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ABSTRACT
We present SearchLight, a system that enables adaptive steering

of highly directional 60 GHz beams via passive sensing of visible

light from existing illumination sources. The key idea is to simul-

taneously track a mobile device’s position and orientation using

intensity measurements from lighting infrastructure, and to adapt

client and AP beams to maintain beam alignment, without training

overhead or outages in the 60 GHz band. Our implementation on

custom dual-band hardware with 2 GHz wide channels and 24-

element, electronically steerable phased array antennas shows that

SearchLight successfully tracks client mobility and achieves up to

3× throughput gains compared to an in-band training strategy, and

eliminates millisecond-scale in-band training epochs.
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1 INTRODUCTION
The next 60 GHz Wi-Fi standard promises data rates of 100 Gb/sec

[7], more than 10 times faster than today’s standards and prod-

ucts [17, 19]. Such data rates are enabled by wide GHz-scale band-

width coupled with phased array antennas to realize high direc-

tionality. Unfortunately, despite such astounding physical-layer

bit rates, throughput can be severely degraded by mobility, which

can break the highly aligned transmit and receive beams, requiring

millisecond-scale delays to re-align. While such a gap might seem

quite short, it yields a missed opportunity to transmit 10’s of Mb,

severely degrading throughput and potentially disrupting high-rate,

low-latency applications such as wireless virtual reality.

In this paper, we present the design, implementation and experi-

mental evaluation of SearchLight, a system that re-aligns 60 GHz

beams without outages or time-consuming in-band retraining. Our
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design is motivated by the observation that despite unconstrained

client and environmental mobility, two key indoor WLAN elements

do not move: the access point and overhead lighting. Moreover, the

ubiquity and dense deployment of indoor luminaries ensures multi-

ple light sources are available in the environment [31], which we re-

purpose as �xed anchors. Thus, we equip mobile clients with photo

diodes that, with near zero energy cost,
1
can view light sources

as �xed anchors from which mobility can be inferred. We thereby

can track changes in a mobile device’s position and orientation by

passively sensing light intensity from indoor luminaries, even at

unknown locations, and continuously infer required changes in 60

GHz beams. In particular, we make the following contributions.

First, we devise a novel method to estimate a mobile device’s

position and orientation simultaneously in 3-D using light intensity

measurements from at least three light sources with unknown loca-

tions. Prior work on visible light positioning uses multi-lateration

(e.g., [12]), which requires a �xed and known orientation of the light
sensor, such that light intensity depends solely on position. Since

we do not require the location of the luminaries to be known (to

simplify deployment) and allow clients to have arbitrary orienta-

tion, existing solutions are not directly applicable. In contrast, we

employ a light sensor array for mobile devices and fuse measure-

ments from multiple sensors to decouple orientation and position

estimation using �rst order approximations. In particular, we �rst

estimate the Angle of Arrival (AoA) from each light anchor at the

client, and then use this knowledge to express light intensities as a

function of 3-D coordinates. Although AoA estimation via antenna

array phase di�erence is an e�ective technique in radio bands, e.g.,

[27], visible light is incoherent, and light sensors can only measure

the magnitude of the incident light. Thus, we exploit the known

geometry of the sensor array, such that light intensity at adjacent

sensors has a known angle di�erence and the AoA component in

the plane carrying the adjacent sensors can be estimated.

Second, we design an algorithm to steer both client and AP

beams by only using light measurements. Our algorithm exploits

the dominant Line of Sight (LOS) propagation of the 60 GHz band

to track changes in AoA and Angle of Departure (AoD) parameters

of the LOS channel component using the aforementioned light-

based mobility estimation and steers the 60 GHz beams along the

LOS path. In particular, if the SearchLight client determines that a

change in client-side steering is required, its beam can be re-steered

immediately, without requiring training or feedback to the AP. On

the other hand, if the client infers that the AP should re-steer its

beam, this inference is fed back to the AP by either piggybacking it

to a data transmission, or initiating an on-demand feedback packet.

We evaluate this feedback overhead in Sec. 4.

1
Indeed, the photo diode’s close cousin, the solar cell, provides a net positive energy

conversion of light to electricity [1].
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Figure 1: SearchLight WLAN scenario.

Finally, we implement the key components of SearchLight on

a dual-band hardware testbed comprised of a custom light sensor

array integrated with X60 [19], our highly con�gurable Software

De�ned Radio (SDR) 60 GHz platform with fully programmable

PHY and MAC layers, multi-Gbps rates, 2 GHz wide channels and

a user-con�gurable 24-element phased array antenna which can

be electronically steered in real-time. For luminaries, we use bulbs

and o�-the-shelf LEDs. We conduct extensive over-the-air exper-

iments encompassing a wide range of scenarios with respect to

the position and number of light anchors, and mobility patterns.

We show that when a LOS path exists, SearchLight correctly steers

beams more than 60% of time on average even with unknown light

anchor locations, and non-uniform beam patterns and side lobes of

the antenna array. We further use traces from extensive channel

measurements to drive a custom WLAN simulator implementing

both IEEE 802.11ad at 60 GHz and visible light bands with multiple

mobile clients and show that SearchLight avoids repeated train-

ing overhead under mobility, achieving up to 3× improvement in

throughput.

2 SEARCHLIGHT DESIGN
2.1 System Architecture
The SearchLight architecture has three components: (i) three or
more luminaries, ceiling mounted and facing downward, which we

repurpose as �xed anchors; (ii) a 60 GHz WLAN AP with electroni-

cally steerable beams; (iii) a mobile client with 60 GHz radios and

o�-the-shelf light sensors. An example scenario is depicted in Fig.1.

In SearchLight, the AP is not required to have any coordination

with or control over the luminaries. Moreover, lights are not re-

quired to have communication capabilities, i.e., it is not required

to support Visible Light Communication (VLC). We only require

that at least three lights be turned on and their intensities be dis-

tinguishable. That is, the intensity from each light anchor may be

measured separately, e.g., via [12] or by exploiting characteristic

frequencies of LEDs [31]. Likewise, if the lights transmit signatures,

techniques such as [11] can further be employed for distinction.

