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Abstract

In this paper, we first investigate the quality of aerial air pollu-
tion measurements and characterize the main error sources of
drone-mounted gas sensors. To that end, we build ASTRO+, an
aerial-ground pollution monitoring platform, and use it to collect
a comprehensive dataset of both aerial and reference air pollution
measurements. We show that the dynamic airflow caused by drones
affects temperature and humidity levels of the ambient air, which
then affect the measurement quality of gas sensors. Then, in the
second part of this paper, we leverage the effects of weather condi-
tions on pollution measurements’ quality in order to design a UAV
mission planning algorithm that adapts the trajectory of the drones
while taking into account the quality of aerial measurements. We
evaluate our mission planning approach based on a VOC pollution
dataset and show a high performance improvement that is due to
the fine characterization of the measurement errors.

CCS Concepts

« Computer systems organization — Embedded and cyber phys-
ical systems; » Networks — Network algorithms.

1 Introduction

Unmanned aerial vehicles (UAVs), commonly known as drones, are
used in many environmental applications and especially air pol-
lution monitoring, which requires high spatial resolution sensing
[13]. Indeed, whether the objective is to perform a full mapping
of pollution concentrations or to characterize a specific pollution
plume in case of a gas leak, drones offer better spatial resolution
compared to static and car-mounted sensing solutions [1]. How-
ever, due to their power constraints, drones are limited in terms of
sensing resources and require efficient mission planning in order
to perform measurements at the most informative sensing loca-
tions within their restricted flight time [4]. The performance of
UAV mission planning algorithms highly depends on the quality
of aerial sensing since low quality measurements may lead to poor
predictions of the most informative sensing locations [7].
Evaluation of pollution aerial measurements’ quality. In
this paper, we first investigate the quality of aerial measurements
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of air pollution and characterize the main error sources of drone-
mounted gas sensors. Although the quality of aerial pollution mea-
surements has been studied previously [5, 15], such work provides
only a qualitative evaluation and do not quantify the amount of
error that is due to the main error sources, which are identified to
be mainly caused by the airflow generated from the drones’ pro-
pellers and the vibrations of the drones. In contrast, we conduct a
comprehensive measurement campaign of both aerial and ground
data in order to quantify the multi-factor non-homogeneous pollu-
tion sensing errors. We show that the dynamic airflow caused by
drones affects first temperature and humidity levels of the ambient
air, which then affect the measurement quality of gas sensors.

Without loss of generality, we focus on measuring Volatile Or-
ganic Compound (VOC) pollutants, which provide a strong sig-
nature of both industrial and traffic emissions. We build ASTRO+,
which is an aerial-ground air pollution monitoring platform where
ground sensors provide reference measurements and drones are
equipped with temperature, humidity and wind velocity sensors
in addition to light-weight pollution sensors. We collect a compre-
hensive dataset of both aerial and ground measurements and use
it to characterize the impact of weather conditions on the qual-
ity of drone-mounted pollution sensors. We show that VOC aerial
measurements can be inferred with up to 88% accuracy based on
humidity and temperature levels of the ambient air.

Robust UAV mission planning. In the second part of this pa-
per, we leverage these discovered effects of weather conditions on
pollution measurements’ quality in order to design a UAV mission
planning algorithm that adapts the trajectory of the drones while
taking into account the quality of aerial measurements that is in-
ferred from weather conditions. Compared to most existing work
[2, 8, 17-19], we consider the dynamic nature of aerial sensing
errors and do not rely on static error values that are provided by
manufacturers.

