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Abstract—It has recently been shown that distributed queue-
based adaptation of CSMA’s contention aggressiveness can prov-
ably optimize network utility. However, such an approach is
fragile, in that it suffers high performance degradation under
conditions of asymmetric channels, heterogeneous traffic, and
packet collisions. In this work, we address the main sources
of performance degradation in optimal CSMA to design a
distributed system for proportional-fair throughput that deliv-
ers high performance in a wide-range of network conditions.
First, we generalize prior optimal CSMA models to incorporate
individual per-link modulation and coding rates. With such
a model, we derive adaptive principles that maximize utility
under arbitrary channel capacities. Second, we propose a novel
structure that can be used in the place of queues to provide
optimal CSMA adaptation. As such a structure does not use
traffic backlog to operate, the resulting adaptation is optimal for
the set of backlogged flows under general traffic arrival patterns.
Third, we propose a robustness function that reduces access
attempts in high contention scenarios to avoid high performance
degradation due to collisions. By evaluating our approach in
combined scenarios that incorporate the three main sources of
performance degradation, we observe vast performance gains,
with an average 68% higher logarithmic utility compared to
prior solutions.

I. INTRODUCTION

Recently, an analytical framework has been proposed to

derive distributed CSMA algorithms for network utility max-

imization [6]. The main idea in such designs is to adapt the

back-off distribution at each transmitter based on the length

of queues at the MAC layer in a way that was rigorously

shown to approach the optimal network-wide throughput dis-

tribution. Based on this method, an umbrella of distributed

protocols have been derived, showing high performance gains

in scenarios considered by the model [6]–[11].

However, later experimental work has shown that the same

approach is fragile, and can suffer from high performance

degradation as the model assumptions break [14]. In particular,

are three the main sources of performance degradation in

optimal CSMA networks: channels asymmetries, packet col-

lisions at flow receivers, and dynamic traffic patterns such as

congestion-controlled flows. While other real-world conditions

can differ from those assumed by the models (see [13] for

a longer list), their impact has been found to be minor in

comparison with these three performance degradation sources.

In this work, we derive a novel CSMA system for propor-

tional fairness using a mixed approach that jointly considers
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optimization and robustness. On the one hand, we derive

techniques to relax the assumptions on channel symmetry

and traffic arrival patterns from design models, so that the

optimization becomes inherently robust to such conditions.

On the other hand, we introduce a robustness function that

limits performance degradation due to collisions by reducing

network access when contention levels are high. By accounting

for the three underlying sources of performance degradation

in optimal CSMA, the derived system outperforms current

approaches in a wide range of network operating conditions.

Our contributions are as follows.

First, we generalize the throughput model in [6] to the

case of networks with arbitrary link capacities to incorporate

adaptive modulation and coding rates. While our model is

based on a simple extension, it is powerful enough to extend

CSMA optimality analysis from the specific case of fixed

unitary capacity to general capacity assignments, and to derive

adaptation principles robust to such conditions. Furthermore,

with this model we show how to derive a distributed CSMA

protocol that maximizes proportional-fair throughput in net-

works with channel asymmetries without explicit knowledge

of channel error probabilities.

Second, we observe that prior queue-based CSMA guaran-

tees optimal adaptation only when the arrival of packets at each

queue follows a specific process derived from the target utility

function. For other arrival patterns, the performance of the sys-

tem remains unspecified, which leads to severe performance

degradation under common traffic such as bursty flows and

TCP traffic. To solve this, we propose a novel structure, termed

the service meter, which emulates the operation of a queue,

thus inheriting the basic properties that allow optimization,

but uses a fictitious flow of abstract transmission units, so that

its evolution over time is not affected by (real) traffic arrivals.

With such a structure, adaptation can be shown optimal for the

set of backlogged flows under general traffic arrival patterns.

Third, the prior adaptation principle of optimal CSMA

models assumes no packet collisions, and can yield severe

performance degradation when the network contention levels

are high. We show that the goal of optimizing performance

alone conflicts with the goal of robustness, such that optimal

access can only be attained by arbitrarily increasing the con-

tention rate at all flows, while collisions can only be reduced

by decreasing it. Based on this observation, we propose a

combined system that balances optimality and robustness by

targeting near-optimal access in scenarios with low contention,

but reducing channel access to avoid interference as the



number of contending flows increases.

Finally, we evaluate the performance of our design against

other solutions under the three sources of performance degra-

dation above. Our results show that in scenarios with channel

asymmetries our generalized throughput model increases op-

timization accuracy up to 4 times. In scenarios with heteroge-

neous traffic, the use of service meters delivers vast fairness

gains, restoring the throughput of (otherwise) starving flows. In

scenarios with high contention, our approach increases the net-

work throughput with respect to optimal CSMA of about 78%

by limiting collisions at flow receivers. Furthermore, the joint

operation of these three solutions delivers high performance

across a wide-range of network operating conditions, with up

to 68% average increase in logarithmic utility in randomly-

generated networks with 48 flows.1

II. THE OPTIMAL CSMA FRAMEWORK

A. Network model

Optimal CSMA is an analytical framework proposed in

[6] for design of distributed CSMA algorithms maximizing

different measures of network performance [6]–[11]. Such

works model a wireless network using a graph G = (V , E)
where V is the set of nodes and E ⊆ V2 is the set of links.

