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Abstract—Many organizations have chosen to host Internet applications
at Internet Data Centers (IDCs) located near network access points of the
Internet to take advantage of their high availability, large network band-
widths and low network latencies. Current IDCs provide for a dedicated
and static allocation of resources to each hosted application. Unfortunately,
workloads for these sites are highly variable, leading to poor resource uti-
lization, poor application performance, or both. In this paper, we develop
a framework for QoS-driven dynamic resource allocation in IDCs. Termed
QuID (Quality of Service Infrastructure on Demand), the framework’s con-
tributions are threefold. First, we develop a simple adaptive algorithm to
reduce the average number of servers used by an application while satis-
fying its QoS objectives. Second, we develop an optimal off-line algorithm
that bounds the advantage of any dynamic policy and provides a bench-
mark for performance evaluation. Finally, we perform an extensive simu-
lation study using traces from large-scale E-commerce and search-engine
sites. We explore the gains of the QuID algorithms as a function of the
system parameters (such as server migration time), algorithm parameters
(such as control time scale), and workload characteristics (such as peak-to-
mean ratio and autocorrelation function of the request rate).

I. INTRODUCTION

Both large- and small-scale web content publishers and ap-
plication service providers are increasingly employing Internet
Data Centers (IDC) to host their services. IDCs provide physical
resources and space for customer servers, systems management
services to help manage the servers, and high speed Internet ac-
cess.

Clients of such hosted services have performance level ex-
pectations, including request throughput, response time, trans-
fer bandwidth, and probability of session completion. In current
IDC architectures with thousands of servers and hosted sites,
each service must be uniquely engineered to attain its desired
performance profile. This may be possible if each site’s work-
load remains static, or at least remains within a pre-specified
bound. However, evidence from workload analysis indicates
that demands are highly variable (often changing by a factor of
between 2 and 20 throughout the day) and unpredictable (with
demand surges due to special events) [2]. Since current IDC
architectures are manually configured and cannot automatically
adapt to these workloads, they result in poor resource utiliza-
tion or significant performance degradation when loads exceed
capacity.

To address these limitations, infrastructure-on-demand archi-
tectures have been recently introduced to dynamically share the
vast computing resources of IDCs [1], [18]. The central idea of
such architectures is to securely and adaptively migrate servers
from one site to another according to workload demands. For
example, if one hosted application is experiencing a demand
surge, servers can be migrated to this site from a shared pool
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or away from underloaded sites. While such architectures are an
important step in the design of next-generation IDCs, dynamic
resource management techniques are still needed to exploit the
efficiency gains of a dynamic policy while ensuring application
QoS requirements are satisfied. Furthermore the effectiveness
of migration techniques must be assessed.

In this paper, we introduce QuID (Quality of Service for In-
frastructure on Demand), a framework for QoS-driven dynamic
resource allocation in IDCs. Our contributions are as follows.

First, we devise a simple adaptive algorithm (QuID-online) to
provide hosted clients with the same or better performance pro-
file as with a dedicated set of servers. The key is to exploit long-
time-scale variations in the hosted application workloads. In
this way, QuID-online provides a practical dynamic algorithm to
realize significant reductions in resource requirements as com-
pared to static approaches.

Second, we devise an optimal off-line algorithm (QuID-
optimal) that computes the minimum resources required for a
given application arrival and demand sequence. In particular,
QuID-optimal jointly optimizes the server allocation decisions,
request load balancing decisions, and CPU scheduling deci-
sions. While QuID-optimal is clearly not implementable in ac-
tual systems, it serves two important purposes. First, it provides
a performance benchmark for evaluating practical algorithms
such as QuID-online. Second, it allows us to explore the fun-
damental limits of dynamic IDC architectures in that it provides
a bound on the resource savings that can be achieved by any
dynamic allocation policy subject to satisfying an application’s
QoS requirements.

Finally, we perform an extensive set of simulation experi-
ments using traces from a large E-commerce site (EC trace) and
a major search engine site (SE trace). With trace-driven sim-
ulations, we (1) provide a proof-of-concept demonstration of
QoS infrastructure-on-demand and quantify the available effi-
ciency gains; (2) compare the available gains of QuID-online
and QuID-optimal as compared to static allocation; and (3)
study the performance impact of key factors such as server mi-
gration time, control time scale, and trace characteristics.

With the experimental study, we quantify the workload, sys-
tem, and algorithm characteristics essential to realizing signif-
icant gains using QuID. Example findings are that for the EC
trace with a peak-to-mean ratio near 1.5 and a strong autocorre-
lation value above 0.99 at a lag corresponding to a 5 minute
server migration time, QuID-online reduces the resource re-
quirements over a static allocation policy by 25%. For traces
with peak-to-mean ratios near 5, this reduction is increased fur-
ther to 68%, despite the traces having more rapidly decaying
autocorrelation functions, as the workload retains strong auto-
correlation values at the key migration and control time scales.