After a training phase prior to the flight mission in order to char-
acterize the impact of temperature, humidity and wind velocity on
aerial measurements of pollution concentrations, our mission plan-
ning approach operates in 2 phases: UAVs are first sent to uniformly
distributed locations in order to learn the spatial correlations of air
pollution concentrations; Then in the second phase, these spatial
correlations are used together with the inferred aerial measure-
ments’ quality in order to optimize the subsequent measurement
locations of the drones. We evaluate our optimization approach
based on our dataset of VOC measurements and show a high per-
formance improvement that is due to the fine characterization of
the measurement errors.
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Related work

Characterization of the quality of pollution aerial mea-
surements. Due to the non-instantaneous response time of pol-
lution sensors, rotatory wing UAVs are preferred over fixed wing
drones when performing air pollution data collection. However,
when propellers are spinning, air pollution measurements are af-
fected and their errors need to be properly characterized. Existing
work focuses mainly on the qualitative evaluation of these errors.
For instance, some prior work performs multiple experimental
flights in an urban area and then correlates drone measurements
with the proximity to traffic sources [5]. This work showed the high
noise level in pollution measurements and the need of a proper
characterization of measurement errors. Other prior work proposes
to characterize the airflow generated by the propellers of the drones
and use the wind velocity level as a qualitative indicator of pol-
lution measurements’ errors [10, 12, 15]. In contrast, we infer the
measurements’ errors by co-locating drones and ground sensors
and then extracting the correlations between pollution data and
wind in addition to temperature and humidity.

UAV mission planning for environmental mapping. Mo-
bile sensors’ mission planning for environmental monitoring in
general and air pollution mapping in particular has been extensively
studied in the literature [2, 8, 17-19]. Most existing work relies on
the spatial correlation of air pollution concentrations: that is, closer
locations have higher probability of being at the same concentra-
tion level [3]. Based on that, the uncertainty of pollution estimation
at unmeasured locations is formulated as a function of the spatial
correlations of the measurements. The optimized sensing mission
plan (i.e. the optimal set of sensing way-points) is then obtained by
minimizing the uncertainty of pollution estimations at unmeasured
locations. In contrast, we propose to couple the pollution spatial
correlations with a fine characterization of aerial measurements’
quality in the optimization process of UAV mission planning.

2 ASTRO+: Aerial-Ground air pollution
monitoring platform

2.1 Overview

ASTRO+ is an environmental sensing platform that includes two
main sensing technologies: ground reference sensors and aerial
sensing using drones. We focus on measuring Volatile Organic
Compounds (VOCs), which provide a good signature of both traffic
and industry related air pollution. For reference ground sensing, we
selected Defiant’s FROG-5000, which uses gas chromatography to
measure the 4 major VOC pollutants (Benzene, Toluene, Ethylben-
zene and Xylene) at the ppb level. Because reference measurement
sensors like the FROG-4000 are heavy and cannot be deployed eas-
ily on drones, we use Photo Ionization Detection (PID) VOC sensors
for aerial measurements. PID sensors can weigh as little as 100g
and provide fast response measurements compared to other light-
weight sensing solutions such as electrochemical sensors. After
careful analysis of existing PID sensors, we selected ION Science’s
miniPID2 VOC sensor, which has limited temperature and humidity
effects compared to other sensors in the market.
2.2  Architecture of ASTRO+

ASTRO+ includes 3 layers: sensing, data storage and a third layer
for data visualization and user notification. Data that is collected by
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both drones (PID sensors) and ground sensors (Gas chromatography
in addition to PID) is sent over WiFi to an Internet-hosted database.
The database is connected to a mobile app and a web service that
allow community users to visualize both real-time measurements
and historical data. In addition to raw measurements of both ground
sensors and last drone missions, the mobile app also indicates the air
quality based on EPA’s air pollution thresholds. In addition to data
visualization, users can subscribe to SMS and E-mail notifications
in order to be informed in real-time about pollution peak levels.

2.3 UAV system

We build our UAV-based sensing system as an extension of our
ASTRO platform [11]. ASTRO is a UAV network platform that is
Autonomous and Tetherless in the sense that drones form an in-
frastructureless wireless network and don’t need a base station to
make their sensing decisions. Thanks to using carbon fiber light-
weight frames, ASTRO drones allow up to 15min flight time and up
to 1.5kg of payload. ASTRO also uses hardware components that
are widely used within the open-source community, namely the
Pixhawk flight controller to manage the avionics part and the Rasp-
berry Pi as a companion computer in order to manage the network
communication part.