2.2 Node Architecture
Fig. 2 depicts the SearchLight node architecture. The 60 GHz band,

shown at the top of both the AP and the client, uses the “selected

beam” from the respective beamforming codebooks for directional

transmission and reception. These beams (prede�ned codewords

with phase values for antenna elements) are initially selected via

beam training in the 60 GHz band. For subsequent transmissions,

these beams are determined by SearchLight (implemented as a

software module connected to the 60 GHz MAC) using light mea-

surements at the client.
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Figure 2: SearchLight node architecture.

For light measurements, the client equips an array of J light

sensors, such that each sensor measures intensity (I ) from all avail-

able (n) light anchors. The set of intensities {I } = I ij (i = 1, ..,n ,

j = 1, .., J ) is input to the client’s SearchLight module which has

two main components: (i) Mobility Estimation Block which uses

light measurements to estimate the position and orientation of the

client with respect to the anchors, and (ii) Beam Steering Block
which translates mobility estimates to changes in AoA and AoD

in the 60 GHz band, and infers changes in AP and client beams by

computing beams with maximum directivity gain along the esti-

mated angles based on the knowledge of beamforming codebooks

at the client and the AP. If a change in client’s beam is inferred,

SearchLight triggers the 60 GHz MAC/PHY to switch the codebook

entry at the client side, such that the AP is oblivious to any changes

in client-side beams. On the other hand, if a change in AP-side

beam is inferred, SearchLight transmits feedback to the AP to en-

able direct selection of the new beam vs. requiring the AP to initiate

beam training to search for the new beam.

2.3 Design Overview
We design SearchLight to comprise two phases; an initial Training
Phase during which the client performs measurements in both 60

GHz and visible light bands and estimates key parameters about

the indoor environment, i.e., its initial position, orientation and

light anchor positions. After this initial phase, SearchLight enters

the Tracking Phase which maintains alignment of 60 GHz beams

by steering beams solely via passive light sensing. The key steps of

both phases are as follows, and are summarized in Algorithm 1.

(i) Training Phase: This initial phase is invoked when maxi-

mum signal strength beams are not known at the end nodes, e.g., at

association or after a link breakage. During the training phase, end

nodes perform Beamforming Training (BFT) in the 60 GHz band,

e.g., via the 802.11ad standard’s exhaustive search based beam se-

lection procedure [17], during which end nodes discover the pair of

beams (S̃AP , S̃cl ) that maximize 60 GHz signal strength (R), after
steering across all AP and client beams and measuring respective

signal strengths

{
R AP }

and

{
Rcl

}
(line 1). The client also measures

light intensities {I } from n light anchors using its sensor array,

and uses the method described in Sec. 2.4 to estimate its position

Po = (xo ,yo , zo ) and orientation angles αo and βo in the azimuth

and elevation planes, where subscript 0 indicates client’s initial
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Training Phase:
1 (S̃AP , S̃cl )=arg max

SAP ,Scl
(R) |

{
RAP

}
,
{
Rcl

}
2 Find Po = (xo, yo, zo ), αo, βo | {I }
3 Find P i

=(x i , y i , z i ) ∀ i | {I }
4 Find (θAPo , ϕAPo , θ clo , ϕclo ) | {I } , P

AP

Tracking Phase:
5 Find P = (x, y, z), α, β | {I } , P i

6 Find (θAP , ϕAP , θ cl , ϕcl ) | P, Po, α, αo, β, βo, P i , P AP

7 ŜAP = arg min

SAP

��](center angles of SAP − (θAP , ϕAP )��
8 Ŝcl = arg min

Scl

��](center angles of Scl − (θ cl , ϕcl )��
9 if (S̃cl = Ŝcl ) then

no change

else
S̃cl ← Ŝcl

end
10 if (S̃AP = ŜAP ) then

no change

else
send feedback to AP (S̃AP ← ŜAP )

end
Algorithm 1: SearchLight Protocol Overview

parameters during the training phase (line 2). It also estimates the

position of light anchors (P i , i = 1..n) during this process (line 3).

Further, to track changes in AoA and AoD with respect to the AP,

its position (P AP ) is also needed with respect to the light anchors,

such that changes in position using light measurements can be

translated to changes in position with respect to the AP. There

are many recent solutions in 60 GHz band which use Time of

Flight (ToF), highly directional beams and re�ected paths [2] for

localization with a single AP. Conversely, if the AP also houses

a light source, the position can be estimated via our method of

light anchor positioning (line 3). In any case, this is a one-time

computation in SearchLight at the time of association with the

AP and any of existing methods can be used to determine (P AP ).

It is then used in the training phase to estimate AoDs and AoAs

(θAPo ,ϕ
AP
o ,θ

cl
o ,ϕ

cl
o )

2
in the 60 GHz band (line 4). Moreover, in our

evaluation in Sec.3, we use an existing technique to account for

this estimation of (P AP ) and the resulting error as well.

(ii) Tracking Phase: After the initial BFT, SearchLight enters
the tracking phase which runs as a background process at the client

to continuously estimate position (P ) and orientation (α , β) using
light measurements (line 5). It uses the same estimation method as

in line 2, except that anchor positions, which are already estimated

in the training phase, can now be used to reduce the number of

unknowns in the estimation problem and hence to reduce com-

putation time. Conversely, the entire process can be repeated to

obtain further P i
estimates and improve anchor positioning accu-

racy. Moreover, since light sensors can sample light intensity at

multiple kHz frequency consuming very little energy, SearchLight

can passively track device mobility at 802.11ad frame transmission

times (orders of a few ms).
AoD and AoA in the 60 GHz band are then computed for the LOS

path using estimates of the client’s current position and orientation,

and the AP’s position with respect to light anchors (line 6). Using

2θ and ϕ denote the azimuth and elevation components of the respective angles.

knowledge of AP and client codebooks and beam patterns, ŜAP

and Ŝcl are inferred as highest strength beams, such that they

have maximum directivity gain along (θAP ,ϕAP ) and (θcl ,ϕcl )
respectively (lines 7, 8). If a change in the client’s beam is required,

the local 60 GHz MAC is triggered to steer to Ŝcl (line 9). For AP-
side beam adaptation, feedback containing ŜAP can be piggybacked

to an ongoing transmission, or sent as a separate packet (line 10).