The remainder of this paper is organized as follows. In Sec-



tion II, we describe the multi-tier IDC architecture and dynamic
server-migration system model. In Sections III and IV, we in-
troduce the QuID-online and QuID-optimal algorithms, which
we evaluate via trace-driven simulations in Section V. Finally,
we discuss related work in Section VI and conclude in Section
VII.

II. BACKGROUND

In this section we describe the basic system architecture of
an Internet Data Center that can dynamically migrate servers
among hosted applications. Moreover, we describe our system
model that serves as an application-tier IDC abstraction to study
the QuID framework.

Throughout this paper, a session refers to a sequence of affili-
ated requests for an end user. For example, an e-commerce ses-
sion would consist of a number of requests including the down-
load of catalog pages, searches for specific items, management
of a “shopping cart”, and purchase confirmation and payment
authentication at “check out”.

A. Architecture

Figure 1 depicts the four-tier architecture prevalent in today’s
IDCs. To illustrate this architecture, consider the requests of
an e-commerce session. First, the access tier routes requests to
the correct server cluster and performs basic firewall functions
such as intrusion detection. Second, upon arriving at the web
tier, load balancers may parse the request’s URL and route it
to a web server typically according to a load-balancing policy
(e.g., using round robin or more sophisticated policies as in ref-
erence [5]). If the request is for a static web page, a server in
the web tier serves the requested page. If the request is for an
e-commerce function, it is routed to the application tier. The
application tier stores the state of the request’s session such as
the contents of the shopping cart and performs operations such
as purchase processing. Finally, in cases where the session con-
tains requests such as database searches, the request is serviced
by the database tier.

In scenarios such as the e-commerce example above, each
session has associated state information (e.g., shopping cart con-
tents) that must be shared by all requests of the session. Since
it is inefficient to transfer session state between servers, each
session must be associated with a particular application server.
This requirement is referred to as session affinity. Sessions are
assigned a unique identifier (session ID) that is passed with each
request. Web servers use the session ID to route requests to the
proper application server. To allocate new sessions to servers,
the web servers can use round robin or other more sophisticated
measurement-based load balancing techniques.

B. System Model

In this paper, we consider a simplified abstraction of the
multi-tier IDC architecture to explore the issue of QoS-driven
dynamic server migration. In particular, we consider the sys-
tem model illustrated in Figure 2. The system model depicts a
single application tier of servers as well as the dispatcher that al-
locates sessions and requests to servers as described above. For
a single hosted application, the system can be viewed as dynam-
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ically migrating servers to and from a shared pool according to
the workload and QoS requirements of the hosted application.

Importantly, there is a migration time
�

associated with mi-
grating a server from the shared pool and into a particular ap-
plication’s server cluster. There are several ways this can be
accomplished. For example a migration time could include the
booting of an operating system and start of an application, or it
may include the time needed to restore a paused/migrated im-
age of an application in execution. We consider migration times
between 1 minute and 10 minutes in our experiments.

Similarly, releasing a server from a cluster also takes time,
as even after web servers stop sending new sessions to the
application-tier server, all sessions currently in progress at the
server must be completed or timed out. Based on server logs,
we expect typical “warm-down times” to migrate out servers to
be in the range of 1 to 15 minutes.



III. AN ALGORITHM FOR QOS-DRIVEN INFRASTRUCTURE

ON DEMAND

In this section we present an algorithm for server migration in
dynamic IDCs that attains predictable Quality of Service. The
purpose of the technique is to maintain a targeted cluster-wide
average CPU utilization by acquiring and releasing servers in re-
sponse to changes in load. With simple queueing theoretic argu-
ments and simulation experiments, we show that QuID-online’s
utilization-target provides an effective mechanism for maintain-
ing cluster-wide QoS. Moreover, by time-averaging workload
variations and (necessarily) gradually migrating new servers
into and out of the cluster, the algorithm minimizes the impact
of rapid fluctuations in load and instead responds to long-time-
scale trends.

A. QuID-online

To achieve these goals, the online algorithm requires mea-
surements characterizing the state of the system. Thus, the
QuID-online cluster manager depicted in Figure 2 periodically
queries the application servers for summary workload informa-
tion. The measurement interval, which we denote by � , is typi-
cally on the order of minutes in duration. Thus, every � the clus-
ter manager queries servers for the following measurements:

�
,

the number of request completions in the previous measurement
interval; � , the number of request arrivals in the previous mea-
surement interval; and � , the average CPU utilization (over all
servers) in the previous measurement interval.1 Note that av-
erage CPU utilizations are generally available from operating
system monitors and application level measures such as request
arrivals and completions per interval are typically available from
server logs. In both cases, this information is summarized at the
servers and communicated to the cluster manager.