Denote as F ⊆ E the set of traffic flows, of size F = |F|. It is
assumed that a distinct packet queueQf is maintained for each

flow f = (i, j) at the MAC layer of node i (the transmitter,

or source node). The queue temporarily stores packets until a

transmission opportunity is granted to f .
Interference among links has been captured using a conflict

graph (e.g., [6]), or an interference matrix (e.g., [9]). In either

case, define an Independent Set (IS) in G as a subset of

flows that do not interfere with each other, and thus can

successfully transmit simultaneously. An IS is represented

by a tuple m ∈ {0, 1}F , where mf = 1 if f belongs to the

independent set. Denote as N the set of all ISs in G.
Assuming unitary modulation rates at all links, and no

channel errors, the capacity area of the network is defined

as

Γ = {γ ∈ [0, 1]F : ∃π ∈ [0, 1]|N |,

∀f ∈ F , γf ≤
∑

m∈N

πm ×mf ,
∑

m∈N

πm = 1}

i.e., the set of all throughput distributions in the network

that are feasible by activating non-interfering links. Note that

the area Γ so defined is a convex region, as the convex

combination of ISs.

B. Queue-based CSMA optimization

The optimal CSMA framework captures complex inter-

actions among nodes in a multi-hop network using the

continuous-time CSMA model from [1]. In such a model,

the transmitter of a flow f waits for a silent back-off time

exponentially distributed with mean 1/λf before transmitting,

and uses a transmission duration exponentially distributed

1Due to space constraints, some of these results are presented as a
companion technical report in [5].

with mean µf . In the following, we denote such a model as

CSMA(λ,µ).
The dynamics of a CSMA protocol operating in the network

G can then be captured with a reversible Continuous Time

Markov Chain (CTMC) M, where the set of states is N , and

the transmission probabilities depend on the CSMA parame-

ters (λ,µ) ∈ R>0
2×F . Defining qf = log(λf × µf ) ∀f ∈ F ,

the stationary distribution of M is given by

πqm =
exp (

∑

f∈F qf ×mf )
∑

n∈N exp (
∑

f∈F qf × nf )
∀m ∈ N (1)

Thus, assuming fixed unitary link capacities, and that simul-

taneous transmissions over interfering links are always avoided

by Carrier Sensing (CS) [2], the flow throughput distribution

can be determined as

γqf =
∑

m∈N

πqm ×mf ∀f ∈ F

For any γ in the interior of Γ, there exists (λ,µ) ∈ R>0
2×F

such that ∀f ∈ F , γf ≤ γqf [6]. Furthermore, [6] shows that

if the input rate at all MAC-layer queues is within the CSMA

capacity region, all such queues are stabilized by adapting the

value of q over time as a scaled version of the queue lengths.

More precisely, time is divided into small intervals indexed

by t ∈ N. Denote as Qf [t] the queue length of flow f
at the beginning of interval t. Also, denote as λf [t], and

µf [t] respectively the medium access rate, and the trans-

mission duration used by flow f during interval t. Defining
qf [t] = b×Qf [t] ∀f ∈ F (with b a small positive real value),

all MAC-layer queues are stabilized by adapting the CSMA

parameters so that

λf [t]× µf [t] = exp(qf [t]) ∀f ∈ F (2)

for each interval t. In other words, by periodically adapting the
CSMA parameters using rule (2), any throughput distribution

γ in the interior of Γ is supported.2

Finally, [6]–[9] use the adaptation rule (2) to navigate the

convex region Γ and derive subgradient methods to approx-

imately solve different optimization problems. For example,

denoting as Sf [t] the throughput received by a flow f dur-

ing interval t, the proportional-fair throughput maximization

problem

max
γ∈Γ

{
∑

f∈F

log(γf )} (3)

can be solved by injecting V/qf [t] data into each flow queue

Qf during each interval t (where V is a positive real number),

so that the variation of queue length during interval t is given
by △Qf [t] = ((V/qf [t]) − Sf [t]). The idea is that △Qf [t]
captures a subgradient step of the logarithmic function over

the area Γ to approach the maximum point (3).

This last step requires assumptions; (i) all queues are

assumed non-empty throughout the system execution for the

2In the case of shared transmitters, local contention within a node is
resolved deterministically by serving the flow f with larger λf [t] at each
interval t.



objective in (3) to be fixed over time; (ii) timescale separation

is needed for the network to converge to its steady-state within

one time interval, so that Sf [t] well-approximates the value

γ
q[t]
f ; and (iii) at least V/qf [t] data from upper layers should

be available to be injected into Qf during each interval t.
While the assumption on non-empty queues has limited

impact (since flows without data to transmit do not need to

adapt in any case), and the assumption on timescale separation

can be relaxed using the ideas on [9], the assumption of

V/qf [t] arrivals is hard to relax in such a design in which the

medium access rate of flows is exclusively adapted as a func-

tion of queue backlog. Nevertheless, when the assumptions

of the model hold, optimal CSMA guarantees near-optimal

performance, solving optimization problems such as (3) as an

approximation algorithm with arbitrarily bounded accuracy.