We discuss this feedback process in detail in Sec. 4. In any case,

there is no 60 GHz in-band training overhead in the tracking phase.

If the link breaks during the tracking phase for any reason (e.g.,

due to blockage of LOS path or estimation error), SearchLight en-

ters training-phase again. These subsequent training phases only

require beam training in the 60 GHz band; the client can learn the

indoor topology (anchor and AP positions) within the �rst training

phase at association. However, these processes can be optionally

repeated for further improvement of estimates.

2.4 Position and Orientation Estimation
Here we describe the visible light channel model and our method

to estimate the position and orientation of a mobile client.

Visible Light Channel Model: The intensity (I ) of light received
at a sensor is modeled by Lambertian radiation pattern for LOS

propagation [1] as follows:

I (ρ,γ ,ψ ) = T · A · д(ψ ) ·

(
m + 1

2π

)
· cosm (ψ ) ·

cos(γ )

ρ2
(1)

where T is the transmit power, A is sensor area, γ is the irradiance

angle between the vector from light source to sensor and the normal

vector to the source, ρ is the source-sensor distance and ψ is the

AoA at the sensor. д is optical concentrator, which is a constant ifψ
lies within the �eld-of-view of the sensor.m is the Lambertian order,

which is unity for common indoor LEDs. It follows that the light

intensity varies inversely to distance, AoA and irradiance angle.

Problem Formulation: Since the mobile device’s size is usually

much smaller compared to ρ, we consider the client as a cube of
edge length 2r . Then the position of the client can be represented

as 3-D coordinates (x,y,z) of the center of this cube with respect

to some �xed reference, and its orientation as angles α (angle in

the azimuth plane) and β (the elevation angle) about the client’s

center. Since phased arrays have 3-D beam patterns and clients

can have arbitrary orientation, we need to estimate (x ,y, z,α , β) to
track both the client’s position and orientation at any time.

Sensor Array Design: We exploit multiple light sensors with

known angular separation to estimate the AoA. When introducing

more sensors, the entropy of measurements is maximized by placing

sensors at right angles, since it gives maximum separation in AoA.

Therefore, in our sensor array design, we use at least six sensors

arranged mutually orthogonally on the six facets of a mobile device.

For the rest of this section, we discuss this case of six-sensor array,

but the formulation can be easily extended to larger array sizes.

Light Measurements: Fig. 3 depicts a SearchLight client and n
light anchors. We de�ne the positions of all devices with respect to

some light anchor L0, the choice of which is arbitrary but should

be consistent for a single iteration of the algorithm. Eventually,

we localize the AP in this frame (by localizing the AP w.r.t the

client using any existing RF techniques), and then rede�ne all

coordinates with respect to the AP using simple translation of

coordinates. Nonetheless, the other light anchors are located at
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Figure 3: SearchLight client w.r.t. n light anchors and the AP.
P i = (x i ,y i , z i ), i = 1, 2, .., (n − 1). These locations are initially

not known at the client.

In this case, the light intensity from the i th anchor received at

the j th sensor of the client is given as:

I ij = C
i
j · cos(ψ

i
j ) ·

cos(γ i
j )

(ρij )
2

(2)

where C i
j is a calibration constant, and ρij is the distance between

the ith anchor and the jth sensor. If

−→
P i = [x i ,y i , z i ]T is the posi-

tion vector of the ith anchor and

−→
Pj is that of the j

th
sensor (with

unit normal vector
−→uj ), then angles γ i

j andψ i
j can be computed as:

cos(γ i
j ) =

−→z � (
−→
Pj −
−→
P i )

ρij
, cos(ψ i

j ) =
−→uj � (

−→
P i −

−→
Pj )

ρij
(3)

Since the arrangement of sensors is �xed and known at the client,

we use spherical coordinates (r ,α , β) to compute sensor positions.

In particular, with six mutually orthogonal sensors, position vectors

are de�ned by the following set:

−→
Pj = {

(
x + rcosαcosβ
y + r sinαcosβ

z − r sinβ

)
,

(
x − rcosαcosβ
y − r sinαcosβ

z − r sinβ

)
,

(
x − r sinαcosβ
y + rcosαcosβ

z − r sinβ

)
,(x + r sinαcosβ

y − rcosαcosβ
z − r sinβ

)
,

(
x + rcosαsinβ
y + r sinαsinβ

z + rcosβ

)
,

(
x − rcosαsinβ
y − r sinαsinβ

z − rcosβ

)
} (4)

And the normal vectors are computed as
−→uj =

−→
Pj−[x,y,z]T

r .

By geometry, at most three sensors on a cube can have LOS path

to any single light anchor. Therefore, we consider the three sen-

sors with the highest intensities for each anchor (I i
1
, I i
2
, I i
3
∈
{
I i
}
).

Hence, with a single light anchor, we have at most three measure-

ments and �ve unknowns (x ,y, z,α , β) and as such the system is

under determined. We can increase the number of measurements by

considering more anchors. With two anchors at known locations,

the system becomes solvable. However, we consider the general

case where position of light anchors is not known to the client, and

in this case adding more anchors to the system also increases the

number of unknowns (x i ,y i , z i ) for each anchor, and the problem

remains under-determined. To overcome this under-determinacy,

we observe that for typical indoor settings, luminaries are usu-

ally installed on ceilings and face downwards, which puts another

constraint on anchor positions i.e., the height is the same for all

anchors (z i=0 ∀ i). With this constraint, the underdetermination is

resolved if we consider at least three anchors, such that we have

nine unknowns and nine measurements.

Various numerical methods can be employed to �nd a solution

for this system. However, traditional methods are computationally

complex for solving at least nine nonlinear equations simultane-

ously. Moreover, the solution may be sensitive to initial conditions

due to multiple local extrema of trigonometric functions. Thus, in-

stead of solving the system simultaneously, we present a recursive

solution considering a single anchor at a time, which signi�cantly

reduces the computational complexity.

