channel pro-
duced by flowB, neither by means of physical nor virtual carrier
sensing. As a consequence,b(A) = 0. It turns out that the only
parameter that we need to compute for flowA is the conditional
collision probabilityp(A), or its complements(A), the conditional
success probability.

The transmission attempts of senderA are not coordinated with
those of senderB, and occur at random points in time according
to the backoff process ofA. Our approximation is to assume that
each transmission attempt ofA is an independent random look at
the activity of flowB. Hence we need to characterize the activity
of flow B. A fundamental property of flowB is that all transmis-

sion attempts of senderB are successful, i.e.,p(B) = 0. Indeed,
transmissions ofB could only collide with the control packets sent
by a, but the probability that this happens is negligible because of
the lack of synchronization: almost alwaysB or a avoid collisions
by sensing the channel busy and refraining from transmitting.2

Under saturated traffic, the activity of flowB is a sequence of
successful transmissions, separated by a random number of back-
off slots uniformly distributed in the minimum window sizeW0

(the window size of senderB is never increased, sincep(B) = 0).
Occasionally, senderB receives aCTS orACK packet from node
a, freezing its backoff counter for the remaining part of the success-
ful packet exchange of flowA.

The only chance flowA has to successfully transmit is when
the initial packet of the two-way or four-way handshake (a DATA
frame or an RTS frame) happens to arrive during those short gaps
in which senderB is in the backoff phase. More precisely, we
have to examine the channel occupation state as perceived bythe
receiving nodea while nodeA is trying to initiate a new data trans-
fer, which is illustrated in Figure 14 for both scenarios of the AIS
group. Notice that we remove the amount of time in which receiver
a is actively transmitting or receiving from senderA, because we
are considering the channel arounda conditioned on the fact that
A starts transmitting a new packet.

DIFS

DIFS

a)

b)

RTS (B) CTS (b) DATA (B) ACK (b) RTS (B)

RTS (B)RTS (B) DATA (B)

C

G

G

Ts i σ

Figure 14: Channel occupation state as perceived by nodea
while senderA attempts to initiate a new data transfer. The top
diagram (a) refers to Scenario12, the bottom (b) to Scenario11.

The temporal evolution of the channel as perceived by nodea
can be divided into cycles of variable durationC. Each cycle com-
prises a successful data transfer of flowB, of durationTs, and a
variable numberi of slotsσ corresponding to the backoff phase of
senderB. The “gap”G during which a packet originated by node
A can be received by nodea is also reported in Figure 14. We
observe that this gap comprises also the DIFS space at the endof
Ts. In Scenario11, nodea does not receive the ACK of nodeb,
thus the gap is enlarged by the duration of an ACK and a SIFS. A
key observation is that for flowA to be successful, not only node
A must start transmitting during the gap, but the entire packet that
nodeA places on the channel must fit into the same gap. This
explains why we do not consider as potential gaps the short inter-
frame spaces in between the packets of flowB, nor even, in Sce-
nario11, the space corresponding to the (unheard) CTS of nodeb,
because RTS> CTS+ 2 SIFS.

If the RTS/CTS mechanism is not used, the situation is very sim-
ilar to that represented in Figure 14, with the only difference that
there are no RTS and CTS packets. Also, notice that in this case an
entire DATA packet must fit into the gap in order to be successfully
received by nodeb.

2A collision would occur only if the time instants at which nodes
a andB start placing a packet on the channel are separated in time
by less that the propagation delay between the two nodes, which is
a rare event.



Table 1: The value of D to be used in (12).

RTS/CTS - scenario11 ACK + DIFS - RTS - SIFS
RTS/CTS - scenario12 DIFS - RTS
Basic Access - scenario11 ACK + DIFS - DATA - SIFS
Basic Access - scenario12 DIFS - DATA

In order to compute the conditional packet loss probabilityp(A),
we make the simplifying assumption that the initial packet sent by
nodeA (RTS or DATA packet) arrives at an arbitrary point in time
during a cycleC. Also, we assume that all transmission attempts
of nodeA randomly and independently sample a point within a
generic cycleC. Although this is only an approximation, the ana-
lytical predictions produced by the resulting model are quite accu-
rate (see Section 4.4).