III. ROBUST CSMA WITH NETWORK OPTIMIZATION

A. Design overview

The powerful analytical framework of optimal CSMA

theory allows the derivation of distributed algorithms with

probable performance guarantees. However, as discussed in

Section II, a number of assumptions are required to prove

optimality. Furthermore, later experimental works have shown

that the impact of some of those assumptions can be high,

significantly degrading the protocol performance in real sce-

narios. In this section, we design a distributed CSMA protocol

for proportional fairness, that addresses the main sources of

performance degradation in optimal CSMA to deliver high

performance across a wide range of networking scenarios.

In particular, we overcome the limitations to provide robust

operation in the presence of three challenging conditions;

channel asymmetries, heterogeneous traffic patterns and high

contention.

First, we introduce a generalized version of the model in

[6], that accounts for channel asymmetries to capture the

relation between flow throughput and transmission time. With

the use of such a model, we show how to relax the assumption

on fixed unitary link capacities from optimal CSMA models

by splitting the derivation into two steps: (i) we derive a

CSMA protocol that maximizes proportional-fair transmission

time without any assumptions on the symmetry of channels;

(ii) Using a problem-reduction technique, we show that the

same protocol also maximizes proportional-fair throughput

in the same scenarios. Furthermore, the protocol operates in

a completely distributed way, and does not require explicit

knowledge of channel error rates.

Second, we address performance degradation due to het-

erogeneous traffic jointly with the optimization of transmission

time. Solving this problem is hard in optimal CSMA, since the

analytical expressions of subgradient steps used to maximize

a given objective function only apply to MAC-layer queues

under specific traffic arrival rates. In contrast, we show that

the subgradient of network utility can also be captured by

the use of a novel structure, termed the service meter, whose

evolution over time is only affected by the service received

by a flow. Thus, any backlogged flow can receive optimal

adaptation with such a structure regardless of the traffic arrival

rates from upper layers.

Third, a simplifying assumption in optimal CSMA models

is that CS always prevents any simultaneous transmissions at

interfering links. While the impact of such an assumption

may be limited in small networks, we show that it leads

to high performance degradation with a large number of

contending flows. Furthermore, we show that the goal itself

of optimizing performance as captured by such a model is

conflicting with the goal of robustness to interference, such

that nominal performance can only be maximized by incurring

high collisions, and vice versa, robustness to high contention

can only be attained by reducing medium access attempts.

Thus, we propose a design that adapts to deliver near-optimal

performance when the network contention levels are low, yet

reduces attempts to avoid interference in scenarios with high

contention.

B. A generalized throughput model

Here, we introduce a generalized version of the throughput

model in Section II-A that explicitly captures the relation

between throughput and transmission time for each traffic flow

over links with arbitrary channel capacities. To this end, we

model a wireless network using a labeled graph G = (V , E , c)
where V is the set of nodes, E ⊆ V2 is the set of links, and

the labels in c ∈ R
|E|
>0 are the capacities of each link in E . As

before, denote as F ⊆ E the set of traffic flows, with F = |F|,
and as N the set of ISs in G.
Such a formulation is flexible enough to accommodate

different notions of channel capacity. In general, we assume

cf to be the average transmission rate attained by a flow f
in isolation under maximum channel utilization. For example,

denoting as rf the modulation rate used by the transmitter of

flow f , and as ef the error probability over the channel used by

flow f , the channel capacity of f ’s link is cf = rf × (1− ef ).
Under this network model, the set of all feasible trans-

mission-time distributions among flows in F (constrained over

non-interfering links) is defined as

Ψ = {ψ ∈ [0, 1]F : ∃π ∈ [0, 1]|N |,

∀f ∈ F , ψf ≤
∑

m∈N

πm ×mf ,
∑

m∈N

πm = 1}

which is convex, as the convex combination of ISs in N .

Given a transmission-time distribution ψ ∈ Ψ, the through-

put of a flow f under the channel capacities c is given

by γf (ψ, c) = ψf × cf . Furthermore, the capacity area of

G = (V , E , c) is defined as

Γ(c) = {γ ∈ R
F
≥0 : ∃ψ ∈ Ψ,γ = γ(ψ, c)}

which again, is convex as a scaled version of the convex set Ψ.

The model in Section II-A can be interpreted as a special case

of the model here presented, when cf = 1, ∀f ∈ F . However,

it is direct to see that the throughput of a flow f as captured

by the two models can significantly differ depending on the

value of cf .



Finally, we redefine the goal of maximizing a proportional-

fair throughput distribution in G as

max
ψ∈Ψ

{
∑

f∈F

log(γf (ψ, c))} (4)

i.e., adapting the transmission-time distribution to the one that

maximizes the network-wide logarithmic utility of throughput.

In the following sections, we derive a distributed CSMA algo-

rithm that approximately solves (4) with no explicit knowledge

of the values in c.

C. Transmission-time optimization under heterogeneous traffic

1) Transmission-time CSMA optimality: Consider the net-

work model in Section III-B. In this section, we derive a

distributed CSMA algorithm that solves

max
ψ∈Ψ

{
∑

f∈F

log(ψf )} (5)

robust to channel asymmetries and heterogeneous traffic arrival

patterns. Later, in Section III-D, we will show that the same

algorithm also solves (4), with arbitrarily bounded accuracy.