Given � , the current number of servers, as well as � , the tar-
get utilization, QuID-online computes ��� , the required number
of servers for the next interval as follows:

1. �
	��� � , compute the average demand per completion;
2. ����	������������ ��� � , compute the normalized utilization
based on the current number of servers and all arrivals;
3. � � 	������ � ��� � , compute the number of servers needed to
achieve the target utilization � .

Step 1 computes � using cluster-wide aggregate utilization
and completion measurements � and

�
, as well as the utiliza-

tion relationship �!	 � � . Step 2 normalizes the CPU utiliza-
tion with respect to the current number of servers and the num-
ber of arrivals for the measurement interval. When the system is
under increasingly heavy load, arrivals may exceed completions
and the computation of �"� takes this into account. This allows
QuID-online to react more quickly to increases in load than via
the use of

�
or � alone. Moreover, we use the maximum of

� and
�

to avoid releasing servers too quickly, thereby mak-
ing the algorithm less sensitive to short-term decreases in load.
Thus, the aggregate CPU utilization �#� is the normalized uti-
lization. In Step 3, we compute the upper bound on the number
of servers �$� needed to maintain the target utilization � .

%
Namely, &!'
()& %+* &-, *�./.0.�* &-13254/6 from the reported values of

individual CPU utilizations.

QuID-online initiates requests to acquire or release servers
whenever �$�87	9� . However, note that the overhead due to
server migration time prohibits rapidly changing the number of
servers. There are several aspects of the algorithm which miti-
gate the effects of this overhead. First, the measurement interval� can be increased to average out short-term load fluctuations.
Second, we note that the migration time itself provides a damp-
ing mechanism and we employ an additional policy as follows.
If more servers are needed �5�:�<;=� �

, servers previously warm-
ing down in preparation for migration out of the cluster are re-
instated into the cluster in a last-in-first-out order before any re-
quests are made to acquire additional servers. Similarly, if fewer
servers are needed �5�:�?>
� �

, servers previously warming up
in preparation to join the cluster are released in a last-in-first-
out order before any requests are made to release servers doing
useful work. Finally, we incorporate the overhead of migration
time by accounting for servers migrating to and from the cluster
in the computations of the average numbers of servers.

B. Discussion

QuID online’s use of a target CPU utilization � as a control
parameter for QoS is justified as follows. First, assume that
servers have a large number of threads so that requests rarely
incur software blocking. Moreover, consider that threads are
scheduled in a first-in-first-out manner without preemption by
their server’s CPU. Furthermore, the individual sessions consti-
tuting the total workload can be considered to be independent.
In this scenario, a server cluster as in Figure 2 can be modeled
as a @���@��A� system which has a mean response time B under
heavy traffic given by [16]:

BC	 ��9DFE
GH DJI�KLM

KNPOQ �0RTSU� �

where E
GH and E

GV are the variance of interarrival and service
times, respectively, and

OQ
is the mean interarrival time. Since, the

response time B is determined by the utilization � , we maintain
a target utilization � by controlling the number of servers � .

Regardless, QuID-online does not attempt to relate B and �
directly and makes no such assumptions about inter-arrival or
service time distributions. However, the relationship between
response time and target utilization can be determined empir-
ically for a particular workload. We utilize this methodology
in Section V and show how a proper setting of � can control
cluster-wide QoS.

Finally, consider the following numerical example. Sup-
pose the target utilization is �W	YXPZ\[ , the number of servers
is �]	^R`_ . Moreover, consider that over the previous mea-
surement interval, we have

� 	a[bXbX completions, �a	c[ N X
request arrivals, and a measured cluster utilization of �
	!XPZ d .
In this case, we have � 	eXfZ dg�h[bXbX
	eXfZ X XPR N and �"�i	
[ N Xf�5XPZ XbXPR N � 	jXfZ d N _ such that the required new number of
servers is given by �:�-	k�lRm_-�5XPZ d N _ � �hXPZ\[��n	oRmp . Since �:��;=�
a request is initiated to acquire �:�-S��q	W_ additional servers
for the cluster.

IV. OPTIMAL OFF-LINE ALGORITHM

In this section we develop QuID-optimal, an optimal off-
line algorithm for resource allocation in dynamic IDCs. QuID-



optimal provides a benchmark for evaluation of practical algo-
rithms by computing the minimum number of servers required
by a server migration algorithm such that the application’s re-
sponse time requirement (QoS) is bounded cluster-wide. Con-
sequently, it characterizes the maximal available gain of any dy-
namic policy as compared to a static policy.

QuID-optimal uses as its inputs a workload trace, i.e., a se-
quence of session and request arrival times as well as the corre-
sponding server CPU processing time required to service each
request. For a particular migration time and maximum response
time, the algorithm jointly computes the best sequence of dis-
patching decisions (allocation of requests to servers), schedul-
ing decisions (when to serve each request), and dynamic server
allocation decisions (how many servers are required to ensure all
request response times are within the required QoS bound). The
solution, while not realizable in practice, provides the “best” de-
cision sequence among all three dimensions in that it provides
the minimum server solution subject to the maximum response
time QoS requirement.