We observe that since the duration of a cycle is variable (the
numberi of slots is randomly chosen by the transmitting nodeB),
we must consider the fact from renewal theory that the probability
of arriving within a cycle of durationC is proportional toC.

The final expression of the packet loss probability of flowA is
as follows

p(A) = 1−
2

W0[2Ts + (W0 − 1)σ]

W0−1
X

i=0

max(0, D+iσ), (12)

whereD is a parameter that depends on the access mechanism used
(basic access or RTS/CTS) and on the considered scenario. Table
1 provides the value ofD for all combinations of cases. Notice
thatD can take negative values, which explains the max operator
in Equation (12). IfD is positive, Equation (12) simplifies to

p(A) =
2(Ts − D)

2Ts + (W0 − 1)σ
, D > 0. (13)

We observe thatp(A) can be directly computed as a function of
all known system parameters. Thus, we can already compute the
throughput of flowA by first obtainingτ (A) from Equation (11),
and then substituting bothτ (A) andp(A) into Equation (10) (recall
thatb(A) = 0).

We now turn to the analysis of flowB. We have already seen
that p(B) = 0, thus we can obtain from Equation (11)τ (B) =
2/(W0 + 1). The only unknown variable of flowB is b(B), the
probability that nodeB, after an idle slot during the backoff phase,
starts receiving a control packet froma (CTS or ACK), after which
B sets the NAV and suspends its activity, allowing the packet ex-
change of flowA to complete successfully. The duration̄Tb of
this suspension is equal tōTs minus the duration of the first packet
(RTS or DATA) sent byA, which is not heard byB.

Since we have already independently computed the throughput
of flow A, we know the rate at which senderB has to suspend its
activity during the backoff phase. Indeed, the following equation,
similar to Equation (10), has to be satisfied

TP (A) =
[1 − τ (B)]x

τ (B)T̄s + [1 − τ (B)](1− x)σ + [1 − τ (B)]xT̄b

,

(14)
from which one can obtain the unknown variablex = b(B), to be
used into the expression of the throughput of flowB.

We remark that as a result of our analysis, the throughputs of
both flows are available in closed form expressions. This is made
possible by the hypothesis that both flows are backlogged. Inthe
next section, the analysis is extended to the case of non-backlogged
sources.

4.3 Non-Continuously-Backlogged Flows
The starvation problem observed in the scenarios of the AIS

group is particularly severe when flowB is continuously back-
logged and transmits at the maximum achievable rate, occupying
the largest possible fraction of channel time with its own transmis-
sions, and leaving few gaps to be discovered by flowA. There-
fore it is important to model these scenarios under more general
assumptions, i.e., when flowB does not utilize all of the available
bandwidth. This can happen because flowB represents a variable
rate flow that empties its transmission queue, or if the sender or re-
ceiver of flowB are deferring elsewhere, e.g., if flowB senses the
activity of other flows in the network by means of either physical
or virtual carrier sensing.

In our analysis, we assume that the maximum throughput achiev-
able by a station is known. For example, if the transmission queue
of a source is fed by an arrival process of data packets from the up-
per protocol layers at rateλ, the achieved rate clearly cannot exceed
this value. If the queue is backlogged but the station sensesthe ac-
tivity of other flows in its neighborhood, the achievable throughput
will be limited by the resulting share of the channel capacity. In
this paper we limit ourselves to the analysis of two-flow scenarios,
therefore we do not deal with the problem of solving the interaction
of many flows in arbitrary topologies. Regardless, we can model
the behavior of two-flow scenarios embedded in a large topology
by considering each scenario in isolation from the network,and
assuming that the transmission queues of the senders are fedby a
given arrival rate of packetsλ, that can either represent the actual
data rate offered by the upper protocol layers, or the maximum rate
resulting from the interaction with the rest of the network.