In the definition of (5), as well as in the following analysis,

we assume that all flows in F always have a packet to trans-

mit. This simplifies analysis by considering a fixed objective

over time well-defined over the set F , so that an algorithm

converging to the optimal point ψ∗ can be derived. While in

practice queues can become empty, this does not limit the

applicability of our method, as we can assume the set F to

dynamically adapt in time to include only the set of backlogged

flows (which automatically changes the goal defined by (5) as

F changes). Furthermore, as long as queues are non-empty,

we make no assumption on the packet arrival process from

upper layers which is the fundamental aspect to attain robust

CSMA adaptation.

We model the operation of a CSMA protocol over the

network G with the above described continuous-time CSMA

model CSMA(λ,µ). Then, the steady-state distribution of

transmission time in the network G is given by

ψkf =
∑

m∈N

πkm ×mf ∀f ∈ F (6)

where k is defined as kf = log(λf × µf ) ∀f ∈ F and the

value of πkm is given by (1).

Also, for any transmission-time distributionψ in the interior

of Ψ, there exists k ∈ R
F such that ∀f ∈ F , ψf ≤ ψkf .

i.e., as in the case of throughput with fixed unitary link

capacities, any transmission-time distribution ψ in the interior

of Ψ can be attained by selecting an appropriate choice of

CSMA parameters (λ,µ) ∈ R>0
2×F . Furthermore, due to the

convexity of Ψ, it is possible to derive subgradient methods to

solve optimization problems such as (5) by adapting the value

of k to navigate the region Ψ.

2) A novel structure for subgradient methods: The chal-

lenge to solve (5) is to derive an expression of the logarithm’s

subgradient that can be translated into distributed operations

to adapt the CSMA parameters at all network nodes. To this

end, the solutions described in Section II use the length of
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Fig. 1: A combined packet-queue Qf and service meter Kf ,

for a given traffic flow f . Solid arrows represent the flow of

packets/units, whereas dotted arrows represent the interaction

among different system components. In the case of shared

transmitters, a different pair (Qi,Ki) is maintained at the node

for each local flow i. The node transmitter notifies the service

meter Kf upon completion of an f ′s transmission, to subtract

the amount of service received.

MAC-layer queues as a measure of the service received by

each flow, in order to adapt its parameters accordingly.

Unfortunately, the use of queues to regulate CSMA ac-

cess does not apply well to the problem of optimizing flow

transmission time with heterogeneous traffic considered here.

First, packets may not be removed from a queue in case

of unsuccessful transmission. Thus, queue length variations

naturally reflect the amount of throughput received by a flow,

but are not suitable to measure transmission time. Second, it

requires the assumption that, at any time interval, the packet

arrival rates from upper layers are high-enough to maintain

the required queue length for optimal adaptation.

Our key contribution is the design of a novel structure that

captures the subgradient of the utility function in order to

solve (5), without the use of traffic backlog. Instead, it acts

like a counter that records the amount of service received

by a flow f , using abstract service units. We refer to such

a device, depicted in Fig. 1, as the service meter, denoted

as Kf . Since the service meter does not use any packets to

provide adaptation, it can be defined to measure service in

terms of transmission time, and its operation is not dependent

on the packet arrival rate from upper layers.

More precisely, each node periodically updates its state over

small time intervals indexed by t ∈ N. Denote as Kf [t] the
value of Kf at the beginning of interval t. To provide for

CSMA adaptation, denote as λf [t] the medium access rate

used by f ’s transmitter during interval t. Also, denote as Tf [t]
the fraction of transmission-time by a flow f during interval t.
During each interval t, a number of service units are added to

the service meter Kf . Upon a data packet transmission from

flow f , the corresponding transmission time is subtracted from

Kf (even in the case of unsuccessful transmission), such that

the “service” received by the service meter during interval t
is equal to Tf [t].
Then, the set of service meters can be stabilized by defin-

ing kf [t] = b×Kf [t] ∀f ∈ F (with a small positive value

b ∈ R>0), and adapting each flow f ’s channel access rate at



the end of each interval t as

λf [t+ 1] = exp(kf [t+ 1])/µf (7)

In other words, any target transmission-time distribution

ψ ∈ Ψ can be attained using (7) while incrementing each Kf

at a rate ψf .
3

Furthermore, by limiting the values of kf [t] within a range

[kmin, kmax] ⊂ R>0, and adding V/kf [t] units to Kf during

each interval t (with V ∈ R>0), the evolution of kf [·] is

determined by

kf [t+ 1] =

[

kf [t] + b×
( V

kf [t]
− Tf [t]

)

]kmax

kmin

(8)

where [·]kmax

kmin
= min(max(·, kmin), kmax). Then,

△Kf [t] = ((V/kf [t])− Tf [t]) can be readily interpreted

as a subgradient step to approximately solve (5), when using

(8) together with (7) to provide for CSMA adaptation, as

shown in the following result.

3) A distributed CSMA algorithm for proportional-fair

transmission-time maximization:

Proposition 1. Refer as Algorithm 1 to a protocol using rules

(7) and (8) at all nodes to update their CSMA parameters.

Then, Algorithm 1 approximately solves (5) with bounded

accuracy log(|N |)/V .