To solve this problem, we first formulate the dynamic server
allocation problem as a constrained optimization problem. Next
we transform the non-linear problem into a linear programming
problem and show that the solutions of the two problems are
equivalent. Finally, we discuss a simplified and more compu-
tationally feasible (but still not on-line realizable) bound that
relaxes some of the most computationally intense constraints.

A. Problem Formulation

Consider a set of requests
�

such that request ��� �
has ar-

rival time ��� and workload or required server processing time� � . Moreover, consider that the system has migration time
�

and control time scale � , and that the application QoS require-
ment is a maximum response time �
	 . Moreover, each request
must be serviced by a single server.

As described above, our objective is for each server to ser-
vice all queued requests according to an optimally computed
non-preemptive schedule, optimally computed dispatching, and
a minimum number of servers.2
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Fig. 3. Workload �

Define �� ( �� 	 R � N ������� ����	 S � � D R ) such that request �
begins service at time ��� D �� and define ��� such that request �
completes service at time � � D � � . Thus, as illustrated in Figure
3, � � is the response time and we say that request � is being
serviced with schedule ��� .3 Let the indicator � �� be defined such

, We consider a discrete time problem formulation with the time granularity
representing a tradeoff in the accuracy of the solution and the time required
to compute the optimal solution. In the experimental results of Section V, we
consider a granularity of 1 second.�

For ease of notation, we henceforth drop the subscript � for ��� , as the request
indexed is clear from the context.

that � �� 	�R if request � is serviced by server � , and � �� 	aX
otherwise. Moreover, let the indicator � ���� 	9R if request � is
serviced by server � under schedule � . Finally, let the indicator� ����� 	oR if at time

Q
, request � is being serviced by server � under

server schedule � .
Denote ! as the set of servers, "#� as the set of feasible sched-

ules of request � , $%� 	W�&���0�'��� D ��	)( as the interval of arrival time
to departure deadline of request � , * as the set of sessions and+�, as the set of requests in session - , +., �/* . Let $ be the
trace duration, 0 	213 be the number of measurement intervals,
�54 be the number of servers at the 6 -th measurement interval,
and ��47�98 Xf�`R � N �������;: .

Our objective is to jointly optimize the request dispatching de-
cisions � � 	� , CPU scheduling decisions � ��� 	� , and dynamic server
allocation sequence � 	4 that minimizes the required resource < ,
expressed as
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where ���i	cX . The first term in Equation (1) represents the
resource overhead due to migration, while the second term rep-
resents the resource consumption when servers are in active use.
Constraint (C1) is a system constraint that the cluster has suf-
ficient capacity during each measurement interval 6 to service
all scheduled requests. Constraints (C2) and (C3) are QoS (re-
sponse time) constraints that each request � arriving at � � should
be finished before � � D ��	 . Constraint (C4) guarantees that a
single server services no more than one request at any time in-
stant

Q
. Constraint (C5) ensures that each request is serviced by

a single server. Constraint (C6) is the session-affinity constraint
that requests belonging to the same session will be serviced by
the same server. Finally, constraints (C7) and (C8) are non-
preemption constraints, ensuring that each request is serviced
continuously once it begins service.

B. Linear Programming Solution

The first term ��� 4 S#� 4�IJG � K in the objective function hinders
us from solving the problem with linear programming method.
In this section, we first define a linear programming problem Q,
then prove that problems Q and C have the same solution.

First, we define a linear programming problem Q as follows

��=�> 8 �A@CBD
4FEHG

	 4 D � @CBD
4 EHG

��4
: � (2)

subject to

�N<�
 � ��4?Si��4�IJGT	 	 4?S� 4 �
6 �98 Rb� N ������� �;0]:

and constraints (C1)-(C8), where 	 4 O X and � 4PO X .
The following lemmas and theorem show that problems Q and

C are equivalent.
Lemma 1 For any pair ( � 4 , � 4�I%G ) with � 4 and � 4�I%G non-
negative integers, there exists a sequence ( 	 4F� , � 4 � ) with 	 4F�#O
X and � 4F� O X , such that ��4?S ��4�IJG 	 	 4F� S��J4F� for all � , and
��=�>� 	 4F� 	�� �54?S �54�I%G'( K .

Proof: There are three relevant cases for �i4:S �54�I%G . If
� 4 S � 4�I%G 	 X , then � � 4 S � 4�I%G ( K 	 X , since � 4 � O X��
� , ��=�>� 	 4F� 	!X . If � 4 S�� 4�I%G >oX , then � � 4 S�� 4�I%G ( K 	WX ,

since �J4F� O X��b� , ��=�>� 	 4F� 	 X . Finally, if ��4�S �54�I%G ; X ,

then � �54 S �54�I%G'( K 	 �54 S �54�I%G . Thus, since �J4F� O X�� � , we
have that �5=?>� 	 4F� 	 � 4 S � 4�I%G . �
Lemma 2 If 	 	4 and �k	4 is the optimal solution of problem �
such that � 	 	 ��=?>�� 	28 � @ B�

4FEHG
	 	4 D � @ B�

4FEHG �k	4 : , with

the statement in Lemma 1, then 	 	4 	 ��=?>� 	 	4F� for all 6 .