Recursive estimation of anchor locations: Our key technique

is to neglect the orientation angles α and β , and localize each anchor
separately with respect to the client �rst. That is, we initially assume

that the client is aligned with the axes de�ned in Fig. 3. With this

assumption, we can localize each anchor separately since we have

three unknowns (x ,y, z) and three lightmeasurements. In particular,

considering that r � ρ in most cases, we can approximate the

irradiance angles and distances from the light anchor to be the

same at all sensors (∀j,γj = γ , ρ j = ρ). With this approximation,

the ratio of light intensities at any two adjacent sensors is a function

of their AoA only, and is independent of γ and ρ, i.e.,

I ij1

I ij2
≈

cos(ψ i
j1)

cos(ψ i
j2)

(5)

Therefore, we consider the ratio of intensities at sensors in three

perpendicular planes to estimate the AoA, and substitute it in in-

tensity equations to solve for position coordinates.

We make two key observations: (i) Since the light intensities
depend onα and β , the aforementioned localizationmethod projects

the anchors to an alternate spacewhere anchor positions are rotated.

(ii) Since the light sensors are not collocated, this projection will

result in a relative translation between projections as well, which is

a function of
r
ρ . For small device sizes (r << ρ), this translation is

negligible, and the locations of anchors in the alternate space result

from a rotation of their true coordinates in the original space (as a

function of α and β). Moreover, since the anchors are coplanar in

the original space, they will lie in the same plane in this alternate

space as well, albeit di�erent from the plane z=0 in the original

space. Therefore, we can estimate α and β by calculating rotation of

this plane in the transformed space around and about the z − axis .

Once we have estimates α̂ and
ˆβ , we use intensity measurements

from the reference anchor to get position estimates (x̂ , ŷ, ẑ) in the

�xed reference frame de�ned in Fig. 3.

3 HARDWARE IMPLEMENTATION
3.1 Dual-band Phased-Array Testbed
We develop a custom hardware testbed which includes all three

components of the SearchLight architecture, i.e., luminaries, the

AP and the client. For the visible light band, we use multiple o�-

the-shelf Lumileds LEDs (1200 lm, 33V, 100
◦
viewing angle) for

illumination. For light sensing, the client houses a 7 × 7 × 3 cm

sensor array (emulating dimensions of a big smartphone or a tablet)

with six Lux sensors (Adafruit TSL-2591, 180
◦
�eld-of-view). The

sensors are sampled using an Arduino Mega 2560 board which

communicates with the client’s SearchLight module, implemented

in MATLAB. The AP and client nodes are depicted in Fig. 4a.

For implementing 60 GHz band at the AP and the client, we

integrate the world’s �rst highly con�gurable Software De�ned

Radio (SDR) based X60 mmWave platform [19] into our tested. It

is based on the National Instruments (NI) mmWave Transceiver

System and equips a user-con�gurable 24-element phased array

antenna from SiBeam. It enables fully programmable PHY and MAC

layers while still allowing for ultra-wide channels (2 GHz baseband



SearchLight: Tracking Device Mobility using Indoor Luminaries to Adapt 60 GHz Beams Mobihoc’18, June 26–29, 2018, Los Angeles, CA

24#element)
Phased)Array)
Antenna)

Light)Sensor)
Array)

AP#
Client#

Rota8on)
Pla9orm)

NI)mm#Wave)
Transceivers)

(a) SearchLight hardware platform. (b) 3D beam pattern. (c) Azimuth beam pattern.

AP

0.25m

Anchor 1Anchor 2Anchor 3

2.65m

2m

Anchor 4Anchor 5

1.5m

2m

2.5m

3m

1.13m

Wall

W
al
l 0.5m

h=2.5m

h=1m

A

B

C

D

(d) Conference room testbed setup.
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Figure 5: Beam steering with perfect LOS path knowledge.
bandwidth) and multi-gigabit data rates (up to 4Gbps). We make

further enhancements to achieve beam training and beam steering

as per SearchLight design (electronic switching in < 1µs).
The in-built phased array has 24 elements; 12 each for TX and

RX. The module allows four di�erent phase values (0, π/2, π , 3π/2)
for the antenna elements through the use of codebooks. SiBeam’s

reference codebook de�nes 25 beams spaced roughly 5° apart (in

their main lobe’s direction). The 3 dB beamwidth for the beams

ranges from 25
◦
to 35

◦
. As a result, each beam’s main lobe overlaps

with several neighboring beams. The beam patterns are depicted

in Fig.4b and Fig.4c. Thus, the X60 platform allows us to evaluate

realistic mmWave phased array based system with imperfect beam

patterns and side-lobes, and their impact on beam steering.

3.2 Experimental Setup
Using our dual-band testbed, we conduct extensive over-the-air

experiments encompassing multiple indoor environments, light

anchor topologies and mobility scenarios including translation and

rotation. Due to space constraints, here we present results from one

such mobility scenario; client translation, which presents greatest

challenge as it may require beam adaptation at both end nodes.

For this, we setup the dual-band testbed in a conference room

within 4 × 3 × 5m space bound by walls on two sides and open

space on the other two (Fig.4d), such that the AP is �xed in one

corner at 1m height , while we generate multiple trajectories for

the client. We also �x client’s orientation in these experiments to

isolate translational mobility. Moreover, we consider scenarios in

which the requirements for SearchLight estimation are satis�ed,

i.e., the client always has a LOS path to the AP and to three light

anchors to evaluate various components of SearchLight design. If

these requirements are not satis�ed, SearchLight falls back to ex-

isting in-band training solutions to recover from link breakages,

albeit incurring training overhead, as discussed in Sec.5. However,

here we are interested in quantifying possible gains via SearchLight

in presence of LOS paths. Fig. 4d depicts our experimental setup

with �ve light anchor positions at 2.5m height. Although the �gure

shows �ve anchors, only three are turned on in a single experiment.

Hence we create

(
5

3

)
-1=9 distinct topologies by using di�erent com-

binations of active light anchors in separate experiments.Note that

we exclude one topology with collinear light sources, which is

under-constrained for 3-D orientation estimation. These topologies

incorporate the impact of anchor location, and the results in this

section present averages over all topologies.