Moreover, we assume the the actual throughputT achieved by
a station as a function ofλ is equal to the input rateλ up to a sat-
uration valueTsatur, after which it remains constant and equal to
Tsatur. Our analysis in the previous sections has actually com-
puted the saturation throughput valuesTsatur(A) andTsatur(B)
when both flows are backlogged.

Now we extend the analysis to the case in which senders are fed
by arbitrary input ratesλ(A) andλ(B). We add a new probability
e to the description of the behavior of a single station introduced in
Section 4.1, which is the conditional probability that the transmis-
sion queue of the station is empty, given that the station canpoten-
tially start a new transmission (i.e., when its backoff counter is zero
and the channel has been sensed idle for a time slot). The occur-
rence probability of each of the four channel states at the switching
instants are modified as follows,

Πs = τ (1 − p)(1 − e),

Πc = τ p(1 − e),

Πσ = [(1 − τ ) + τe] (1 − b),

Πb = [(1 − τ ) + τe] b, (15)

and the throughput expression in Equation (9) must be changed
accordingly. As a result, the only unknown variable that we need to
compute is the probabilitye. This can be easily done by consider-
ing thatT = min(λ, Tsatur) as described above, and by assuming
that all other variables are known: ifT |e=0 < λ, thene = 0 (the
source is saturated); otherwisee is equal to the valuee∗ such that
T |e∗ = λ, which is easily obtained by inverting the throughput
formula.

The solution of the scenarios of the AIS group under arbitrary
input rates requires an iterative approach: each flow is studied as-
suming that the throughput of the other flow is given. The indepen-
dent analysis of each flow allows to compute a new estimate of its
throughput, to be used in the analysis of the other flow in the next
step of the iteration. After a few iterations we obtain the fixed-point



SIFS 10 µs

DIFS 50 µs

EIFS 364 µs

σ 20 µs

BasicRate 2 Mbps
DataRate 11 Mbps
PLCP length 192 bits @1 Mbps
MAC header (RTS,CTS,ACK,DATA) (20,14,14,28) bytes @ BasicRate
(CWmin, CWmax) (31,1023)
Short Retry Limit 7
Long Retry Limit 4

Table 2: Parameters setting for the MAC and physical layers.

solution.
For flow A, we only need to compute the collision probability

p(A), or its complements(A). To do so, we model the activity of
flow B as perceived bya while senderA attempts to transmit as an
alternating on-off process. Theon period has a fixed durationTON ,
equal to the portion of the cycle in Figure 14 not occupied by the
gapG, which depends only on the access method and the specific
scenario. Theoff period is the gap available for flowA, that now
can contain also periods of time in which the queue of senderB
is empty. The average duration̄TOF F can be computed from the
following expression,

1

TON + T̄OF F

=
T (B)

1 − T (A)T̄b

, (16)

which states that the rate at whichon periods occur (the inverse of
the average duration of a cycle) must be equal to the throughput of
flow B, normalized by the fraction of time in which the channel is
not occupied by successful transmissions of flowA. We assume
that the duration of theoff period is exponentially distributed, and
that the transmission attempts of senderA arrive at random point
in time. We obtain the following formula for the successful proba-
bility of flow A,

s(A) =
T̄OF F

TON + T̄OF F

e
−

d

T̄OF F , (17)

whered is the duration of the first packet sent byA (RTS or DATA).
Equation (17) states that a transmission attempt of flowA is suc-
cessful if the first packet arrives during theoff period of flowB
and if it is fully received bya before the beginning of the nexton
period. A new estimate of the throughput of flowA can now be
derived using the collision probabilityp(A) = 1 − s(A).

For flow B, the only unknown is the probabilityb(B), which is
updated using the same reasoning applied at the end of Section 4.2.

4.4 Simulations and Model Validation
Here we validate our analysis of the AIS group and compare

the analytical predictions of the throughput of the two flowswith
simulation results obtained withns. We consider stations operating
according to the 802.11b standard, with a data rate of11 Mb/s. The
common parameters at the MAC and physical layers for all of the
experiments of this paper are reported in Table 4.4.