We extend ASTRO by deploying lightweight VOC, temperature,
humidity and wind sensors while offering low-noise measurements.
This is achieved by first locating the sensors right next to the center
of the drone in order to minimize turbulence effects that are caused
by the propellers [15]. In addition to that, we isolate the power
source of the environmental sensors from the flight controller and
companion computer battery in order to maintain the stability of the
input voltage of the sensors. Drone measurements are performed
once per second. In terms of resolution, temperature values are
reported within +1° Celsius, relative humidity is reported within
+1% and VOC measurements are reported at the ppb level.

3 Evaluation of aerial sensing errors

In this section, we use the aerial and reference ground sensors of
ASTRO+ to analyze the quality of aerial measurements of VOCs.
Prior work suggested that the dynamic airflow created by drones’
propellers and drone vibrations affects the quality of the measure-
ments. However, it is not previously known how these dynamics
affect the sensing mechanism of drone-mounted pollution sensors.
Indeed, the main light-weight gas sensing technologies (photo-
ionization-based and electrochemical sensors) can be easily affected
by changes in weather conditions such as temperature and humid-
ity but not necessarily the airflow and wind velocity [9]. In this
section, we propose a fine characterization of these effects using
an experimentally collected dataset.

3.1 Experimental scenario

We performed multiple data collection experiments in Milby
Park (Houston, Texas), a residential neighborhood that is highly
exposed to both traffic pollution (facing a highway) and industrial
pollution (located within less than 2 miles of 3 chemical plants).
We collected in different locations and times during February 2020
more than 1,000 measurements of both ground reference data and
aerial data of VOC pollution concentrations in addition to aerial
data of temperature, relative humidity and wind velocity. Each
measurement was performed while having the drone hovering at
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about 2.5m and located within 4 to 5 meters of the ground sensor,
which was sampling at an altitude close the one of the drone (1.5m).
In order to reduce sensing errors during the measurement campaign,
and as recommended by the manufacturer, both aerial and ground
sensors were properly calibrated in the field against reference gas
concentrations of Isobutylene (a VOC gas that is commonly used
to calibrate PID sensors).

3.2 Evaluation results

Fig. 1 depicts the obtained VOC ground measurements on the
x-axis and the corresponding aerial measurements on the y-axis.
Note that even though aerial measurements may underestimate
the real concentrations in some few cases going down to as low as
20ppb compared to the lowest reference concentration of 40ppb,
the overall bias of drone data is very low and does not exceed
1ppb thanks to the proper calibration of the sensors prior to the
measurement campaign. However, the overall standard deviation of
aerial sensing errors is substantial and exceeds 6% of the full range
of the measured concentrations (96ppb). This is clearly due to the
dynamic nature of aerial measurements where drone vibrations and
hence propellers’ effects are very variable and therefore difficult to
predict.

Ground data vs. aerial measurements
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Figure 1: Ground measurements vs. aerial measurements.
In order to characterize the main sources of aerial measurement
errors, we depict in Fig. 2 the standard deviation of the error of aerial
measurements with respect to ground reference data depending,
respectively, on wind velocity (generated by the drone propellers),
temperature, relative humidity and absolute humidity.
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Figure 2: Effects of wind, temperature and humidity on the
quality of VOC aerial measurements.

The air flow speed generated by the propellers seems to have
a very poor correlation, which does not exceed 25%. However,
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temperature and relative humidity dynamics (caused in part by the
airflow dynamics that are due to propellers) correlate with aerial
measurements’ quality better than wind and yield more than 60%
of linear correlation and more than 90% of polynomial 3rd order
correlation. This is mainly due to the high sensitivity of pollution
sensors in general to temperature [9], and also the sensitivity of
PID sensors in particular to the level of water vapor in the air
[14]. This is why water vapor (also defined as absolute humidity
and calculated based on both temperature and relative humidity)
provides almost 90% correlation with aerial measurements quality
when using just the 1st order polynomial fit. We show in the next
section that this linear fit could be used to improve the quality of
aerial measurements during environmental mapping missions.