Proof. Consider the following optimization problem.

max
ψ,π

{V
∑

f∈F

log(ψf )−
∑

m∈N

πm log(πm)} (9)

s.t. ∀f ∈ F ψf ≤
∑

m∈N

πm ×mf ,
∑

m∈N

πm = 1

We proceed by showing that (8) can be interpreted as a

subgradient step of a dual problem of (9), projected onto

[kmin, kmax]. First, we derive the Karush-Kuhn-Tucker con-

ditions to solve (9) as

V/ψf = νf , ∀f ∈ F , (10)

−1− log πm +
∑

f∈F

(νf − η)×mf = 0, ∀m ∈ N , (11)

νf × (ψf −
∑

m∈N

πm ×mf ) = 0, ∀f ∈ F , (12)

η × (
∑

m∈N

πm − 1) = 0, (13)

νf ≥ 0, ∀f ∈ F (14)

where we omit the intermediate step of deriving the La-

grangian L(ψ,π;ν, η) of (9) for brevity.
For each flow f , define a dual variable k̃f = νf . Using ideas

analogous to [6], [9], (11) and (13) can be satisfied by choos-

ing η = log(
∑

m∈N exp(
∑

f∈F k̃f ×mf ))− 1 and π = πk̃

(which is equivalent to the adaptation rule (7), through the

3Here, we use the assumption that each flow f ∈ F always has at
least one packet to transmit. In a practical implementation, if a queue Qf

becomes empty (so that the flow f does not need to be served), remove the
corresponding service meter Kf from the system and remove f from F so
that the assumption still holds. Similarly, add a new service meter to the
system when a new traffic flow starts.

equality (1)). Furthermore, the subgradient of (10) satisfying

(12) is given by

ν̇f = (V/νf −
∑

m∈N

πk̃m ×mf ) (15)

Then, (15) is a subgradient step to solve the dual of

problem (9). Since (9) is strictly convex, the subgradient

method based on (15) is guaranteed to converge to the solution

ν∗ = (ν∗f , f ∈ F). Moreover, if ν∗ ∈ [kmin, kmax]
F , (15) is

equivalent to adaptation rule (8), through the use of (6).4 This

shows that Algorithm 1 solves (9).

It remains to show that Algorithm 1 solves (5) with bounded

accuracy log(|N |)/V . To see this, note that (5) is equivalent

to

max
ψ∈Ψ

{V
∑

f∈F

log(ψf )} (16)

The bound log(|N |)/V can be obtained by comparing (16)

to (9) and limiting the term
∑

m∈N πm log(πm) in (9) with

the known entropy bound log(|N |).

Remark 1. While Proposition 1 relies on the assumption that

all queues are non-empty throughout the system operation,

and that the set of flows F is fixed over time, in practice

the same results can be applied to dynamic scenarios by

observing that optimal adaptation in Proposition 1 is attained

from any starting point. Then, in the case of changes on the

set of backlogged flows, which would imply variations on the

optimal point defined by (5), the algorithm continues adapting

after each change in the search for the (new) optimal point.

Remark 2. The positive term V/kf [t] in (8) is not dependent

on flow packet arrivals from upper layers, and can be added to

Kf even if packet sources have been interrupted, to provide

continued adaptation at any backlogged flows up to the last

packet transmitted. Our performance evaluation shows that this

is a fundamental aspect to attain high performance in scenarios

with heterogeneous traffic.

For ease of reference, we next provide a description of

Algorithm 1. There, we use Qf [t] to denote the length of f ’s
MAC-layer queue at the beginning of interval t.

D. Maximizing proportional-fair throughput over asymmetric

channels

We have shown that Algorithm 1 maximizes proportional-

fair distributions of transmission time in networks with (or

without) channel asymmetries. Next, we extend our analysis

to show that the same protocol also maximizes proportional-

fair throughput, thus solving (4), in the same scenarios.

We proceed by reducing the problem of maximizing

proportional-fair throughput (4) to the problem of maximizing

proportional-fair transmission time (5). To this end, refer to the

throughput model defined in Section III-B. Then, assuming

no packet collisions, which will be treated separately in

Section III-E, we have

4While this assumes that the network converges to a steady state within one
interval, such that the measure T [t] attains the value of ψk[t], the analysis
can be readily extended using the ideas in [9] to relax such an assumption.



Algorithm 1 Distributed CSMA adaptation

To be executed by the transmitter of each flow f ∈ F .

During interval t:

1: Run CSMA(λ[t],µ) while recording the fraction of transmis-
sion time Tf [t] received during interval t

At the end of interval t:

1: if Qf [t+ 1] > 0 then

2: Set kf [t+ 1] =

[

kf [t] + b×
(

V
kf [t]

− Tf [t]
)

]kmax

kmin

3: end if
4: Update λf [t+ 1] = exp(kf [t+ 1])

/

µf

If Qf becomes empty during interval t:

1: Reset kf [t] = kmin

2: Update λf [t] = exp(kf [t])
/

µf

argmax
ψ∈Ψ

{
∑

f∈F

log(γf (ψ, c))} =

argmax
ψ∈Ψ

{
∑

f∈F

log(ψf ) + log(cf ))} =

argmax
ψ∈Ψ

{
∑

f∈F

log(ψf )} (17)

Equation (17) shows that (5) and (4) are equivalent prob-

lems. Next, we use this property to show that Algorithm 1

maximizes proportional-fair throughput in wireless networks

without any assumption on the symmetry of channels.