We first consider the case of continuously backlogged sources.
In Figure 15 we compare the throughput achieved by flowA (in
pkt/s) in the two scenarios of the AIS group. We vary the data pay-
load size from100 bytes to1500 bytes, and we use the RTS/CTS
access mechanism to transfer all data frames, irrespectiveof their
size. Figure 16 reports the corresponding results for flowB.

We observe that despite a number of approximations, the model’s
predictions provide an excellent match with simulation results for
all payload sizes and in both scenarios. As expected, the through-
put of Flow B is significantly larger than the throughput of flow
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Figure 15: Throughput of Flow A vs. data payload size (with
RTS/CTS).
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Figure 16: Throughput of Flow B vs. data payload size (with
RTS/CTS).

A (notice the different scales on the y axis). As predicted by the
model, starvation is partially alleviated in scenario11, when nodes
a andb are not in range of each other. As already explained, this
is due to the fact that in this case, the gap in which nodeA can
successfully send toa is enlarged by the duration of an ACK (see
Figure 14).

In Figure 17 we compare the throughput achieved by flowA in
scenario11, considering the basic access method and assuming that
the maximum retry limit is equal to either the Short Retry Limit
or the Long Retry Limit as specified in the 802.11 standard, irre-
spective of the data payload size (notice that the Short Retry Limit
corresponds in the model tom = 6, while the Long Retry Limit
corresponds in the model tom = 3).
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Figure 17: Throughput of Flow A vs. data payload size (basic
access).

We observe that flowA achieves very different throughput de-
pending on the packet payload size used. FlowA is completely



starved (i.e. achieves zero throughput) when the size of a DATA
packet exceeds the maximum possible gap left free by flowB. For
very small payload sizes, the throughput of flowA can actually
be higher than the throughput obtained employing the RTS/CTS
mechanism due to the reduced MAC overhead.

We also observe that flowA achieves significantly higher through-
put when the Long Retransmission Limit (m = 3) is used, with re-
spect to the case in which the Short Retransmission Limit (m = 6)
is used. This is due to the fact that whenm = 3, senderA spends
less time in backoff, because after reaching the maximum retrans-
mission limit, the window is reset to the minimum valueW0. This
increases the aggressiveness of senderA, which is more likely to
find an available gap in the activity of flowB.

Finally, we consider flows that are not continuously backlogged.
The most interesting case to analyze is when we limit the rateof
flow B so as to leave more time available to flowA. In Figures 18
and 19 we plot the throughput achieved by the flows as a function of
the input rateλ(B), while keeping flowA always backlogged. Fig-
ure 18 refers to scenario12 with the RTS/CTS mechanism, whereas
18 refers to scenario11 with basic access. The data payload size is
constant and equal to1000 bytes, andm = 6. We also report on
the plots the sum of the throughput of the two flows.
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Figure 19: Throughput of Flow A vs. arrival rate of flow B
(basic access, Scenario11).

We observe that the asymmetry between the flows results in nearly
strict priority of flow B over flow A. Indeed, flowB achieves a
throughput exactly equal to the input rate up to a sharp saturation
point, whereas flowA, even if backlogged, only gets a fraction
of the remaining channel capacity. Notice that there is a signifi-
cant loss in aggregate throughput when the two flows obtain similar
throughput. This is due to the time wasted by flowA during back-
off, even when flowB does not have packets to transmit, leaving

the channel idle for a large fraction of time. By limiting therate of
flow B, it is possible to give the flows the same rate, at the expense
of a loss in the aggregate throughput. This illustrates the trade-off
between fairness and capacity (aggregate throughput) in networks
as it is realized with an unfair access mechanism.

5. SYMMETRIC INCOMPLETE STATE AND
SHORT TERM UNFAIRNESS

In this section we develop an analytical model to study the be-
havior of flow pairs belonging to the Symmetric Incomplete State
(SIS) group, comprising Scenarios 8, 9 and 10 in Figure 1. We ex-
plore the resulting short-term unfairness by means of analysis and
examine the impact of various protocol parameters.

