
Stealthy Off-Target Coupled-Control-Plane Jamming
Shreya Gupta, Chia-Yi Yeh, Edward W. Knightly

Department of Electrical and Computer Engineering, Rice University, Houston, Texas, USA
{sg106, cy20, knightly}@rice.edu

Abstract—Multi- and single-user beamforming is a key feature
for realizing a high data rate in next-generation Wi-Fi such as
IEEE 802.11ax. In this paper, we study for the first time, a
jammer that strategically attacks layer two (L2) control frames
associated with beamforming to realize a denial-of-service (DoS)
attack on transport (L4) and application layer (L7) control planes.
By coupling the attack across control plane layers, the attacker
targets throughput or availability DoS while also maintaining
stealth via low air time jamming and “off-target jamming” in
which the targeted higher layer message is never directly jammed.
With end-to-end application layer experiments, we show that such
a jammer can reduce TCP throughput to 1% with less than 0.1%
of jamming air-time. Moreover, the attack can yield seconds-to-
minute scale outages by targeting the L4 or L7 setup messages
while leaving a minimal footprint.

Index Terms—coupled control plane mechanisms, control frame
jamming, stealthy jamming

I. INTRODUCTION

Wireless jamming has been the subject of intense prior
research [1]–[6]. For example, half-duplex Wi-Fi jammers have
been shown to be capable of selectively jamming frame types,
by decoding the header and preamble, and then jamming
the remaining portion of the frame [7]. Likewise, data frame
jamming coupled with the generation of fake ACKs has been
demonstrated to give a false impression of successful data
transmission [8].

In this paper, we study for the first time, a jammer that targets
coupled control plane functions in order to simultaneously
realize DoS and stealth objectives. In other words, the jammer
seeks to radically reduce network throughput and deny access
to network resources while restricting jamming air time to
extremely small values and never directly jamming the higher-
layer target. We consider a strong adversary that can reverse
engineer control plane functions spanning layers two to seven
and exploit their interactions in order to realize an effective
attack. In particular, we make the following contributions.

We begin by describing the system and threat model. We
consider that a server Alice is transmitting to clients, Bobs,
who are connected to a WLAN that employs multi- and single-
user beamforming, as in the IEEE 802.11ax Wi-Fi standard
[9]. The jammer (Mallory) is in range of Bob and can identify
and selectively jam Wi-Fi control frames such as beamforming
setup messages. Yet, Mallory’s target is not the layer two
control itself but is rather the control planes of layers four and
seven. For example, if Mallory targets a TCP SYN message,
she will not jam the message itself, but will rather jam the layer
two control messages surrounding the target in order to cause
a failed or aborted transmission. Hence, we term Mallory as

an off-target jammer, since she never jams her ultimate target
directly. We consider that Mallory has three possible targets:
TCP congestion control, TCP connection establishment, and
HTTP session establishment. In all three cases, she attempts to
disrupt layer four or seven (L4 or L7) control by jamming L2
control messages.

We implement a testbed that enables end-to-end experiments
using commercial web servers and Linux protocol implemen-
tations for Alice and Bob. For the 802.11ax capable WLAN
and jammer, we use the PERFORM real-time emulator [10],
[11]. We perform an extensive set of experiments that yield
the following findings: First, we establish an experimental
baseline in which Mallory solely attacks L2 control without
coupling to higher layers. Namely, we consider uncontrolled
fully backlogged UDP traffic between Alice and Bob. We
find that jamming different control frame types can radically
transform Mallory’s throughput vs. jamming air-time trade-off
with group messages being the most vulnerable, as they can
thwart an entire multi-user transmission. Nonetheless, the threat
is quite mild, as Mallory only reduces throughput to 48% when
she jams alternate control messages yielding a 0.7% jamming
air-time.

Next, we consider a stronger adversary that targets to couple
her attack on L2 and L4 control. In particular, we define the
Multi-User Control to Congestion Control (M2C) attack as
one in which Mallory jams multi-user L2 control messages
(Null Data Packet or NDP messages) in order to send false
severe congestion indication information to the L4 sender. We
show that Mallory can effectively disable TCP’s fast retrans-
mit mechanism and force slow retransmission timeout (RTO)
recoveries. The attack yields a surprising non-monotonicity in
which Mallory can simultaneously reduce her jamming airtime
and reduce network throughput. The result yields a severe DoS
attack in which Mallory can reduce throughput to below 1%
with less than 0.1% air time, i.e., Mallory retains stealth by
jamming less than 1/1000th of the time.