Theorem 1. For any choice of channel capacities c ∈ R
|E|
>0,

Algorithm 1 solves (4) as an approximation algorithm with

bounded accuracy log(|N |)/V .

Proof. Without loss of generality, let a choice of channel ca-

pacities c ∈ R>0
|E| be given. From Proposition 1, Algorithm 1

solves (5) as an approximation algorithm. Hence, since (5) is

equivalent to (4) via (17), Algorithm 1 also solves (4).

It remains to show that the accuracy of Algorithm 1 in

solving (4) is bounded by log(|N |)/V . To this end, denote

as γ∗ the solution to (4). Similarly, denote as ψ∗ the solution

to (5). Also, denote as γ† and ψ† respectively the throughput

and transmission-time distributions attained by Algorithm 1 in

the same network after convergence. Then,

|
∑

f∈F

(log(γ∗f )− log(γ†f ))| =

|
∑

f∈F

(log(ψ∗
f × cf )− log(ψ†

f × cf ))| =

|
∑

f∈F

(log(ψ∗
f )− log(ψ†

f ))| ≤ log(|N |)/V

where the inequality at the last step is given by Proposition 1.

Remark 3. Equation (17) implies that the optimal point ψ∗

does not change for different values of c. Thus, once the

algorithm has converged to an optimal point, it does not need

to re-converge at every change in c, as the same operating

point maximizes the network performance across different

channel conditions. This property allows Algorithm 1 to na-

tively support modulation rate adaptation without any required

extensions, and variations in the channel conditions without

continuously tracking the error rate probability at each link.

E. Robust operation under high contention

1) Perfect sensing in CSMA(λ,µ): The analytical deriva-

tion in the previous sections is based on the continuous-time

CSMA(λ,µ) model, which captures the service received by

each flow with simple analytical expressions that integrate

well into an optimization framework. A required assumption

in the model is that of a “perfect” CS implementation that

always avoids any simultaneous transmissions at interfering

links. While in practice different conditions can make CS fail,

the CSMA(λ,µ) model is still widely adopted due to its

suitability for multi-hop wireless CSMA optimization [6]–[9].

Next, we discuss the performance of algorithms derived with

this model, in general scenarios with imperfect sensing.

In a real network, CS may fail to detect an ongoing trans-

mission over interfering links due to either of two situations

[4]; (i) propagation delays introduce a detection delay such that

two neighbor nodes may not detect each other’s transmissions

if they decide to transmit at nearly the same time, and (ii)

attenuated signals may not be strong enough to be detected if

two interfering transmitters are relatively far from each other,

a situation widely known as hidden terminals. In any of the

two cases, interference from other links at a flow’s receiver

can prevent the successful reception of a transmitted packet

(which is referred to as a collision).

Prior works use the assumption that the effects of hidden

terminals can be limited using RTS-CTS handshakes. In the

following analysis, we also rely on this assumption which was

validated by experimental work in [14] yielding good results.

For the case of collisions with neighbor transmitters, instead,

prior work suggests that the effects of imperfect sensing are

limited by keeping long back-off times [17]. The idea is that,

when capturing access based on the CSMA(λ,µ) model,

back-off times and transmission durations can be jointly ex-

panded while still guaranteeing an optimal adaptation at all

flows. For example, in the case of Algorithm 1, (7) shows

that choosing a long transmission duration µf , the access rate

assigned to each flow f is reduced.

2) The optimization-robustness conflict: While the condi-

tion of long transmissions is necessary in order to reduce

access aggressiveness by multiple flows and limit collisions,

in the following we show that such a condition is insufficient

to guarantee robust operation across multiple system config-

urations. Furthermore, we show that optimizing the system

performance as captured by CSMA(λ,µ), and guaranteeing

robust operation of CS are two conflicting goals, such that

nominally-optimal access can only be attained by incurring in

high collisions, and viceversa, collisions can only be limited

by reducing network access.

To see this, first note that our solution (as well other

protocols derived from the same optimization framework),
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Fig. 2: Performance attained under symmetric contention and

different choices of the parameter V .

does not attain optimality in absolute terms, but only asymp-

totically as an approximation algorithm with bounded accuracy

E(V ) = log(|N |)/V . Moreover, E(V ) is a monotonically

decreasing function of V , and the limit limV→∞E(V ) = 0
implies that near-optimal performance is attained by the choice

of a large V .

Denote as ψV , kV , and λV , respectively the transmission-

time distribution, the service meter values, and the flow access

rates attained by Algorithm 1 at convergence under the param-

eter assignment V . Then, the condition limt→∞ △kf [t] ≈ 0
implies

((V/kVf )− ψV
f ) ≈ 0 ∀f ∈ F

where we approximate the transmission-time measure

limt→∞ Tf [t] with its expected value ψV
f . Furthermore,

λVf = exp(kVf )/µf ≈ exp(V/ψV
f )/µf ∀f ∈ F (18)

which yields limV→∞ λVf = ∞. i.e., while optimal perfor-

mance is attained asymptotically as V → ∞, the target access

rate at each flow diverges as Θ(exp(V )).
In addition, the value of λVf depends on the received service

ψV
f , which appears as a denominator in (18). Thus, for a fixed

V , a flow with a lower service attains a higher access rate than

other flows. While this is a required feature to provide fairness

in asymmetric scenarios where a flow’s perceived service is

low relative to other flows, in a highly congested scenario with

symmetric contention, the low service received leads to high

access rates at all involved flows, consequently increasing the

collision probability.