5.1 Analytical Model
The main difficulty in analyzing the scenarios of the SIS group

resides in the fact that the behavior of the two flows is tightly cor-
related: when one flow starts dominating over the other, the states
of the flows clearly cannot be considered to be independent, and
we therefore cannot employ the decoupling technique adopted in
Section 4. In order to correctly analyze the system, it is necessary
to consider the joint behavior of the two flows.

Thus, we represent the system state as the pair(SA, SB), where
SA andSB represent the current backoff stages of transmittersA
andB, 0 ≤ SA, SB ≤ m, respectively. Recall thatm + 1 is equal
to the maximum retransmission limit, which plays a fundamental
role in the behavior of the flows as we show in Section 5.2. The to-
tal number of states is(m+1)2 yielding a computationally efficient
solution.

Using our bi-dimensional state description, we build a discrete
time Markov Chain embedded over continuous time at the time in-
stants in which both senders can (potentially) start transmitting the
first packet of a new data exchange (either the RTS or the DATA
packet), provided that their backoff counter is equal to zero. We use
the same channel view as depicted in Figure 13, but consider only
time epochs at which both transmitters can attempt a new transmis-
sion.

We assume that the backoff counter of a station is geometri-
cally distributed, instead of uniformly distributed, overthe current
window. By doing so, we can exploit the memoryless property
of the geometric distribution and avoid explicitly incorporating in
the state description the remaining number of backoff slotsof each
station. Our simulations indicate that this approximationdoes not
compromise the model’s accuracy. The parameterγi of the geo-
metric distribution that characterizes the backoff counter at stagei
(0 ≤ i ≤ m) is given byγi = 2

Wi−1
, whereWi is the window

size of backoff stagei. Consequently, at each time epoch a station
in stagei attempts a new transmission with probabilityγi.

5.1.1 Transition Probabilities
We consider the behavior of the two flows in Scenario 8 (or

equivalently, Scenario 9). The key point to analyze the system
dynamics is the computation of the (conditional) packet collision
probability p. We observe that senderA (for example) does not
know if senderB has started accessing the channel until a packet
sent byB has been fully received atb, triggering the transmission
of a CTS or ACK that can be immediately sensed byA. This leads
to the following typical situation: senderA starts transmitting a
new packet, but before it is fully received bya, senderB also
starts transmitting a packet, resulting in a collision at the receivers
in which both packet are destroyed. A transmission from sender
A is successful only if senderB does not attempt to transmit in all



transmission opportunities that occur during the durationof the first
packet (either the RTS or the DATA packet) sent byA. The num-
ber of such transmission opportunities is given by the duration of
the first packet (RTS or DATA) expressed in the number of backoff
slots, and denoted byf . The (conditional) successful probability of
senderA in state(i, j) is then given by(1−γj)

f (recall thatj is the
backoff stage of senderB, andγj the corresponding transmission
probability).

from state to state probability
i , j i , j (1 − γi)(1 − γj)

i , j 0 , j γi (1 − γj)
f

i , j i , 0 (1 − γi)
f γj

i , j (i + 1) modm, (j + 1) modm otherwise

Table 3: Transition probabilities of the Markov Model.

The transition probabilities stemming from the generic state(i, j)
are summarized in Table 3. The first row of the table is the self
transition corresponding to the case in which both flows do not
start transmitting a new packet. The second and third rows refer
to successful transmissions from senderA or B, respectively. No-
tice that in this case the backoff stage of the station successfully
transmitting is reset to the initial value (stage 0). Finally, the last
row corresponds to a collision event for both flows, with the con-
sequent increase of the backoff stage – if the backoff stage reaches
the maximum retransmission limit, it is reset to 0, which explains
the modulus operator.