Discussion: The results presented in this section show that co-
locating temperature, humidity and wind sensors with air pollution
sensors could help infer the quality of pollution aerial measure-
ments subject to a proper training prior to environmental mapping
missions. For instance, and as shown in this section, PID measure-
ments’ quality could be inferred to almost 90% using absolute hu-
midity data (calculated based on temperature and relative humidity
measurements). For other pollution sensors (electrochemical sen-
sors for instance), the predictive variables could be different than
absolute humidity or a combination of multiple weather conditions
but the correlation should still remain high as most air pollution
sensors are very sensitive to weather conditions [9]. This measure-
ments’ quality inference fact could then be used to characterize
pollution aerial sensing quality at future measurement locations by
first interpolating the already collected weather data and then using
the results of this interpolation to predict pollution measurements’
quality at future sensing points.

4 Robust mission planning for air pollution
mapping

4.1 Overview

The experimental study presented in the previous section con-
firms that pollution aerial measurements’ quality is dynamic and
non homogeneous with respect to the measurement context (tem-
perature, humidity and wind levels of the ambient air). These dy-
namics should have a direct impact on the performance of UAV
mission planning algorithms since low quality measurements may
lead to a bad estimation of the drones’ mission plans. Based on that
fact, we design in this section a UAV mission planning approach
while relying on a fine characterization of aerial measurements’
quality in addition to the inherent pollution spatial correlations.
Given an input region to be monitored and a set of pollution-sensing
UAVs with limited flight time, we aim at: i) determining a selection
of points that should be sampled by the UAV network so that the
obtained measurements yield a low-error estimated pollution map;
and ii) determining for each UAV the locations that should be visited
so that the covered points of interest are visited by at least one drone.
Here, the estimated pollution map is obtained by interpolating the
data collected at the optimal measurement locations.

The proposed mission planning approach operates as follows:
after a training phase prior to the flight mission in order to quantify
the impact of temperature, humidity and wind velocity on aerial
measurements of pollution concentrations, UAVs are first sent to
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uniformly distributed locations in order to characterize the spatial
correlations of air pollution concentrations. Then, these spatial cor-
relations are used together with the inferred aerial measurements’
quality in order to optimize the following measurement locations
of the drones. The optimal measurement locations of each drone
are obtained by minimizing the overall variance of the interpolated
concentrations’ errors while taking into account the aerial sensing
constraints (the dynamic sensing error and the response time of
pollution sensors, the speed of the drone and the drone’s battery
capacity).

4.2 Air pollution mapping

Before getting into the details of our UAV mission planning pro-
cess, we first present the mathematical formulation that allows us
to estimate pollution concentrations at unmeasured locations given
a set of space locations with a limited number of measurements. We
focus on the optimal linear interpolation method, which is the most
used air pollution data interpolation technique in the literature [16].
Without loss of generality, and due to the relatively short flight
time of drones, we focus on the case of pollution concentrations
that change only in space and not in time.

Let p be a vector of [ discrete points approximating the space
in 2D or 3D. i.e. p = [p1, P2, ... p;]T where p; = (x;, yi, zi). We use
g € R/ to denote the unknown ground truth timely-static pollution
concentrations at the I points of space. i.e. § = [g1,92,...9;]7
where g; is the pollution concentration at point i. Let z € R" be
a set of measurements performed at n different locations in space
p.ie z = [z1,29, ..., zn]T where z; is measurement number i. In
order to map measurements to space locations, we define a matrix
H € R™! where each matrix element h; j is a Boolean set to 1 if
measurement number i is performed at point j. Let 6; be the error
of measurement z; with respect to ground truth g;. We denote the
variance of sensing error 6; using r;, which can be inferred based
on co-located measurements of temperature, humidity and wind
velocity as demonstrated in the previous section of this paper. In
addition, we assume that 6; has a zero mean as this is usually the
case when pollution sensors are properly calibrated. We also assume
that pollution measurement errors are uncorrelated because they
mainly depend on the electronics of the sensing mechanism. Hence,
the covariance matrix of sensing errors, R € R™", is a diagonal
matrix.