Fig. 2 shows the collision probability and theoretical error

bound under different levels of contention in a symmetric

scenario, as a function of V . To obtain the collision proba-

bilities in Fig. 2a, we execute Algorithm 1 in our simulator

implementation (more details about the simulator are given in

Section IV). Such relations clearly show a trade-off between

nominal performance and robustness to interference, such

that reducing the optimization error can only be attained by

increasing the collision probability (and vice versa).

3) Balancing robustness with optimization accuracy: While

it is not possible to simultaneously attain optimal access

and minimize collisions, the relations in Fig. 2 determine,
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Fig. 3: Alternation of contention estimation and parameter

update phases for automatic V adaptation.

for each level of contention, the maximum value of V such

that collisions fall below a given threshold. In this way, the

theoretical error in the network optimization is minimized

subject to a maximum allowed collision probability. Note

that, as CSMA adaptation in Algorithm 1 is only based on

transmission time, thus independent from transmission success

rates, the measures in Fig. 2a apply to any modulation rate and

channel conditions, as long as all flows use a fixed average

transmission time µ⋄ (in our implementation, described in

Section IV, we attain this by using a combination of packet

fragmentation and aggregation at the MAC layer).

Moreover, the curves in Fig. 2 show that the trade-off be-

tween nominal performance and robustness highly depends on

the number of contending flows. Thus, the level of contention

is an essential metric for the robust configuration of optimal

CSMA. As the network topology can change over time, we

propose an adaptive system that periodically updates the value

of V based on the network conditions.

The key idea is to exploit the broadcast nature of wireless

transmissions to derive an estimation of the network contention

level. For example, in a scenario with symmetric contention,

each node can estimate the number of contending flows by

overhearing packet transmissions from neighbor flows. Then,

the relations in Fig. 2 can be used at each node to indepen-

dently select the configuration of V that yields the desired

balance between optimization accuracy and robustness (later

on in this section we explain how to ensure a symmetric choice

of V in the case of asymmetric scenarios).

More precisely, assume that time is divided into epochs of

equal length and indexed by n. During an epoch n, all network
flows distributedly estimate a measure Ωn of the network

contention level (measured in number of mutually-contending

flows). At the end of epoch n, each node uses Ωn to select a

value Vn+1 to be used as the configuration V during the next

epoch. Fig. 3 shows a diagram of the system operation.

An additional challenge is given by the fact that, for the

results in sections III-C and III-D to hold, the value of V
should be the same at all network flows. While in a symmetric

scenario all flows have the same number of neighbors, in

general networks different nodes may experience different

contention levels. In such cases, we use the maximum level of

contention in the network in order to select V . Denoting as ωi
n

the number of contending flows detected by node i by the start

of epoch n, we define the maximum network contention level



as Ωn = maxi∈V{ω
i
n}.

5 The idea is to satisfy the robustness

requirement in the entire network by selecting a value of V that

yields low collisions at the point with maximum contention

(and thus also in other points).

Furthermore, the value of Ωn = maxi∈V{ωi
n} can be

determined distributedly in a multi-hop network using the

lightweight gossiping protocol in Algorithm 2. In our solution,

a different instance of such an algorithm is executed at each

epoch n. At the end of epoch n, the resulting value of Ω̂i
n is

used at node i to update its configuration of V . It is easy to

show by induction on the set of nodes, that for any connected

network, the estimation Ω̂i
n at each node i converges to the

value of maxj∈V{ωj
n} (we omit the proof for brevity).

Algorithm 2 Maximum contention level estimation

To be executed by each node i ∈ V during an epoch n.

At the start of epoch n:

1: Set Ω̂i
n = ωi

n

Before a packet p is sent by i:

1: Set the field p.epoch = n
2: Set the field p.Ω̂ = Ω̂i

n

After packet p is received (overheard) by i:

1: if p.epoch = n and Ω̂i
n < p.Ω̂ then

2: Set Ω̂i
n = p.Ω̂

3: end if

At the end of epoch n:

1: Return Ω̂i
n as the estimated value of maxj∈V{ω

j
n}.

IV. PERFORMANCE EVALUATION

We validate our design by means of extensive simulations.

As discussed before, three are the main sources of performance

degradation in optimal CSMA; channel asymmetries, hetero-

geneous traffic patterns and collisions under high contention.

We have both evaluated the performance of our solution (i)

in the presence of each of these sources of performance

degradation separately, reveling how each proposed protocol

feature provides robust operation under different conditions;

and (ii) in randomly-generated networks that combine multiple

conditions in the same scenarios to evaluate the operation of

the system as a whole.