5.1.2 Performance Metrics
By numerically solving the Markov Chain, which is ergodic for

any choice of parameters, we obtain the stationary distributionπ =
{πi,j}, ∀i, j. An example of such a distribution is reported in Fig-
ure 20, obtained using the set of parameters in Table 4.4 and con-
sidering the RTS/CTS access mechanism. The plot clearly sug-
gests a bi-stable behavior, in which the most likely states are those
in which one flow maintains a small value of window size (thus
obtaining high throughput), while the other falls into deeper and
deeper backoff stages (thus obtaining low throughput). Only when
the poor flow reaches the maximum retransmission limit, it resets
its window and competes equally with the rich flow.
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Figure 20: Steady state probabilities of the Markov model in
case of RTS/CTS mechanism, default 802.11b parameters.

Long-term performance metrics can be obtained directly form

the solution of the Markov Chain. From renewal-reward theory,
the throughput of either flow is given by

T =

P

i,j
πi,j γi (1 − γj)

f

∆
,

where∆ is the average duration of a step. The duration of a suc-
cessful transmission is equal toTs, as defined in Section 4. The idle
slot isσ, while a collision has an approximate average duration of
Tc + σ f/2, assuming that the colliding packet starts on average
in the middle of the packet that is transmitted first.∆ is computed
as the average of the duration of all possible events in all states,
weighted by their respective probabilities.

The average conditional collision probabilityp for each flow can
be computed as

p =

P

i,j
πi,j Pc(i, j)

P

i,j
πi,j [Pc(i, j) + γi (1 − γj)f ]

,

wherePc(i, j) is the collision probability at state(i, j) (fourth row
of Table 3).

5.1.3 Transient Analysis
As SIS scenarios are long-term fair, we are most interested in

evaluating the short-term unfairness of these cases. In particular, it
would be desirable to have an indication of the average amount of
time during which one flow experiences poor throughput whilethe
other gets most of the available channel capacity. To this purpose,
we consider the system states(m, 0) and(0, m), where one flow
has reached the last backoff stage, while the other is at stage 0.
These two states are expected to be reached in the two symmetric
conditions in which one flow strongly dominates over the other.
The average amount of time necessary to transition from one of
these states to the other provides a good estimate of the duration
for the system to switch from one equilibrium point to the other,
i.e., the system’s time-scale of unfairness.

To compute this, we exploit the symmetry of our system, and
reduce the problem to finding the average time necessary to re-
enter one of the above states (for example(m, 0)) after having left
it. To simplify notation, leti be state(m, 0).

We proceed as follows. First, we remove all self-transitions of
statei, since we want to consider re-entries to this state only af-
ter a change of state. To do so, transitions leaving statei are re-
normalized to sum up to one.3 The time actually spent in statei in
between two successive visits to this state will be considered sepa-
rately at the end of the computation.

After applying this modification to the transition probabilities,
we recompute the stationary distribution of the model obtaining a
different state vectorπ′. From the renewal-reward theorem ap-
plied to cycles defined by visits to statei, we know that the average
number of visits to statej between returns to statei is given by
E(Vij) = π′

j/π′

i. Moreover, the average number of transitions of
typej → k between returns to statei is given by [21]

E(Vijk) = π′

jpjk/π′

i, ∀i, j, k. (18)

Using this result, we can compute the average time to return to
statei after leaving it by summing all durations associated with
transitionsj → k, weighted by their expected average number of
occurrences given by Equation (18). Finally, we add the average
time spent in statei before leaving it, which was initially removed.
This can be easily done by considering that the average number of

3Indeed, following all transitions leavingi, the poor flow (flowA)
resets its window to the minimum value, exiting the starvation con-
dition and starting to compete fairly with the rich flow.



steps spent in a state is geometrically distributed, with parameter
equal to the exit probability from the state.