Air pollution concentrations g; are inherently correlated in space
[16]. We denote the spatial correlation matrix of pollution concen-
trations by B € R Each matrix element b; ;j reflects for space
locations i and j the probability of being at the same concentration
level.

Using the measurement vector z and the matrix H defining mea-
surement locations, our objective is to obtain an estimation vector
¢ € R! by interpolating pollution concentrations at unmeasured
locations. In the case of optimal linear interpolation [6], ¢ is defined
in matrix form as

c=Wz

such that c is a linear combination of the collected measurements.
The interpolation weights are defined by the matrix W, which is
calculated as in [6]

W =BHT (R+HBHT)™! 1)
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and is a function of sensing quality defined by matrix R in addition

to the spatial correlation matrix of pollution concentrations B. Let
1; denote the interpolated concentrations’ errors with respect to
the unknown ground truth value at each point i (i.e. n = ¢ — g). The
covariance matrix of n (denoted F) is calculated as in [6]

F=(;-BHT(R+HBHT)"'H)B, ()

where I; is the identity matrix. Based on F, we define the overall
mapping error of a given interpolated map ¢ corresponding to a
given measurements’ vector z as

Z C;x Xfii,

ie[1l]

where « is a parameter used to emphasize the interpolation error
at polluted locations compared to the slightly polluted ones.

4.3 Mission planning process

We consider a mobile sensing system consisting of m drones
that are equipped with air pollution sensors which are used to col-
lect measurements z within the monitoring region p. In order to
quantify the covariance matrix of pollution measurements’ errors
R, drones are also equipped with temperature, humidity and wind
sensors. This allows us to infer on-the-fly r;, the error variance of
each already collected measurement z; in addition to inferring the
measurement error variance at future mission locations by interpo-
lating the already collected temperature, humidity and wind data.
The measurement error inference is obtained based on a training
phase that is performed prior to the pollution mapping mission by
co-locating drones and reference sensors as shown in Section 3.

Because of the response time of pollution sensors, drones need to
hover for a time 7., in order to obtain a pollution measurement
at a given space point [9]. In addition to the hover time constraint,
we assume that drones travel at a constant speed v. Based on that,
we calculate the travel times between each pair of points (i, j) that
we denote by 77,44, (i, j). In addition, let T7y;4p,; be the maximum
flight time of each drone, which mainly depends on the weight of
the drone, the capacity of the battery and the drone speed v.

In terms of communication, we assume that drones remain con-
nected to the base station when travelling within the monitoring
region p. This is usually the case in urban environments and indus-
trial areas. In addition, we assume that the communication delay
between the drones and the base station is minimal compared to
the measurement hover time of the drones, which could be as high
as 30s [9].

Our mission planning approach operates in two phases: a learn-
ing phase and an optimization phase. The objective of the first phase
is to learn the spatial correlation matrix of pollution concentrations
B. In the second phase, we define and solve an optimization model
while relying on spatial correlations B and non-homogeneous mea-
surements’ quality R in order to guide the drones to the locations
that allow us to get a vector ¢ of estimated concentrations with
a corresponding covariance matrix F where the mapping quality
defined in the previous section (¥;e[1,7] ¢f X fii) is minimized.

Phase 1: Initialization phase. Our objective in phase 1 is to
characterize the spatial correlations of pollution concentrations by
estimating the matrix B. To that end, we perform ny measurements
that are uniformly distributed in the monitoring region. We first
divide the monitoring region into m sub-regions having the same
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surface area. Each drone is then sent to one of these sub-regions
and performs ng/m uniformly distributed measurements. Note that
no is a parameter that should be chosen carefully depending on the
size of the monitoring region. At the end of phase 1, the obtained
pollution measurements, denoted by 2%, in addition to the inferred
measurements’ quality matrix R, are sent over to the base station.
Based on that data, the base station performs the characterization of
the spatial correlations as explained later in Section 4.4 and mission
planning decisions as explained in Section 4.5.