Due to space constraints, we move the evaluation of iso-

lated performance factors to a companion technical report

in [5]. The results presented there can be summarized as; 4

times increase in optimization accuracy by our generalized

throughput model in scenarios with channel asymmetries;

orders-of-magnitude higher utility by the use of service meters

in scenarios with heterogeneous traffic, due to the through-

put increase at short-lived and congestion-controlled flows;

and up to 78% increase of throughput with automatic V
adaptation in scenarios with high contention. We devote the

5In such scenarios, we also infer contending flows based on overheard
CTS packets, so that ωi

n includes all contenders to a flow i, either hidden or
in transmission range. Our performance evaluation shows that the effects of
hidden terminals are significantly reduced by the use of RTS/CTS, and the
dominant factor in Optimal CSMA remains the number of contending flows.
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Fig. 4: Performance attained by different protocols over 100

randomly-generated topologies with multiple per-link modu-

lation rates and heterogeneous traffic.

rest of this section to the protocol evaluation in combined,

randomly-generated network scenarios.

To this end, we generate networks using random node coor-

dinates uniformly-distributed in a 3000 m × 3000 m terrain.

Flows are generated by randomly selecting node pairs within a

maximum transmission range of 184 m. All shown results are

averages obtained over 100 randomly-generated networks. We

consider different network sizes, with 16, 32, and 48 flows,

obtaining qualitatively similar results for each of them. Here,

we present the results obtained for the case with 48 flows,

which has the widest range of contention levels. We randomly

assign different traffic types to each flow including CBR,

Pareto ON-OFF, and TCP traffic. To increase traffic diversity,

we consider 4 possible bitrates for CBR and Pareto ON-OFF

flows (0.5 Mbps, 1 Mbps, 1.5 Mbps, and 2 Mbps), randomly

assigned among flows of such types.

For the protocol implementation, we use extensions to Glo-

mosim for optimal CSMA that have been validated experimen-

tally by prior works [13], [14]. In addition, we implemented

custom support for independent per-link modulation rates,

using separate BER tables for each rate. The modulation

rate at each flow is assigned based on the SNR measured

at the receiver in isolation, so that shorter links use higher

rates. We maintain a fixed µ⋄ = 2.32 ms at each flow using

a combination of packet aggregation and fragmentation at the

MAC layer. For the epoch-based adaptation of V derived in

Section III-E3, we maintain a loose synchronization among

nodes using data packet transmissions. The total overhead

required to implement the solution sums up to 2 bytes per

packet. The V values in use are 2, 8, 32, 125, 500, and 2000.

We measure protocol performance in terms of logarithmic

network utility. We normalize the obtained measures by the

maximum utility attained by any protocol in the same run,

and average the normalized results over the 100 considered

instances. The results, depicted in Fig. 4a, show that our design

outperforms other solutions, with a 21%-68% utility increase

over optimal CSMA with different configurations, and more

than 21% average utility gain over 802.11. Furthermore, the

cumulative density function of logarithmic network utility in

Fig. 4b shows that in more than 90% of the generated network

instances, our solution delivers higher utility than the other

evaluated protocols.



V. RELATED WORK

There has been extensive research in distributed CSMA op-

timization. In the following, we present a broad classification

that provides an overview while contrasting our contributions

to prior work.

Analytical works: Multiple analytical works were devoted

to the design and study of distributed CSMA algorithms

that maximize different performance measures [6]–[11]. Such

works differ on the analytical techniques in use, system model,

and the level of overhead in the proposed solutions. For

example, [6] was the first to show throughput-optimality of

distributed CSMA under the multi-hop model. [7], instead

proposed utility-optimal mechanisms based on a fixed-point

approximation of the network performance. [8] derives an

alternative solution for throughput maximization under slotted

time. [9] proposes a generalized version of the algorithm

in [6] for utility maximization with no message passing.

All these works address network performance optimization

through rigorous analytical means within a well-defined set of

assumptions. While we also make use of analysis to support

our design, our main focus is on addressing sources of high

performance degradation for optimal CSMA to deliver robust

operation in a wide range of operating settings.

Experimental works: Other works focus on the imple-

mentation and experimental evaluation of the systems above

described [12]–[14]. The early experiences in [12], [13]

mostly focus on implementation aspects, such as the main

challenges for system implementation over existing hardware,

respectively for the case of wireless networks and wireless

sensor networks. The work in [14] evaluates optimal CSMA

to identify how different factors affect its performance in

practical operational settings. Our work is in part motivated

by such studies, which first identified the main sources of

performance degradation for optimal CSMA addressed here.

Other works: Like our work, others have also noted the

problematic effect of different assumptions in the optimal

CSMA models, for example [15]–[19]. However, our approach

differs in a number of aspects. For example, while [16]

improves the operation of TCP over optimal CSMA via

modifications to the transport layer, we propose an extension

to optimal CSMA itself that allows optimal adaptation with

heterogeneous traffic. And, while [17], [18] propose the use

of reservation mechanisms like RTS-CTS to limit the effects

of collisions, we are the firsts to study the optimization-

robustness conflict under high levels of contention, and pro-

pose an adaptive solution.

VI. CONCLUSION

In this paper, we address the main sources of performance

degradation in optimal CSMA, to derive a distributed system

for proportional fairness in networks with channel asymme-

tries, heterogeneous traffic, and high contention. We propose

a novel approach to design that combines robustness with

optimization, to overcome the high performance degradation

introduced in optimal CSMA by such factors. Our contri-

butions drive the development of future robust and optimal

CSMA, enabling high performance across a broad range of

network operating conditions.
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