Here we consider four di�erent client trajectories (A, B, C and D)

at radial distances 1.5m, 2m, 2.5m and 3m respectively from the AP

and 1m height, as shown in Fig. 4d. For each trajectory, the client

is initially placed in front of the AP and covers 2m lateral distance

along a straight line. As such, these trajectories create maximum

angular separation between the initial and the �nal client posi-

tions for the corresponding radial distances, and require maximum

beam adaptations. We take measurements at 25cm distances along

each path, resulting in 36 measurement locations in total for each

three-anchor topology. In these experiments, any change in AP-side

beams inferred by the client is immediately applied at the AP since

we consider a single client with no contention. We evaluate the

impact of contention and feedback overhead in Sec. 4.

3.3 Validity of LOS Path based Beam Steering
Before evaluating SearchLight’s beam steering accuracy, we �rst

investigate whether selecting beams with maximum directivity

gain along the LOS path in fact yields the strongest links, given

perfect knowledge of the position and orientation. For this, we

perform an exhaustive beam search over all 25 × 25 possible AP-

client beam pair combinations at all 36 client locations in the above

experimental setup, and �nd the maximal signal strength beam

pair. We then compare it with the “geometric beam pair” with

maximum gain along the LOS path for each instance, computed

with perfect knowledge of client’s position and orientation from our

setup. To capture beam separation in codebook space, we de�ne

a metric; Beam-Index Distance (BID) as the absolute di�erence

between indices of the geometric beam and the maximal strength

beam (from exhaustive search). Hence, BID=0 implies that LOS path

based beam achieves maximum strength, whereas BID=1 indicates

that the geometric beam is adjacent to the highest strength beam.

Fig.5a depicts the CDF of BID across all measurements. We �nd

that for more than 60% of instances, the LOS path beams for both

AP and client achieve the highest signal strength across all beam
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combinations. The slight di�erence between AP and client beams is

due to di�erence in beam patterns for di�erent arrays and because

of unavoidable experimental error in �xing the orientation of the

client. Ideally, we expect BID = 0 for all instances since the LOS

path is available across all client locations, and dominance of LOS

path for 60 GHz channels should in theory lead to maximum signal

strength for geometrical beam pairs. However, for our practical

phased array antenna setup, this deviation results from a combined

e�ect of non-uniform beam patterns with side-lobes and presence

of re�ected paths in the environment, which make some beams

achieve higher signal strength if they includemultiple paths, despite

having lower gain along the LOS path. To verify this further, we

compute the BID of both AP and client side beams across four client

locations in the column in front of the AP (0m lateral distance

from the AP, as shown in the map in Fig.4d), the four locations

in the middle column (1m lateral distance) and those close to the

side-wall (2m lateral distance). Fig. 5b illustrates this impact of

side-lobes and re�ections, where client locations in front of the

AP have a dominant LOS path and hence geometric beam pair,

selected via perfect knowledge of position and orientation, is almost

always the highest strength pair. Whereas for the client locations

close to the wall, this ratio is slightly lower due to adjacent beams

getting highest strength when they include multiple physical paths.

For about 5% instances, the BID is greater than 3 beams, and this

happens when a re�ected path is much stronger than the LOS path

due to imperfect beam patterns.

Finding: Due to wide beams of a practical phased array antenna
with imperfect beam patterns and side lobes, and in an environ-
ment with availability of re�ected paths, the strategy of selecting
beams with maximum gain along the LOS path yields the true high-
est strength beams nearly 60% of instances when the LOS path is
available. However, for more than 95% instances, the di�erence from
exhaustive search based highest strength beams is within 2 beams.
3.4 Training Phase Accuracy
Since beam steering in SearchLight during the tracking phase uses

anchor position estimates from the training phase, tracking-phase

accuracy is coupled with training-phase error. Therefore, we �rst

evaluate the accuracy of anchor position estimation during the

training phase using our recursive estimation method. Fig. 6 de-

picts anchor positioning error averaged over three anchors during

the training phase for the four trajectories. Since we consider 9 dis-

tinct topologies with di�erent anchor combinations; the error bars

capture variance due to di�erent initial positions of the client and

anchor-client distances. The graph reveals that the average error

increases for trajectories A through C, and then decreases slightly

for trajectory D. This results from changes in average anchor-client

distances across trajectories, and we �nd from experiments that po-

sitioning error is proportional to the average client-anchor distance.

This is because the deviation of measured light intensity from the

analytical model increases with distance. Note that for trajectory

D, the proximity of two light anchors in the bottom row reduces

client-anchor distance for some topologies, resulting in a lower

positioning error on average. Overall, we �nd that SearchLight can

localize the light anchors within 40cm of their true position with

respect to the client.

In SearchLight, we also require clients to �nd AP’s location at as-

sociation (i.e., during the �rst training-phase), and any error in this
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Figure 6: Anchor positioning error during training phase.
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Figure 7: Tracking-phase estimation accuracy.

estimation will also propagate intro tracking-phase estimates. As

discussed in Sec.5, decimeter-level localization is achievable using

various RF techniques. Although these techniques incur overhead

in exchanging several frames to estimate Time of Flight (ToF) or

AoA, this represents a one-time overhead in SearchLight and is

minimal (< 10ms). To capture this error, we simulate an existing

ToF based technique [2] to estimate AP position across all client

locations in the conference room setup, with an average localization

accuracy of 50cm, and inject this error in SearchLight estimation

algorithm to account for AP localization error. All the results pre-

sented in the rest of this section are based on these estimates of

AP and anchor positions to evaluate the scenario when the client

has no prior knowledge about the indoor environment. In sepa-

rate experiments, which we do not discuss here for want of space,

we observe that knowledge of these parameters (e.g., via planned

deployment) further improves SearchLight beam steering accuracy.