Proof: For any pair ( �9	4 , �k	4�I%G ), there exists a sequence ( 	 	4F� ,
�c	4 � ), 	 	4 � O X , � 	4F� O X , such that �9	4 S �k	4�IJG 	 	 	4F� S��c	4F� ,
for all 6 , � . We need to show that 	 	4 	���=?>� 	 	4 � , � 6 which we

prove by contradiction as follows.
Assume that there exists an � ��� R � N ������� �'0d( such that 	 	� 7	

��=�>� 	 	� � . Let �	 � 	 ��=�>� 	 	� � . Then we have �	 � �k8 	 	� � : , and since
	 	� �k8 	 	� � : , we have �	 � > 	 	� . Replacing 	 	� with �	 � , we have
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Since
� ;!X , �� >�� 	 	 ��=?>�� , which leads to a contradic-

tion. Thus, 	 	� 	 ��=?>� 	 	� � . �
Theorem 1 Optimization problems Q and C have identical min-
imum values and identical solutions in terms of � ��� 	�� , � ��� 	� , � � 	�
and � 	4 .

Proof: From Lemmas 1 and 2, we have 	 	4 	o���9	4 S"�k	4�IJG � K for
all 6 . From Equations (1)-(2), problems Q and C are equivalent.
�
C. Relaxed Optimal

Given the high computational complexity of the above lin-
ear programming formulation, we consider the following re-
laxed optimization problem in order to efficiently compute op-
timal solutions to the large 24 hour traces described in Section
V. Namely, for the experimental investigation of QuID-optimal,
we consider system constraint (C1), response time constraints
(C2)-(C3) and constraint (C9) while relaxing constraints (C4)-
(C8). While significantly reducing the computational complex-
ity, removing these constraints also results in a reduction in the
computed minimal number of required servers. For example, by
relaxing the session-affinity constraint (C6), requests within a
session may be serviced by different CPUs, resulting in fewer
required CPUs overall. Hence the reported QuID-optimal ex-
perimental results provide a bound on the performance of an
on-line algorithm.

In all cases, we use the linear programming package CPLEX
[11] to compute the optimal decision sequence.

V. TRACE-DRIVEN SIMULATION EXPERIMENTS

In this section, we use workload traces from two large-scale
commercial sites to evaluate the performance of the QuID-
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Fig. 4. Trace Request Arrivals and Workload

Request Percentage Mean demand
type of requests

Request Response
Web App DB App Web

Static R pPZ � 10 0 0 0 0
Cache Hit _ XfZ [ 10 1 0 0 1

Cache Miss R � Z _ 10 500 60 1 1
Uncacheable pPZ Xbp 10 100 60 1 1

Search RmXfZ N 10 40 0 0 1
Other [PZ X � 10 20 0 0 1

TABLE I

MEAN CPU DEMANDS FOR DIFFERENT REQUEST TYPES OF THE EC-TRACE. DEMAND VALUES ARE RELATIVE TO THE MEAN CPU DEMAND OF A

CACHE-HIT REQUEST ON THE APPLICATION TIER.

online algorithm and to explore the limits of dynamic server mi-
gration via the QuID-optimal algorithm. As a further base-line,
we also compare with the case of a static system in which the
number of servers in the IDC cluster remains fixed for all time.
Finally, we explore the impact of trace characteristics such as the
workload’s peak-to-mean ratio and autocorrelation function on
performance by perturbing one of the traces via self aggregation
and log transforms. This methodology allows us to study the
impact of various trace attributes on the effectiveness of QuID.

A. Methodology

A.1 Traces

We use the two commercial traces depicted in Figure 4 for
our evaluation. The “EC trace”, studied in [3], is a

N _ -hour trace
from a large-scale E-Commerce site with a multi-tier architec-
ture as illustrated in Figure 1. The “SE trace” is a near 24-hour
trace obtained from Google, a large scale Search-Engine web-
site that relies on a cluster of search servers. The SE trace was
collected in early 2000 and consists of request IDs and times
to service requests (and not actual query information).4 For the
two traces and a 20 minute aggregation granularity, Figure 4(a)
depicts the rate of request arrivals and Figure 4(b) depicts the
workload which refers to the total CPU demand arriving per sec-

�

Neither trace is available in the public domain and for privacy concerns, both
traces have been scaled so that the depicted rates of Figure 4 differ by a constant
factor from the actual traces.

ond. Note that the SE trace has a smaller request rate but a larger
workload than the EC trace due to the larger mean CPU process-
ing time per request for searches as compared to e-commerce
requests.

