MobiCom 2005

Modeling Media Access in Embedded Two-Flow Topologies of Multi-hop Wireless Networks

<u>Michele Garetto</u> Jingpu Shi Edward W. Knightly

Rice Networks Group http://www.ece.rice.edu/networks

• Multi-hop wireless networks with CSMA/CA protocols single-cell case RICI Garetto, Shi, Knightly

• Multi-hop wireless networks with CSMA/CA protocols

• Multi-hop wireless networks with CSMA/CA protocols

• Multi-hop wireless networks with CSMA/CA protocols

Long-term unfairness (flow A starves)

• Multi-hop wireless networks with CSMA/CA protocols

Short-term unfairness (~100 ms)

- Multi-hop wireless networks employing CSMA/CA exhibit complex behavior and are difficult to analyze
 - Root cause: different and incomplete channel state information among flows
 - Most of existing modeling techniques only consider the single-hop case
- When stations are not all in radio range, severe unfairness can occur among flows:
 - Long-term unfairness and starvation
 - Short-term unfairness

Our contributions

- We decompose a large-scale network into embedded 2-flow subgraphs
- We identify all possible 2-flow scenarios and classify them
- Spatial analysis: we compute the occurrence probability of each scenario under random nodes deployment
- We accurately predict the performance of random access in all cases, quantifying long-term and short-term unfairness

Basic two-flow, four-node layout

- Senders A, B
- Receivers a, b
- A-a, B-b must be connected (= in radio range)
- Nodes from one flow may hear nodes from the other
- Four possible connections that can exist – or not
- 2⁴ = 16 combinations
- Ab, Ba interchangeable
 - \rightarrow 4 redundant scenarios

Twelve possible scenarios

Example topologies

Spatial analysis

- We compute the occurrence probability of each scenario
- We assume nodes uniformly distributed in the area with equal radio range
- We discard the case in which flows are completely isolated from each other → normalized probabilities
 - insensitive to node density
 - insensitive to area size (no border effects)

 $p_{11} = \int_0^r \int_0^r \int_{\frac{d_1}{2}}^{r+d_1} \int_{f_1(d_1, x_B)}^{f_2(d_1, x_B)} 2 \times p'_{11} \, \mathsf{d}(y_B) \, \mathsf{d}(x_B) \, g(d_2) \, \mathsf{d}(d_2) \, g(d_1) \, \mathsf{d}(d_1)$

Scenario Likelihood

Scenarios classification : 3 groups

Probabilities of 3 groups of scenarios

• Problematic scenarios are highly likely to occur !

Hop distance distribution in a multi-hop network

300 nodes - 2000 m x 2000 m - Random waypoint - DSDV

Probabilities of 3 groups of scenarios

Hop distance = TX range ; variable Sensing Range

Analysis of Asimmetric Incomplete State scenarios (AIS)

- Known to be highly problematic for random access protocols: flow A→ a starves
 - V. Bharghavan, A. J. Demers, S. Shenker, L. Zhang,
 MACAW: A Media Access Protocol for Wireless LAN's, SIGCOMM '94
- RTS/CTS does not solve the problem
- RRTS does not help
- Not yet modeled analytically

Decoupling technique (valid for general topologies)

• The channel "private view" of a node:

Modelled as a renewal-reward process

Analysis of Asymmetric Incomplete State scenarios (AIS)

 Flow A→ a does not know when to contend: it has to discover an available gap in the activity of flow B→ b randomly, where to place an entire RTS or DATA packet

Analysis of Asimmetric Incomplete State scenarios (AIS)

- The collision probability of flow $A \rightarrow a$ can be accurately computed assuming that the first packet arrives at a random point in time
- The collision probability of flow $\mathbf{B} \rightarrow \mathbf{b}$ is zero

AIS scenario – model vs simulation

AIS scenario – model vs simulation

Garetto, Shi, Knightly

Analysis of Symmetric Incomplete State scenarios (SIS)

- Long-term fair, but short-term unfair
- One flow dominates over the other, until they switch their role (randomly)
- RTS/CTS does not help, and can even make things worse
- Not yet modeled analytically
- As a particular case, the receiver can be in common:

= the classic "hidden-terminal" scenario RIC

Simulation of short term unfairness – SC vs SIS

Analysis of Symmetric Incomplete State scenarios (SIS)

 To capture short-term behavior, we cannot apply the decoupling technique (i.e. assume independent states)

States of the two flows are tightly correlated !

- We use a markov model in which the state is: { backoff stage of A, backoff stage of B }
- The computation of the collision probability is the key point

Analysis of Symmetric Incomplete State scenarios (SIS)

Steady-state distribution of Markov Chain:

Case	Throughput (pkt/s)	Collision probability	Time scale of unfairness (ms)	
RTS/CTS	218	0.25	235	ns
7 stages	216	0.25	223	model
RTS/CTS	229	0.11	982	ns
9 stages	230	0.09	1156	model
Basic access	125	0.69	15	ns
4 stages	107	0.75	15	model
Basic access	222	0.37	59	ns
7 stages	220	0.38	60	model

Conclusions

- We systematically studied all 2-flow scenarios of a multi-hop network
- We developed accurate analytical models to characterize throughput and fairness in all cases
- Spatial analysis reveals that problematic cases are not just "corner cases", but dominating scenarios occurring with high probability
- Deployment of wireless mesh networks using standard protocols (e.g. 802.11) incurs severe performance problems still to be solved

Thanks !

Decoupling technique (valid for general topologies)

• The channel "private view" of a node:

Modelled as a renewal-reward process

Modeling Media Access

- Define the probabilities
 - τ = probability that the node sends out a packet in a slot
 - p = conditional collision probability
 - b = conditional busy channel probability
- Event probabilities:

Modeling Media Access

- $\tau = f_{bianchi}(p)$ (a decreasing function of p)
- The unknown variables are: $p \quad b \quad T_b$
- Throughput formula:

$$T = \frac{\tau (1-p)}{\tau (1-p)T_s + \tau p T_c + (1-\tau)(1-b)\sigma + (1-\tau)b T_b}$$

• The throughput of a node decreases if either:

p is large (if so, *τ* is small, also) *b T_b* is large (large fraction of busy time)

Mobility and Fairness

40 nodes (20 flows) - 1000 m x 1000 m - RWP [7,15] m/s

Figure 12: Flow throughput comparison between a 10 second snapshot and a 120 second snapshot.

RICE