3.5 Tracking Phase Accuracy
Next we evaluate beam steering accuracy during the tracking-phase,

when the client only uses light measurements from the three an-

chors (whose positions are estimated during the training-phase) to

predict both AP and client-side beams. Fig. 7a depicts the beam steer-

ing accuracy as the CDF of BID of beams predicted by SearchLight

along all points on the four trajectories, and across all 9 di�erent

light-anchor topologies. Here BID represents absolute di�erence

in indices between SearchLight predicted beams and the true high-

est strength beams computed via an exhaustive search. The �gure

shows that SearchLight achieves perfect beam steering accuracy

for AP-side beams for more than 50% of prediction instances, and

for more than 90% instances the di�erence is within 2 beam in-

dices. Client-side beam steering accuracy shows a similar trend

with a slightly higher error. This increase in error occurs because

unlike AP-side beams, client-side beams also depend on orientation

estimates. Although the client’s orientation is �xed in the above

experiments, the client may incorrectly perceive rotation (due to

estimation error) and adapt its beams in response. We evaluate this

estimation error in detail in later part of this section.
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Figure 8: Accuracy of various estimation components during the tracking-phase.

We observe that due to position and orientation estimation error

combined with error due to non-uniform beam patterns, side-lobes,

and re�ections, the predicted beams in SearchLight are not always

the highest strength beams. To further investigate how much loss

in link’s signal strength is incurred when these sub-maximal beams

are selected for some instances in SearchLight, Fig.7b depicts the

SNR loss in dB for SearchLight’s predicted beam pairs along all

trajectories and across all anchor topologies, as compared to the

maximum possible SNR with beams selected via exhaustive search.

We observe that for about 30% instances, SearchLight selects correct

beams at both AP and client sides and achieves the same SNR as

exhaustive search, without incurring any training overhead in the

60 GHz band. Moreover, for more than 75% instances, the loss in

SNR is within 1 dB. This is because for more than 90% prediction

instances, SearchLight predicts beams within 2 beam indices of the

true highest strength beam, and due to overlap between adjacent

beams of the phased array, the loss in SNR is small.

Finding: Even with unknown anchor locations and practical phased
array with non-uniform beam patterns, SearchLight can predict beams
at both AP and client sides within two indices of the true highest
strength beam for more than 90% instances across multiple client
trajectories and anchor topologies. Moreover, without performing any
further beam training during the tracking-phase, SearchLight achieves
link SNR within 1-1.5 dB as compared to exhaustive search based
beams at most positions along the trajectories.

3.5.1 Impact of Position/Orientation Estimation Error: Next we
do an in-depth analysis of how error in client’s position and orien-

tation estimation a�ects the steering accuracy in the above results.

For this, we study the four client trajectories in isolation. Fig. 8a

depicts the accuracy of the AP-side beams predicted by the client

for the four trajectories (plotted along the x-axis), whereas the cor-
responding bar graphs show the percentage of the total predicted

beams with di�erent BIDs over all 9 topologies of di�erent light
anchor combinations. The �gure reveals that for the closest trajec-

tory A, the client makes correct prediction over 60% of the total

instances. Further, prediction accuracy �rst increases for trajectory

Bwith increase in radial distance, but then decreases for trajectories

C and D. This trend results from two opposing factors.

The �rst factor is the client-position error during the tracking-

phase, which is proportional to the distance between the client

and the three light anchors and the error in anchor position esti-

mates. As depicted by the CDF of tracking-phase positioning error

in Fig. 8b, the trajectory A shows the least error due to its proximity

to the light anchors on average, and also because anchor positioning

error is minimum along this trajectory. The positioning error wors-

ens across trajectories A through D as the average client-anchor

distance and anchor positioning error increases, which in-turn

increases the beam steering error across trajectories.

The second factor is the increase in beam coverage area with

distance. As the radial distance increases across trajectories, each

AP-side beam covers a larger area along the client’s trajectory.

Moreover, for the same 2m translation, the change in AP-client

angular separation also decreases with radial distance, resulting in

a decrease in the number of beams to be adapted. Steering accuracy

is also a�ected by error in the AP’s position estimate, and we

�nd that its impact is strongest for closer trajectories. Thus for

trajectory B, although positioning error is higher than trajectory A,
there is also a greater tolerance to error due to lower adaptation

frequency and greater beam-coverage area, and hence we observe

an improvement in average steering accuracy. We further observe

that beam steering error starts increasing again beyond trajectory

B. This is because with higher position-tracking error, the impact of

beam coverage area and adaptation frequency becomes dominant.

Client-side beam prediction shows a similar trend, as depicted

in Fig. 8c, with average steering error slightly higher compared to

AP-side beams. This is because of additional error introduced by

client’s orientation estimation. As shown by the CDF of client’s

orientation error in Fig. 8d, there is non-zero error in orientation es-

timates, which the client perceives as rotation and adapts its beams

accordingly. This rotation error is an additional factor a�ecting

client-side beam prediction accuracy. Although for some locations

this orientation error may in fact improve beam prediction accuracy,

it is slightly worse on average.

Finding: Despite unknown anchor locations, SearchLight simultane-
ously tracks device position within 40cm and device orientation within
5
◦ for more than 80% instances. Moreover, the beam steering accu-
racy is impacted by client’s position and orientation estimates, beam
coverage area and anchor position estimates, with average accuracy
decreasing with AP-client distance in our experimental setup.

3.5.2 Beam Adaptation Strategies. Finally we evaluate how var-

ious possible adaptation strategies a�ect link SNR as the client

moves along the four trajectories, starting from in-front of the AP.

As an example, here we analyze variations in link SNR along the

closest trajectory (1.5m radial distance) for one of the anchor topolo-

gies from above experiments (with light anchors 1,3 and 4 active).

The SearchLight client performs training-phase once in-front of the

AP and then moves along the trajectory, without doing any further

beam training, and adapting beams solely via light measurements.

The AP-client angular separation increases from 0
◦
to 53

◦
along this

trajectory, resulting in maximum required beam adaptations to sus-

tain the link. Further, we consider both scenarios for SearchLight;

with beam adaptation on both AP and client sides, and client-side

adaptation only, which may happen if the AP does not receive
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Figure 9: SNR variation for di�erent adaptation strategies.

client’s feedback or if the client decides to adapt its own beams

only to avoid any training or feedback overhead. For comparison,

we also compute maximum achievable SNR for beams discovered

via exhaustive search at all points along the trajectory, and also a

no-adaptation strategy where the same beams, discovered during

the initial beam training, are used throughout the entire trajectory.