Third, we study an L4 connection availability attack in which
Mallory targets the TCP 3-way handshake (SYN, SYN-ACK,
ACK) by jamming the associated L2 beamforming control
frames. We find that Mallory can force a timeout of the TCP
connection establishment process with only 0.0157% jamming
air time, corresponding to milliseconds of jamming over a
minute-scale attempt procedure. In this case, Mallory’s small
air-time footprint is aided by Alice’s slow recovery due to
Alice’s high initial RTO value of one second (Alice has
no round-trip-time measurements to set RTO to twice the
measured round-trip-time) and Alice’s subsequent doubling of

RTO increments upon failure.
Finally, we consider an attack in which Mallory allows

the TCP connection to be established and instead targets the
subsequent layer 7 control messages, namely, HTTP session
establishment messages. We show that Mallory can force the
session establishment procedure to time out for the disrupted
HTTP response. Moreover, if Mallory eventually allows the
session to be established, she delays the video playback by an
additional 30 seconds using only 0.01% air-time jamming. We
find that while Alice’s first HTTP response retransmission is
relatively rapid (e.g., 0.28 seconds), her subsequent response
arrives at the AP 2.35 seconds later, enabling Mallory to
maintain a very low air-time footprint.

The remainder of the paper is organized as follows. Section
II-B describes the threat model and Mallory’s jamming scheme.
The testbed and experimental setup are described in Section III.
Experimental results for the baseline of non-coupled control
planes and solely L2 jamming are presented in Section IV.
Experimental results for coupled controlled planes are pre-
sented in Sections V, VI, and VII for respective targets of TCP
congestion control, TCP connection establishment, and HTTP
session establishment. Finally, Section VIII presents related
work and Section IX concludes.

II. SCENARIO AND THREAT MODEL

In this section, we describe the network scenario, threat
model, and performance metrics.

A. End-to-end network scenario with 802.11ax

We consider the network topology as shown in Figure 2,
where M Wi-Fi client stations (Bob1 to BobM) access the
Internet through a single Wi-Fi access point (AP). Each client
has a full protocol stack and utilizes an end-to-end networked
application, such as a web browser making an HTTP(s) con-
nection from a server (Alice). The AP and the stations employ
features from the latest 802.11ax standard, also known as the
Wi-Fi 6 [12]–[14], in which the AP employs multi-user (MU)
beamforming for the downlink data transmissions. The AP can
likewise employ single-user beamforming when there is only
backlog for one station.

B. Threat model

1) Overview: We consider an adversary, Mallory, who can
overhear all Wi-Fi transmissions. Moreover, she can identify
and selectively jam any L2 frame according to the frame control
message type. In particular, since the MAC header is not
encrypted, Mallory can overhear the beginning of the MAC
header and choose whether to jam the rest of the frame, a
capability that has been experimentally demonstrated in prior
work [1], [7], [15], [16]. In addition to the ability of identifying
L2 frame types, we consider that the strong adversary can
infer which type of L4 or L7 information will be transmitted
along with the associated L2 control message. For example, if
the L4 target is a TCP SYN-ACK message, we consider that
Mallory can identify the L2 control frames associated with this
message. Because this payload is typically encrypted, Mallory’s

identification will be imperfect in practice. For example, Mal-
lory might estimate that an appropriately sized and temporally
isolated uplink frame corresponds to a TCP SYN message so
that the subsequent downlink transmission will correspond to
her targeted TCP SYN-ACK. Nonetheless, here we consider
that Mallory’s identification process is perfect in order to assess
the worst-case damage that she can do.

2) L2 Beamforming Control: Here, we first review the Wi-
Fi MU downlink transmission timeline with control and data
frames. Figure 1 illustrates the L2 timeline for Wi-Fi MU
downlink transmissions from the AP to 4 stations. The Wi-
Fi MU beamforming downlink transmission procedure begins
with a null data packet announcement (NDPA) frame (green)
to gain channel control and identify the selected stations.
Next, the AP sends a null data packet (NDP) frame (blue)
for the stations to estimate their channel state information,
control information that is used by the AP for beamforming.
The stations then feedback their channel state information
to the AP using the compressed beamforming report (CBR)
frame (purple). The beamforming feedback poll report (BF-
POLL) frame (peach) coordinates the timing and order of the
channel feedback from the different stations participating in
the multi-user transmission. The data transmission comprises
parallel transmissions to multiple stations, with interference
among the parallel transmission enabled by the AP’s use of
channel state information together with mechanisms such as
zero-forcing beam-forming [17]. After data transmission, the
AP sends an ACK request (or Block ACK request) frame (grey)
to coordinate the acknowledgment and the stations reply with
ACK (or Block ACK) frames (yellow) to indicate successful
data delivery.

While Figure 1 shows a successful MU downlink transmis-
sion, unsuccessful transmission due to collision will trigger Wi-
Fi contention window doubling and increase the retransmission
count. With consecutive failures, once the retransmission limit
is reached, the AP will discard the data frame from its queue.
Compared to single user transmissions, MU transmission fail-
ure impacts more data streams and thus becomes the preferred
target for Mallory [5]. Nonetheless, if only a single user is
backlogged, the AP uses the same procedure for single-user
beamforming and Mallory can jam this setup as well.