Phase 2: Optimization phase. Our objective in phase 2 is to
use the obtained B matrix in order to find the best way-points
where drones should perform their measurements while taking
into account flight time constraints. The optimization algorithm
is run at the base station at the end of the initialization phase. As
a result, each drone gets the optimal mission plan with respect to
the current characterization of pollution spatial correlations. Each
drone follows then the provided mission plan and each performed
measurement is sent right away to the base station. The latter uses
the new data in order to refine the characterization of pollution
spatial correlations at a specific rate. The new characterization of
spatial correlations is then used to refine the optimal mission plans
of the drones and this process continues until no more data could
be performed. At the end, the base station uses the full set of the
obtained measurements combined with the inferred sensing quality
and the final characterization of pollution spatial correlations in
order to calculate the final interpolated concentrations c.

4.4 Robust spatial correlation characterization

Given a set of already collected measurements z° € R™ in
addition to online inferred measurements’ quality R, our aim is to
estimate the pollution spatial correlations B. We recall that each
matrix element b;; corresponds to the correlation between the
unknown ground truth concentrations g; and g;. In order to estimate
the pollution spatial correlation between each pair of locations i
and j, we first define as D(i, j) the set of sampled location pairs
that are within a Euclidean distance close to the distance between
locations i and j. Mathematically, the set D(i, j) can be written as

D(i, j) = {(a,b) | za2b € 2° & lIpa = ppll = llpi — pjll £ A}.

Based on D(i, j), we estimate the b;; spatial correlation as

Zay Zby
Tay +rb1 Tay +rb1
bij = corr , (3)
“ap| Zbip)
r“ll)\ +rb\D| r“lD\ +rb|D\

This provides a robust estimation of corr(g;, gj) while taking into
account measurement errors by normalizing the measurements
within each pair of points (g, b) using their respective error’s vari-
ance rq and rp. The outcome of this normalization process is that
low-quality measurements (i.e., pairs (a, b) where either rq or r is
high) become less involved in the final estimated correlations b;;
whereas high-quality measurements (i.e., pairs (a, b) where both
rq and ry, are low) are emphasized.

4.5 Robust mission planning optimization

Using the obtained characterization of spatial correlations B and
the inferred measurements quality matrix R, our objective is to
find the best locations that offer the best interpolation of pollution
concentrations. In addition, we ensure that the selected locations
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can be sampled with the m drones subject to their remaining flight
time 7fj;gp;. We determine for each drone the best ordered set of
sampling points by solving the following optimization model:

Z C? X fii
ie[L1]
Eq.(1), Eq.(2) and flight constraints

Minimize

Subject to

The objective function ensures the minimization of the overall
variance of estimated concentration errors fi;, i € [1,1] while
emphasizing the interpolation error at polluted locations compared
to the slightly polluted ones. The minimization of the interpolation
error’s variance is performed with respect to the matrix H, which is
the main decision variable in the optimization process and defines
the best aerial sensing locations. In order to take into account the
aerial sensing requirements, we constrain the sensing locations so
that they are ordered in a way that takes into account the necessary
sampling hover time in addition to drone travel times when moving
from one location to another.

We solve our mission planning optimization model using com-
mercial optimization solvers (IBM CPLEX) in the case of small
monitoring regions. In order to scale our approach to large regions,
we propose to solve the optimization model to get only a partial
mission plan for each drone and then update the mission plans as
the drones are flying.

4.6 Experimental evaluation

Dataset: We evaluate our mission planning approach using a
set of 30 pollution maps of aerial and ground measurements of VOC
pollutants collected in February 2020 using our sensing platform
ASTRO+. We also use as input the collected absolute humidity maps
in order to infer online VOC sensing errors since absolute humidity
is highly correlated with aerial measurements’ quality as shown
in section 3. Each collected data map corresponds to a grid of 34
data points (I = 34) within the Milby Park residential neighborhood
(Houston, Texas).