Fig. 9 depicts SNR vs. lateral translation for trajectory A. The
curve for optimal beam selection via exhaustive search at all points

represents maximum achievable SNR, which serves as an upper-

bound for all beam adaptation strategies. It mostly stays constant,

with slight variations due to imperfect beam patterns. In con-

trast, without beam adaptation at either end, link strength degrades

sharply and SNR drops below 10 dB for a mere 0.5m translation.

As per 802.11ad PHY sensitivity thresholds and on our platform

as well, SNR below 10 dB achieves sub-Gbps rates, severely a�ect-

ing throughput. After 1m lateral translation, the link is completely

broken and cannot support even the base data rate. In comparison,

SearchLight client is able to maintain near-maximal link strength

for most locations along the trajectory with SNR loss within 1.5

dB. Moreover, with only client-side adaptation, SearchLight still

achieves upto 7 dB gain over no-adaptation, and extends the range

of beam alignment. This is especially useful in cases when there is

a delay in conveying feedback to the AP (e.g., due to contention)

Finding: Without beam adaptation, 60 GHz links can lose multi-
Gbps data rates via a mere 0.5m translation, highlighting their sus-
ceptibility to client mobility. With SearchLight, the client maintains
a highly directional link with SNR within 1.5 dB of the maximum
achievable SNR for most locations along the trajectory by adapting
beams based on light measurements only. Moreover, if only the client
node is adaptive, the AP may incorrectly hold on to an older beam too
long without necessarily incurring link breakage.

4 WLAN SIMULATOR IMPLEMENTATION
4.1 Trace and Model-Driven Simulator
To explore a broader set of operational conditions beyond the capa-

bilities of our hardware platform, including multiple clients, di�er-

ent mobility patterns and client speeds, we also develop a custom

MATLAB WLAN simulator. To drive the simulator, we use the

802.11ad [16] and visible light channel models to extrapolate 60

GHz signal strength and light intensities from our measurement

traces to all possible positions and orientations of the mobile device

in the indoor environment. This enables us to study multi-client

network performance with mobility models such as random way-

point mobility at di�erent speeds to further evaluate SearchLight

performance. Moreover, we use PHY and MAC speci�cations from

802.11ad, and Table 1 lists important simulation parameters.

Simulation Parameter Value
Max. transmit slot 2ms

Beacon Interval 100 ms

Preamble Length 1.9 ns

Contention Slot 5 µs

SIFS 3 µs

DIFS 10 µs

Base Rate 27.5 Mbps

Highest Rate 4.62 Gbps

Table 1: List of important simulation parameters.
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Figure 10: Protocol overhead comparison.

4.2 Setup
Using our measurement-driven simulator, we study indoor WLAN

scenarios with multiple, fully backlogged SearchLight clients. We

perform multiple experiments with random waypoint mobility

and speeds between 1.5 m/s and 5 m/s, which are average human

walking and running speeds respectively. Moreover, we evaluate

the maximum impact of feedback overhead by having each AP-side

adaptation inference generate a feedback packet at the client which

is transmitted via the 60 GHz band.

For performance comparison, we simulate baseline 802.11ad and

use the same SNR based rate adaptation for both schemes. Because

802.11ad does not have light assisted beam adaptation, it recovers

from link breakages via in-band BFT whenever the data rate drops

below MCS 1. Hence it is not excessively incurring repeated BFT

overhead, yet maintains data rates above 385 Mbps.

The frequency at which light sensors are sampled and the

tracking-phase estimates are computed is an important design fac-

tor in SearchLight, as more measurements can improve estimation

accuracy, yet require increased power and computational resources.

We use 100 Hz estimation rate in the experiments discussed below,

which we found is adequate for the indoor mobility scenarios in

our analysis, and well within sampling range of light sensors.

4.3 Results
Training Overhead Comparison: First, we compare the training

overhead incurred by the two schemes in the aforementioned ex-

periments. Fig.10a depicts overhead vs. the number of clients for

1.5 m/s speed. We calculate overhead as the percentage of total

time used to adapt 60 GHz beams (for all clients), which consists

of BFT overhead for the baseline scheme, whereas for SearchLight

it comprises training-phase overhead and the time spent sending

feedback packets. The �gure shows that for a single client, over-

head is negligible for SearchLight since beam adaptation is achieved

either by locally steering the beams at the client without any over-

head, or by sending a small (< 100µs) feedback packet to change

AP-side beams. On the other hand, the baseline scheme performs

802.11ad speci�ed in-band BFT (5− 10ms) to recover from mobility
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Figure 11: Normalized throughput comparison.

induced misalignment which takes almost 5% of the time. Further,

while training overhead increases monotonically with the number

of clients for both schemes, even with 10 clients SearchLight incurs

only 1% overhead, whereas 802.11ad’s overhead is almost 25%.

Fig. 10b indicates that training overhead increases for both

schemes at 5 m/s speed due to a higher frequency of BFT for the

baseline scheme and more feedback packets being generated in

SearchLight due to higher mobility. Nonetheless, SearchLight in-

curs almost negligible in-band training overhead, signi�cantly in-

creasing the time available for data transmissions.

Finding: Even with the maximum feedback strategy, SearchLight
achieves beam steering with less than 1% in-band training overhead
for most scenarios with moderate to high client mobility, incurring
15× to 30× lower overhead than 802.11ad based in-band re-training.
This overhead can be further reduced by piggybacking feedback to
ongoing transmissions.

Throughput Performance: Next, we analyze throughput per-
formance and normalize to the throughput of an omniscient scheme

that always uses the optimal beams and data rates for each trans-

mission. Hence, to the maximum achievable throughput, while

incurring the same channel access and contention overhead.

Fig. 11a depicts normalized throughput per client of the two

schemes for 1.5 m/s translational speed vs. the number of clients.

With a single client, SearchLight achieves 88% of the maximum

throughput on average. The degradation is due to sub-maximal

data rates resulting from beam steering inaccuracy and MCS under-

selection, or packet losses due to MCS over-selection. The 802.11ad

baseline scheme achieves ∼ 55% throughput in comparison, due to

rate adaptation losses, beam misalignment and BFT overhead as

discussed above.