The EC trace was gathered using web server logging mecha-
nisms and is composed of sessions that consist of at least one re-
quest per session. Each request has an arrival time, a session-ID,
and a classification type according to a static document, cache
hit or miss, search, etc. Using testbed measurements, we com-
puted the mean CPU demand (processing time required to serve
such a request) for each type of request. The resulting request
types, percentage breakdown, and mean CPU demands are sum-
marized in Table 1. To associate a CPU demand (workload) with
each request in the trace, we determine the request’s classifica-
tion and generate an exponentially distributed random variable
with mean according to Table 1.

The SE trace is based on search engine server logs obtained
from a popular search-engine website. The SE trace includes
each request’s arrival-time and processing time. As all requests
are of the same type for the SE trace (search), classification is
not required. Thus, we compute the empirical distribution of
request processing times (discarding outliers) and generate CPU
demands according to this distribution.
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A.2 Simulation Preliminaries

We have implemented a trace-driven simulator based on Yac-
Sim [14]. The simulator has three key functions as depicted
in Figure 2. First, it implements the QuID-online algorithm as
described in Section III.5 Second, it performs round-robin al-
location of sessions to servers and ensures session affinity as
described in Section II. Third, the simulator models servers ac-
cording to a first-come-first-serve non-preemptive CPU sched-
ule, with request service times computed as above. Thus, the
simulator necessarily ignores many low level details of the
server, but by using trace-driven inputs and response time mea-
surements, it allows us to study the performance of server mi-
gration algorithms.

For both traces, we consider a single bottleneck tier, and study
three factors. First, we explore � , the target utilization for server
CPUs which controls the request response time. Second, we
consider � , the duration of the measurement interval. As de-
scribed in Section III, � is the interval over which measurements
are collected by the QuID cluster manager. As the QuID cluster
manager re-evaluates �:� (the new number of required servers)
each time it receives new measurements, � also determines the
system’s control time scale. We consider values of � in the range
of 0.5 to 20 minutes. Finally, we explore the impact of the mi-
gration time

�
required for a server to join a cluster. We con-

sider values for
�

in the range of 1 to 10 minutes.
Finally, as simulator outputs, we record the request response

times (elapsed time between request arrival and completion) and
the number of servers in the cluster at each interval � . We re-
port 95%-ile response times as our key QoS measure and the
average number of servers in the cluster as a measure of QuID’s
efficiency.

B. QuID Performance Gains

Here, we explore the resource savings and QoS improvements
available due to QuID as compared to a static approach. Figure
5 depicts the average number of servers vs. the response times
for the QuID-online algorithm, and presents comparisons with
QuID-optimal and static allocation as baselines.6 Consider first
the QuID-online curve of the EC trace in Figure 5(a). Each point
on the curve represents the result of a simulation for a different
�
The initial number of servers is 16.	
For the figure, 
 = 5 minutes and � = 1 minute.

target utilization � , with measured utilization values depicted
next to each point. For example, the figure shows that for a uti-
lization of 0.66, QuID-online achieves a 95%-ile response time
of less than 5 seconds and requires 17 servers on average. In
contrast, for a static allocation, 24 servers are required to achieve
this same 5 second response time. Hence, for this response-time
QoS target, QuID-online has reduced the required number of
servers by 29%. An equivalent interpretation is that for a fixed
number of servers, QuID-online improves QoS as compared to
a static approach. For example, for the EC trace and 20 servers,
QuID-online achieves a 95%-ile response time of 3.7 sec vs. 7.4
sec for static allocation, a 50% reduction. Moreover, as IDC
operators would likely be required to over-provision servers to
address unknown and highly variable workloads, the gains of
QuID-online as compared to a static approach may be even more
pronounced in practice.

Next, consider the QuID-optimal curve in Figure 5(a). As de-
scribed in Section IV, this represents the fundamental limits of
the efficiency of a dynamic migration policy. For example, the
figure shows that for a 100%-ile response time of 5 sec,7 QuID-
optimal utilizes 12 servers as compared to 17 for QuID-online
and 24 for static allocation; hence, a further resource savings of
21% is available in theory. Next, notice that with increasing re-
sponse times, the QuID-optimal curve approaches a limit for the
minimum number of servers needed to serve the entire work-
load without any response-time constraints. This limit is given
by � , �� 	 � � � � � $ (recall that � � is the workload of request
� and $ is 24 hours) which for the EC trace is 11 servers and
for the SE trace is 24 servers. Finally, we observe that it would
be impossible to realize the complete gains of QuID-optimal in
practice. In particular, QuID-optimal is a non-causal algorithm
that can (in effect) anticipate future increases in demand and mi-
grate servers to be ready at precisely the right moment. More-
over, QuID-optimal ignores session affinity, optimally sched-
ules CPU time, divides the load of individual requests across
multiple servers, etc. (Section IV details the complete scenario
for QuID-optimal.) Regardless, QuID-optimal provides a lower
bound on the number of servers needed to support the work-
loads.

