MobiCom 2005

Modeling Media Access in Embedded Two-Flow Topologies of Multi-hop Wireless Networks

Michele Garetto Jingpu Shi

Edward W. Knightly
RICE

Rice Networks Group http://www.ece.rice.edu/networks

Motivation

- Multi-hop wireless networks with CSMA/CA protocols

Motivation

- Multi-hop wireless networks with CSMA/CA protocols

Motivation

- Multi-hop wireless networks with CSMA/CA protocols

Motivation

- Multi-hop wireless networks with CSMA/CA protocols

Motivation

- Multi-hop wireless networks with CSMA/CA protocols

Long-term unfairness
 (flow \mathbf{A} starves)

Motivation

- Multi-hop wireless networks with CSMA/CA protocols

Short-term unfairness ($\sim 100 \mathrm{~ms}$)

Motivation

- Multi-hop wireless networks employing CSMA/CA exhibit complex behavior and are difficult to analyze
- Root cause: different and incomplete channel state information among flows
- Most of existing modeling techniques only consider the single-hop case
- When stations are not all in radio range, severe unfairness can occur among flows:
- Long-term unfairness and starvation
- Short-term unfairness

Our contributions

- We decompose a large-scale network into embedded 2-flow subgraphs
- We identify all possible 2-flow scenarios and classify them
- Spatial analysis: we compute the occurrence probability of each scenario under random nodes deployment
- We accurately predict the performance of random access in all cases, quantifying long-term and short-term unfairness

Basic two-flow, four-node layout

- Senders A, B
- Receivers a, b
- A-a, B-b must be connected (= in radio range)
- Nodes from one flow may hear nodes from the other
- Four possible connections that can exist - or not
- $2^{4}=16$ combinations
- Ab, Ba interchangeable
$\rightarrow 4$ redundant scenarios

Twelve possible scenarios

Example topologies

Spatial analysis

- We compute the occurrence probability of each scenario
- We assume nodes uniformly distributed in the area with equal radio range
- We discard the case in which flows are completely isolated from each other \rightarrow normalized probabilities
- insensitive to node density
- insensitive to area size (no border effects)

$$
p_{11}=\int_{0}^{r} \int_{0}^{r} \int_{\frac{d_{1}}{2}}^{r+d_{1}} \int_{f_{1}\left(d_{1}, x_{B}\right)}^{f_{2}\left(d_{1}, x_{B}\right)} 2 \times p_{11}^{\prime} \mathrm{d}\left(y_{B}\right) \mathrm{d}\left(x_{B}\right) g\left(d_{2}\right) \mathrm{d}\left(d_{2}\right) g\left(d_{1}\right) \mathrm{d}\left(d_{1}\right)
$$

Scenario Likelihood

Performance simulations with CSMA/CA protocol

Throughput measurements every 400 ms
X = two-way handshake

- = four-way handshake

Performance simulations with CSMA/CA protocol

Throughput measurements every 400 ms
X = two-way handshake

- = four-way handshake

Performance simulations with CSMA/CA protocol

Throughput measurements every 400 ms
X = two-way handshake

- = four-way handshake

Performance simulations with CSMA/CA protocol

Throughput measurements every 400 ms
X = two-way handshake

- = four-way handshake

Scenarios classification : 3 groups

\longmapsto Senders Connected (SC)

Symmetric \Longrightarrow Incomplete State (SIS)

Asymmetric
\Longrightarrow Incomplete State (AIS)

Probabilities of 3 groups of scenarios

- Problematic scenarios are highly likely to occur !