With increasing client density, 802.11ad throughput degrades

further due to increased collisions, BFT overhead and latency since

multiple clients are contending to train with a single AP. Note that

while the absolute per-client throughput also decreases with an

increasing number of clients since they share a single medium,

due to normalization, our metric only represents losses due to

BFT or feedback overhead, and rate and beam mis-selection, our

parameters of interest in this experiment.

In comparison, SearchLight normalized throughput remains

above 80% for up to 10 clients due to out-of-band beam adaptation

which eliminates BFT overhead in most cases. In fact, SearchLight

throughput slightly improves for two clients compared to a sin-

gle client. This is due to a slight increase in channel access delay,

resulting in more light measurements in between two transmis-

sions, which slightly improves beam prediction accuracy. However,

as the number of clients increases further, rate estimation from

the previous transmission also starts to get stale due to increased

inter-packet transmission time. This results in lower rate selection

accuracy, which starts dominating the steering accuracy factor and

throughput starts degrading beyond two client networks.

Finally, at a higher speed (5 m/s), both schemes su�er throughput

degradation as depicted in Fig.11b, due to increased BFT frequency

and overhead for the baseline scheme and reduced beam steering

accuracy for SearchLight. This reduction in steering accuracy is

due to fewer light measurements, or conversely, the client covers

more distance between two tracking-phase estimation cycles, re-

quiring faster adaptation. This is also coupled with increased errors

in rate selection. Overall, SearchLight maintains more than 65%

throughput for up to 10 clients.

Finding: With 801.11ad beam adaptation, more than 50% of avail-
able throughput is lost due to beam misalignment for nodes moving
at human walking speeds, with even greater impact for faster speeds.
With light assisted beam steering, SearchLight achieves between 2×

and 3× improvement in throughput by avoiding BFT overhead in most
cases, and its performance scales much better with speed and client
density. Further, channel access delay due to increased contention
bene�ts SearchLight beam steering due to an increase in the number
of light measurements between transmissions.

5 RELATEDWORK
Sensing Multiple Luminaries: Existing approaches to distinctly

detect di�erent luminaries include decoding speci�c signatures

modulated by LEDs [11], periodic beacons from VLC sources [13],

frequency hopping [12], and exploiting characteristic frequency of

�uorescent lights and LEDs [30, 31]. Any of these solutions can be

incorporated in SearchLight.

Indoor Localization: RF solutions include �ngerprinting [3], RSSI

mapping [4], Time of Flight [15, 28] and AoA [24, 27] based tech-

niques, achieving up to decimeter-scale accuracy. Likewise, in the

60 GHz band, device tracking with repeated beam sweeps [25] and

localization using distance bounding and re�ected paths with a

single AP [2] have been proposed. These existing techniques can be

used to estimate AP position in SearchLight at association, however,

they do not estimate orientation and incur signi�cant overhead.

Hence they are not suitable for repeatedly estimating position dur-

ing tracking-phase. We introduce passive light sensing instead for

mobility tracking.

Prior work on visible light localization uses multi-lateration to

achieve sub-meter accuracy [12, 29], but requires known luminary

locations as well as �xed and known orientation of light sensors,

and hence cannot be used to track position and orientation simul-

taneously. In [31], non-linear intensity di�erences between two

sensors of di�erent �elds of view was employed to estimate AoA

and localize using �ngerprinting with 3+ light sources of known

location, or 4+ sources to estimate orientation as well. However,
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orientation is limited to the azimuth plane due to 1-D AoA esti-

mation. Finally, camera based �ngerprinting and image processing

solutions also achieve sub-meter localization with known anchor

locations [6, 30], whereas [11] also estimates orientation with at

least four anchors at known locations. However, cameras require

much higher power and computational resources than light sensors,

with [11] requiring 8-9 seconds for image processing.

60 GHz Link Adaptation: In-band solutions to reduce training

overhead include model-driven beam steering and channel pro�ling

[26, 32], compressive sensing techniques to exploit channel sparsity

[18, 20], correlation between beams [23], e�cient beam search-

ing [22], sector switching and backup paths [8], and beamwidth

adaptation [9]. These solutions help reduce steering overhead and

maintain alignment in certain environments, however, they still

incur training overhead when constructing channel pro�les, search-

ing for backup paths, or SNR degradation when switching to wider

beams. Moreover, in-band beam tracking solutions to address mo-

bility have also been proposed, e.g., 802.11ad’s beam tracking [16],

exploiting multi-lobe beam patterns [14] and beam sounding [9].

While these solutions help re�ne beam alignment with small-scale

mobility, they also incur in-band overhead and do not work if align-

ment is lost in-between transmissions. In contrast, we target to

eliminate in-band beam re-training while maintaining alignment at

the narrowest beamwidth. Nonetheless, when visible light hints are

not available, e.g., due to blockage or insu�cient anchors, prior so-

lutions can be integrated into SearchLight to further reduce training

overhead.

Lastly, prior out of band solutions also address mobile 60 GHz

clients, e.g., via session transfer to legacy bands [21], AoA estima-

tion in legacy bands to eliminate exhaustive search [17], and using

sensors on mobile devices [5]. In contrast, SearchLight uses passive

light sensing which has much less power requirements than me-

chanical sensors, requires no communication in the sensing band,

and is more resilient to multipath due to dominant LoS propagation

of visible light. iTrack [10] proposes to exploit indicator LEDs on

APs to track LOS path’s AoA at mobile devices and adapt beams.

However, beam adaptation is limited to client-side only. In Search-

Light, we address beam steering at both AP and client sides by

tracking both position and orientation of mobile devices. AP-side

steering is critical since APs usually have larger antenna arrays and

hence larger beam-search space.

6 CONCLUSION
We present SearchLight, a system that replaces in-band re-training

of 60 GHz links in response to device mobility with beam steering

based on passive light sensing, by using indoor luminaries as �xed

anchors to track changes in position and orientation. Our imple-

mentation on custom dual-band hardware platform and WLAN

simulator shows that SearchLight successfully tracks device mobil-

ity even with light anchors at unknown locations and achieves up

to 3× throughput gains over an in-band training approach.
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