5.2 Simulations and Model Validation
In this section we validate the analytical model of the behavior of

the two flows in Figure 11(a) and investigate several properties of
this scenario with a focus on short-term unfairness. Our results are
summarized in Table 4, in which we compare analytical predictions
with ns simulations in four different cases: (C1) RTS/CTS access,
m = 6, CWmax = 1024; (C2) RTS/CTS access,m = 8, CWmax =
∞; (C3) basic access,m = 3, CWmax = 1024; (C4) basic access,
m = 6, CWmax = 1024.

case
model ns SC

T p ∆t T p ∆t T
C1 218 0.25 235 216 0.25 223 250
C2 229 0.11 982 230 0.09 1156 250
C3 125 0.69 15 107 0.75 15 337
C4 222 0.37 59 220 0.38 60 337

Table 4: Average throughput per flow T (in pkt/s), conditional
packet loss probabilityp, and average transient time∆t (in ms)
obtained in Scenario8 for four different settings of parameters.

Case C1 corresponds to the default parameters of 802.11 when
RTS/CTS is used, having the maximum retransmission limit equal
to 7, theShort Retry Limit. Case C2 also employs RTS/CTS, but in-
creases the maximum retransmission limit to 9 and does not bound
the maximum window size. Case C3 corresponds to the default
parameters of 802.11 with basic access, having maximum retrans-
mission limit 4, and theLong Retry Limit. Case C4 differs from
C3 in that the maximum retransmission limit is set to 7, theShort
Retry Limit.

We compare both long-term performance metrics (average through-
put and collision probability) and our characterization ofthe short-
term unfairness by means of the average time∆t to transition from
state(m, 0) to (0, m). This latter quantity is computed analytically
using the approach described above and has also been measured in
simulation via inspection of the backoff stage of the two flows. The
last column of Table 4 reports the per-flow throughput (in pkts/s)
achieved in each case when senders are connected (SC).

In addition to the excellent agreement between analysis andsim-
ulations in all cases, we make the following observations. All con-
figurations achieve similar throughput (around 220 pkt/s) except
case C3, for which we observe a severe penalty (62%) mainly due
to the large packet loss probability combined with the smallretrans-
mission limit, which leads to many packets being dropped by the
MAC. In the other cases the throughput loss with respect to the case
in which senders are connected is not significant using RTS/CTS
(around 10%, cases C1 and C2), while it is important in case C4, in
which basic access is employed (34%).

The maximum throughput is achieved in case C2, where we have
increased both the maximum number of retransmissions and the
maximum window size with respect to standard values. The small
gain in throughput comes at the expense of a severe short termun-
fairness, as the average transition time from one equilibrium point
to the other approaches 1 second. This confirms the significant im-
pact ofm on the time-scales of short-term unfairness.

Surprisingly, the basic/access mechanism withm = 6 achieves
the smallest value of∆t while obtaining a throughput comparable
to that obtained using the RTS/CTS mechanism. This is remark-
able, as the RTS/CTS mechanism was actually proposed to over-
come the hidden terminal problem in infrastructure mode (see Fig-
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Figure 21: Packets successfully sent by one flow every 100 ms,
in all four cases.

ure 11(b)). Unfortunately, it leads to further short-term unfairness
than that obtained when the basic access mechanism is used.

As a further validations of our conclusions, we present in Figure
21 simulation results showing the average number of packetssuc-
cessfully sent by one of the two flows every 100 ms, in the window
[50s − 60s], for each of the four cases. We also show the average
number of packets obtained when senders are connected, for com-
parison. We observe that the throughput oscillates dramatically in
the cases having a large value of∆t, enduring prolonged intervals
in which the achieved rate is either very high or very low.

6. RELATED WORK
Problematic Topologies.Variants of some of the scenarios we

investigated are known to incur poor performance. Among them
are the classic hidden terminal and exposed terminal problems ex-
amined in [2, 12, 18]. Likewise, AIS scenarios are describedin [2,
3, 11, 12, 20]. Yet no prior studies comprehensively analyzeall
scenarios within a single analytical framework nor predictscenario
likelihood in a random graph.

Modeling Throughput. The fully connected topology and Senders
Connected (SC) group can be accurately modeled using [4] and
hence we do not consider them here. In contrast, we model topolo-
gies in which senders are disconnected, which leads us to develop
new modeling techniques for both the AIS and SIS groups.