Next observe that for the SE trace of Figure 5(b), the general
�
It is not computationally feasible to compute the 95%-ile for QuID-optimal.

Thus, the figure shows the 95%-iles for QuID-online and static, and the 100%-
ile for QuiD-optimal.
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Fig. 6. Impact of 
 and � on QoS and Resource Savings

trends are the same whereas for higher response times, the re-
source savings for QuID-online are larger as compared to static
and QuID-online performs more closely to QuID-optimal. How-
ever, as with Figure 5(a), with very low utilizations and response
times, the static and QuID-online curves converge to an asymp-
tote quite different than QuID-optimal. This situation is ex-
plained as follows. When the server utilizations are very low,
the 95%-ile of the response times are approaching the 95%-ile
of the CPU demand times such that each server is normally serv-
ing a single session at a time. In such a case, there is no advan-
tage of a dynamic migration policy over a static one. However,
QuID-optimal still shows a resource savings in this regime as
it divides requests among multiple servers thereby reducing re-
sponse times for a given number of servers.

C. Control Time Scale and Migration time

In this set of experiments, we fix � and study the effects of
the migration time

�
and the measurement interval � on the

performance of QuID-online as compared to static allocation.
Figure 6(a) depicts the results for experiments with �:	 XfZ �

and
� 	 R minute, and � varied in the range of 0.5 to 20

minutes. In the algorithm, � functions as both a measurement
interval and the control-time-scale of migration. Thus, if � is
too small, the algorithm is ineffectively attempting to track fast-
time-scale demand fluctuations. Similarly, if � is too large, the
algorithm is not sufficiently responsive to demand changes. The
figure illustrates these general trends but indicates that most of
the performance gains are obtained across a wide range of � ,
with the best value being 5 minutes.

For the experiments of Figure 6(b), �o	YXPZ � and � 	 R X
minutes and the migration time

�
is varied in the range of 0

to 10 minutes. The figure illustrates that migration time has a
relatively minor impact on the performance of QuID-online, as
all of the considered migration times are significantly less than
the time-scales of the trace’s changes in workload demand. (See
also the autocorrelation function of the original trace in Figure
7(b).)

D. Trace Characteristics

Here we study the performance of the QuID-online algorithm
as a function of the peak-to-mean ratio and autocorrelation func-
tion of the trace. To explore this issue, we generate a modified
set of traces via a set of log transformations (to modify peak-

to-mean workload ratio) and temporal aggregations (to modify
autocorrelation).

D.1 Methodology for Trace Transformation

Given the limited number of available traces suitable for IDC
simulations, we transform the trace by taking the log of (one mi-
nus) the scaled number of arrivals and then again rescaling the
modified trace. By repeating this log transformation � times, in-
creasingly higher peak-to-mean ratios are obtained. The effect
of this transformation is illustrated in Figure 7(a). Also evident
from Figure 7(b), the log transformation modifies the trace’s au-
tocorrelation function. To control the autocorrelation function
directly, we also self-aggregate the trace with different aggrega-
tion “batch” intervals denoted by � . In particular, if the original
trace is

� G � � G ������� , a trace aggregated with a batch interval �
has � � 	k� � � D � � K G D ����� � � K�� I%G � ��� . Thus, a larger value
of � results in greater temporal correlation. The net effects of
these two transformations are illustrated in Figure 7(a,b).

D.2 Experiments with Transformed Traces

Figure 8 depicts the results of the experiments with the trans-
formed traces. In these experiments, we consider � 	WZ � , � 	C[ ,
and

� 	 R , and each of the 4 points in the curve represents re-
sults of the ���
	 G to ���
	

�
traces with �
	 [ and � 	 N X . Figure

8(a) shows the resource savings of QuID-online as compared to
static allocation for the same 95%-ile response time. Similarly,
Figure 9 depicts the response time as a function of the modified
traces’ autocorrelation coefficient at a lag of 5 minutes.

We make the following observations about the figures. First,
note from Figure 8 that with an increasing peak-to-mean ra-
tio, QuID-online is able to extract increased resource savings.
However, the relationship is not linear as the more widely vary-
ing traces are also more difficult for the dynamic algorithm to
track due to their more rapidly decaying autocorrelation func-
tions. For example, the demand surge of the ���
	

�
trace results

in periods where an insufficient number of servers are allocated
such that response times increase (Figure 8(b)).