Hop distance distribution in a multi-hop network

300 nodes - 2000 m x 2000 m - Random waypoint - DSDV

Probabilities of 3 groups of scenarios

Hop distance $=$ TX range ; variable Sensing Range

Ratio between sensing range and transmission range

Analysis of Asimmetric Incomplete State scenarios (AIS)

- Known to be highly problematic for random access protocols: flow $\mathbf{A} \rightarrow$ a starves
- V. Bharghavan, A. J. Demers, S. Shenker, L. Zhang, MACAW: A Media Access Protocol for Wireless LAN's, SIGCOMM '94
- RTS/CTS does not solve the problem
- RRTS does not help
- Not yet modeled analytically

Decoupling technique (valid for general topologies)

- The channel "private view" of a node:

- Modelled as a renewal-reward process

$$
\text { Throughput }(p k t / s)=\frac{P[e v e n t ~ T s ~ o c c u r s] ~}{\text { Average duration of an event (s) }}
$$

Analysis of Asymmetric Incomplete State scenarios (AIS)

- Flow $\mathbf{A} \rightarrow$ a does not know when to contend: it has to discover an available gap in the activity of flow $\mathbf{B} \rightarrow \mathbf{b}$ randomly, where to place an entire RTS or DATA packet

RTS/DATA

Analysis of Asimmetric Incomplete State scenarios (AIS)

- The collision probability of flow $\mathbf{A} \rightarrow \mathbf{a}$ can be accurately computed assuming that the first packet arrives at a random point in time
- The collision probability of flow $\mathbf{B} \rightarrow \mathbf{b}$ is zero

AIS scenario - model vs simulation
with RTS/CTS

AIS scenario - model vs simulation

Flow A backlogged - Flow B not backlogged

Analysis of Symmetric Incomplete State scenarios (SIS)

- Long-term fair, but short-term unfair
- One flow dominates over the other, until they switch their role (randomly)
- RTS/CTS does not help, and can even make things worse
- Not yet modeled analytically
- As a particular case, the receiver can be in common:

= the classic "hidden-terminal" scenario

Simulation of short term unfairness - SC vs SIS

 RTS/CTS - 9 backoff stages

Analysis of Symmetric Incomplete State scenarios (SIS)

- To capture short-term behavior, we cannot apply the decoupling technique (i.e. assume independent states)
> States of the two flows are tightly correlated!
- We use a markov model in which the state is: \{ backoff stage of \mathbf{A}, backoff stage of \mathbf{B} \}
- The computation of the collision probability is the key point

Analysis of Symmetric Incomplete State scenarios (SIS)

- Steady-state distribution of Markov Chain:

Time-scale of short term unfairness

SIS scenario - model vs simulation

Case	Throughput (pkt/s)	Collision probability	Time scale of unfairness (ms)
RTS/CTS	218	0.25	235
7 stages	216	0.25	223
RTS/CTS	229	0.11	982
9 stages	230	0.09	1156
Basic access	125	0.69	15
4 stages	107	0.75	15
Basic access	222	0.37	59
7 stages	220	0.38	60

Conclusions

- We systematically studied all 2-flow scenarios of a multi-hop network
- We developed accurate analytical models to characterize throughput and fairness in all cases
- Spatial analysis reveals that problematic cases are not just "corner cases", but dominating scenarios occurring with high probability
- Deployment of wireless mesh networks using standard protocols (e.g. 802.11) incurs severe performance problems still to be solved

Thanks!

Decoupling technique (valid for general topologies)

- The channel "private view" of a node:

- Modelled as a renewal-reward process

$$
\text { Throughput }(p k t / s)=\frac{P[e v e n t ~ T s ~ o c c u r s] ~}{\text { Average duration of an event (s) }}
$$

Modeling Media Access

- Define the probabilities

$$
\begin{aligned}
& \tau=\text { probability that the node sends out a packet in a slot } \\
& p=\text { conditional collision probability } \\
& b=\text { conditional busy channel probability }
\end{aligned}
$$

- Event probabilities:

Modeling Media Access

- $\tau=f_{\text {bianchi }}(p) \quad$ (a decreasing function of p)
- The unknown variables are: $p \quad b T_{b}$
- Throughput formula:

$$
T=\frac{\tau(1-p)}{\tau(1-p) T_{s}+\tau p T_{c}+(1-\tau)(1-b) \sigma+(1-\tau) b T_{b}}
$$

- The throughput of a node decreases if either:
$>p$ is large (if so, τ is small, also)
$>b T_{b}$ is large (large fraction of busy time)

Mobility and Fairness

40 nodes (20 flows) - 1000 m x 1000 m - RWP [7,15] m/s

Figure 12: Flow throughput comparison between a 10 second snapshot and a 120 second snapshot.