In [15, 16], a queuing analysis of Scenario 11 in Figure 1 is de-
veloped under (unrealistic) assumptions that(i) the time between
retransmissions (i.e. the backoff delay) is negligible, and (ii) the
maximum number of retransmissions allowed for each packet is
unlimited. Consequently, the model matches simulations well only
under light traffic conditions and with very large packets transmit-
ted at low data rate. In contrast, our analysis incorporatesall de-
tails of 802.11 DCF, applies to both saturated and non-saturated
conditions, incorporates variable packet sizes, and showsthe sig-
nificant impact of the maximum retransmission limit and access
method (two- or four-way handshake). In [10] the authors present a
throughput analysis that incorporates topology dependentrelations,
and report preliminary results for the ring topology neglecting the
impact of the binary exponential backoff.

Modeling Short-Term Unfairness. While a number of studies
have analyzed short-term unfairness due to various aspectsof the
wireless medium ranging from channel errors to contention,(see



[1, 5, 6] for example), none accurately characterize the time scale
in which 802.11 stations alternate domination in SIS scenarios. In
particular, in our analysis of the SIS group, we model short-term
unfairness of IEEE 802.11 with and without RTS/CTS, derive the
behavior of the flows from the collision probability, analyze the
transient behavior of the system, and accurately predict the time-
scale of this unfairness as a function of key system parameters.

Receiver Oriented Media Access.A number of receiver-based
access mechanisms, in which channel contention is initiated by the
receiver, not the sender, have been proposed to improve fairness
and performance in various scenarios [2, 8, 19]. The Request-for-
Request-to-Send (RRTS) solution is an example receiver-oriented
mechanism originally proposed in MACAW [2]: whenever a sta-
tion receives an RTS to which it cannot respond (due to deferral), it
contends during the next contention period on behalf of the sender,
reserving the channel by means of an additional control packet
called RRTS. The RRTS message solicits the sender to immedi-
ately send a new RTS.
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Figure 22: Comparison of the number of packets sent by one
flow during intervals of 100 ms in scenario 10, with or without
RRTS

We have investigated the effectiveness of this solution in both
the AIS and SIS group, implementing the RRTS packet exchange
in the ns simulator. We have found that this solution has a funda-
mental limitation in the fact that it requires the receiver of a flow to
correctly decode the RTS packet sent by the sender. Unfortunately,
this occurs extremely rarely when a transmission attempt isnot suc-
cessful. Consider the scenarios of the AIS group: the RTS packet
sent byA typically arrives ata during a transmission of flowB, or
it is destroyed by a new packet sent byB before it is fully received
by a. Simulation results confirm that the RRTS mechanism does
not help in the scenarios of the AIS group.

In the SIS group, the RRTS mechanism is also not useful in sce-
narios 8 and 9, because during a collision event both RTS pack-
ets are destroyed at the receivers. The only exception is scenario
10: in this case, the two flows are connected only through the re-
ceivers; the receiver of a flow is not in range of the transmitter of
the other flow, and correctly receives the RTS sent by the sender.
This scenario leads to short-term unfairness, and can be analyzed
in a similar way as described in Section 5. Figure 22 shows that
the RRTS mechanism partially mitigates the observed unfairness.
Notice that the occurrence probability of Scenario 10 is only about
10%, as reported in Figure 5.

7. CONCLUSIONS
We have systematically and comprehensively investigated the

foundational scenarios of multi-hop wireless networks. Weidenti-
fied all possible topologies consisting of four nodes and twoflows,
classified them into three geometric groups, and computed their
likelihood under random node placement. In each case, we showed
how fundamental properties of two- and four-way handshake CSMA
protocols yield short-term unfairness in one group, and long-term

unfairness in another. Because these problematic scenarios are
highly likely to occur in a random graph, we developed an analyt-
ical model that can accurately predict the performance in each of
these scenarios. For example, we are able to precisely predict each
flow’s throughput in scenarios with long-term unfairness and the
time scale that flows alternate domination in scenarios withshort-
term unfairness.
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