In summary, while the above log and aggregation transforma-
tions are not intended to produce realistic traces, it results in an
important conclusion: if IDCs experience “flash crowds” or de-
mand surges as represented by the ���
	

�
trace, QuID-online can

track the widely varying load provided that the autocorrelation
values are still relatively high (e.g., above 0.9) at lags corre-
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sponding to the key time scales of the system, namely the server
migration time and the measurement window (e.g., 1 to 10 min-
utes).
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VI. RELATED WORK

As described in the Introduction and illustrated in Section V,
static partitioning of IDC resources results in under-utilization
of resources. A number of related approaches have been pro-
posed to address this issue [1], [9], [12], [18], [19]. Each offers a
notion of utility computing where resources can be acquired and
released when/where they are needed. Such architectures can be
classified as employing shared server utility or full server util-
ity models. With the shared server utility model, many services
share a server at the same time, whereas with the full server util-
ity model, each server offers one service at a time.

An example of a shared server utility environment is MUSE
[9] in which hosted web sites are treated as services. All ser-
vices are run concurrently on all servers in a cluster, and a pric-
ing/optimization model is used to determine the fraction of CPU
resources allocated to each service on each server. A special dis-
patcher, a level 4 load balancer, routes web page requests for all
services only to those servers where the service has a CPU allo-
cation. The optimization model shifts load to use as few servers
as possible while satisfying service level agreements (SLA) for
the services. A major goal of the work is to maximize the num-
ber of unused servers so that they can be powered down to re-
duce energy consumption.

Other mechanisms for shared server utilities include clus-
ter reserves for multiple-service performance isolation [4] and
QoS-differentiation algorithms [20]. Examples of commercial
shared server utility computing products that partition server re-
sources in clusters of shared servers include [12], [19], which
have resource management systems that aim to satisfy SLAs
while better supporting increased resource utilization.

In contrast, a full server utility data center is presented in
reference [18] and has been realized as a product [13]. It ex-
ploits the use of virtual LANs and SANs for partitioning of re-
sources into secure domains called virtual application environ-
ments. These environments support multi-tier as well as single-
tier applications as in Figure 1 and can also contain systems
that internally implement a shared server utility model. In ei-
ther case, such a system can make use of our QuID framework
as a resource migration algorithm.

A second example of a full server utility approach is Oceano



[1], an architecture for e-business applications. The security do-
mains are dynamic as the resources assigned to them may be
augmented when load increases and reduced otherwise. Ref-
erence [1] presents an overview of an SLA based management
system for the multi-tier environment that includes service lev-
els for response time metrics gathered within each domain. Ser-
vice level violations trigger the addition and removal of servers
from clusters. The focus of [1] is the management architecture
and measurements of key actions such as server migration times.
However, in both [1], [18] migration algorithms are not evalu-
ated and no studies of the performance of dynamic migration
policies are presented.

Thus, unlike shared server utility approaches, QuID applies to
full server utility environments such as [1], [18]. In particular,
we have devised a QuID cluster manager control algorithm and
demonstrated its effectiveness in reducing the number of server
resources needed by hosted applications while satisfying appli-
cation response time objectives.

Finally, we note that the issue of web server QoS has received
a great deal of attention in contexts such as web server admis-
sion control [7], [15], [17], QoS-based server selection among
servers located at different network nodes [10], operating system
support [6], [8], networking support, etc. Such techniques rep-
resent mechanisms at the request and session time scale whereas
QuID operates on time scales of minutes. Moreover, the gran-
ularity of resource control for QuID is the server, whereas such
techniques typically have a shared server utility model.

VII. CONCLUSIONS

This paper presents QuID, a framework for QoS-driven server
migration in Internet Data Centers. We found via trace-driven
simulation that the QuID-online algorithm provides resource
savings as compared to static allocation in the range of 25%
for E-Commerce and Search Engine traces with peak-to-mean
workloads near 1.5, and savings near 68% for workloads with
peak-to-mean ratios near 5. This reduction is in comparison with
the smallest number of servers that can be statically provisioned
to achieve similar response time percentiles. In general, a static
allocation would have to over-provision additional servers since
it is unlikely that the workload’s peak demand would be known
in advance.

The results of the technique also compare favorably with an
off-line algorithm that gives an upper bound on resource savings
for a specific workload trace and a maximum response delay re-
quirement. Potential resource gains appear relatively insensitive
to reasonable values for measurement interval and server migra-
tion time.

We explored the sensitivity of the technique with respect to
trace characteristics by perturbing one of the traces. As the
peak-to-mean increases greater resources savings are achieved.
However, as a side effect of our method, an increase in peak-
to-mean also causes decreases in autocorrelation of the system
load. The decreases in auto-correlation did not appear to have as
significant an impact on resource savings but do decrease QoS
by increasing response time percentiles. In all cases our system
load autocorrelation values were above XPZ 
 for the time scales of
interest.

Finally, in future work, we plan to consider the interactions of

server tiers (i.e., clusters) within an application as well as mul-
tiple applications within an IDC. Moreover, we plan to explore
overload policies, i.e., how to migrate servers in scenarios when
the entire resource pool is exhausted. Lastly, we plan to imple-
ment the algorithm in our large-scale server-migration testbed
to provide a proof-of-concept demonstration of QuID.
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