Flight constraints: We assume that drones fly high enough to
avoid obstacles and that their flight speed is fixed at 2m/s for safety
reasons. We set the hover time of each drone to 10s since we are
focusing on VOC sensors, which have an acceptable response time
that is usually within few seconds. We consider flight times of up
to 30min where the first 10min are reserved to the initialization
phase of our mission planning approach. This allows us to perform
6 uniformly distributed initial measurements (no = 6), which is nec-
essary for an initial characterization of pollution spatial correlations
matrix B.

Performance metric: We simulate our mission planning ap-
proach while using the aerial data maps each time a drone sample
is performed. Then we evaluate the quality of the output of each
simulation by comparing the final interpolated map of aerial data to
the corresponding reference ground map. We use the relative RMSE
as a performance metric to evaluate the percentage of interpolation
error of each environmental sensing mission.

Performance benchmarks: We compare the results of our ro-
bust mission planning to the following baselines:

e Omniscient planning: this is the best mission planning that
could be obtained while relying on the real drift of aerial
measurements (assumed to be hypothetically known). Given
a number of sampling locations to optimize, we perform an
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exhaustive search to find the best combination of measure-
ment locations that minimize the RMSE evaluation metric.

o Traditional mission planning: in this case, measurement er-
ror variance is assumed homogeneous and provided by the
manufacturer as in most prior work. To evaluate this case,
we simulate our optimization approach while setting the
measurement error’s variance r; of each point i to 36 ppb? ,
which is the overall sensing errors’ variance obtained in our
VOC dataset.

e Random uniform: this corresponds to flying the drone to
random sensing locations following the uniform distribution.

Evaluation results

Fig. 3 depicts the results obtained while considering a single
drone with an overall flight time of up to 30min, which allows
the drone to sample on average up to 15 locations including the
measurements collected during the 10min of the initialization phase.

24
»»»»» Robust mission planning
221 --=-- Traditional mission planning
g Omniscient planning
§ 200 Random uniform
18]
L’ .
é 161
014
E
K 121
104 4
12.5 15.0 17.5 20.0 225 25.0 27.5 30.0

Flight time (min)
Figure 3: Environmental mapping performance evaluation.

The results show that due to the dynamic and non homogeneous
nature of aerial sensing quality, traditional mission planning fails
to send the drones to the most informative locations and selects in-
stead measurement locations that are almost uniformly distributed
in the monitoring region. This is due to the optimization objective
function of traditional mission planning which only depends on
spatial correlations since the variance of sensing errors is assumed
homogeneous. Compared to that, and due to taking into account the
heterogeneous nature of aerial sensing errors, our approach adjusts
the spatial density of selected measurement locations depending
on the sensing quality. This helps first better characterize the spa-
tial correlations of pollution concentrations and then improve the
interpolation performance by using the most accurate aerial data.
As a result, our robust mission planning outperforms traditional
solutions by up to 2.5x improvement factor (calculated with respect
to the omniscient planning).

Note that our performance improvement decreases as the drone’s
flight time is extended. This is due to the small size of the moni-
toring region (500m x 500m), where a 30min flight time allows a
single drone to sample almost half of the grid points and as a result
obtain good interpolation quality even with uniformly distributed
measurement locations. However, our approach, being efficient
even with limited sensing resources, allows us to monitor large
deployment regions especially when high flight speeds are allowed.

5 Conclusion

In this paper, we propose a robust mission planning approach that
adapts the trajectory of the drones while taking into account the
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quality of aerial measurements that is inferred from weather con-
ditions. Compared to existing mission planning algorithms, we
propose in our work to couple the pollution spatial correlations
with a fine characterization of aerial measurements’ quality in the
optimization process of UAV mission planning. We evaluate our
mission planning approach based on our dataset of VOC measure-
ments and show a high-performance improvement that is due to
the fine characterization of the measurement errors.
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