3) Off-target jamming: Next, we describe Mallory’s strategy
of jamming only L2 control messages for MU downlink
transmissions, since the transmission duration of control frames
is typically shorter than data frames by two orders of magnitude
considering frame aggregation [9], [18]. To disrupt the L2
data frame transmission which contains messages from higher
layers, Mallory exploits the Wi-Fi retransmission mechanism
which discards the data frame after the maximum retrial limit
[15]. To this end, Mallory must (i) jam the beamforming
setup frame preceding the data transmission, and (ii) jam
consecutively until the maximum retrial limit so that the data
frame is discarded without transmission. We consider that
Mallory is aware of the AP’s maximum retrial limit for control
frame retransmission, which is seven by default according to
the 802.11 standard.

Parallel data transmission with encapsulated L4 or L7
payload

MU setup frame types that Mallory jams

AP

Bobs

NDPA NDP

CBR 1 CBR 2 CBR 3 CBR 4 BA 1 BA 2 BA 3 BA 4

BF-POLLBF-POLL BAR

STA 1 STA 1

STA 2

STA 3 STA 3 STA 3 STA 3

STA 4

Multi-user data frame

Padding

Fig. 1: Communication timeline at the link layer for multi-user downlink transmissions that Mallory exploits to jam the
beamforming setup control frames.

Mallory can target any control frame type in the beam-
forming setup prior to the data transmission, yet, when she
targets the individual control frames (CBR or POLL), she
must jam all CBR or POLL frames corresponding to each
user in the multi-user transmission, as opposed to jamming a
single frame for the group control frames (NDPA or NDP). For
instance, when Mallory targets the CBR frames in the example
in Figure 1, she needs to jam all 4 CBR frames to stop the
MU transmission. If she jams only a subset of CBR frames,
the multi-user transmission will proceed without the jammed
stations. However, jamming all POLL frames is not a successful
attack for Mallory as the AP receives the CBR from the first
user. Hence, the network switches to single user mode, with
successful transmission for the first user.

Mallory controls her air-time exposure by using a wait
cycle between jamming epochs. We define the wait cycle w
as the number of uninterrupted non-jammed MU downlink
transmissions that Mallory allows before she resumes jamming.
In this way, a longer wait cycle w corresponds to less intense
jamming and in the extreme case that w = 0, Mallory jams all
control frames of the selected type.

Thus, Mallory’s jamming strategy can be summarized as
follows:

1) Mallory selects a control frame type from NDPA, NDP,
or CBR that she will jam.

2) Mallory jams the selected control frame for 7 consecutive
MU downlink transmissions so that the corresponding
data frames in the AP’s queue are discarded.

3) Mallory pauses jamming and allows w MU downlink
transmissions before she resumes jamming.

4) Mallory repeats steps (2) and (3) to alternate between
jamming and waiting for the entire attack duration.

C. Coupled control plane jamming with three targets

Using the off-target jamming strategy defined in the previous
subsection, Mallory aims to launch DoS with three representa-
tive targets: (i) TCP data for throughput DoS, (ii) TCP setup for
L4 availability DoS, and (iii) HTTP setup for L7 availability
DoS. For each of the three DoS attacks, Mallory targets a
control mechanism in L4 or L7.

1) TCP congestion control: Since TCP interprets segment
loss as a congestion indicator, Mallory targets to trigger false
severe congestion indication by purposely jamming L2 control
frames before the multi-user data frames encapsulating TCP
payload to force the AP to discard those data frames. Missing
TCP segments trigger TCP retransmission, fast recovery, con-
gestion window reduction, and retransmission timeout (RTO).
With consistent off-target jamming, Mallory can launch a TCP
throughput DoS attack.

2) TCP connection establishment: Mallory can also target
the TCP handshake process, delaying or even preventing the
TCP connection from being established. TCP responds slowly
to a missing TCP handshake message and only retransmits after
the retransmission time out (RTO) timer expires. Moreover, the
missing TCP handshake message further triggers an increase
in RTO. Thus, when Mallory targets TCP handshake message
consecutively, Mallory can delay TCP connection establishment
or prohibit entirely with repeated jamming.

3) L7 establishment: Similar to L4 availability DoS, Mal-
lory can target HTTP control messages to launch a L7 service
availability DoS attack.

Since HTTP operates over TCP, Mallory first allows the TCP
connection to be established in this attack. After waiting for
TCP connection establishment to succeed, she subsequently
delays or prevents HTTP session establishment by jamming the
L2 control frames associated with the HTTP control messages.
Consequently, HTTP fails to deliver application layer content
(text, video, image) to Bob, effectively causing an application
layer service outage.

D. Metrics for attacks and exposure

To quantify Mallory’s detriment to the Alice-Bob connec-
tions, we use two metrics: network throughput and connection
or session establishment delay. In particular, we use the network
throughput metric when Mallory launches a TCP throughput
DoS attack, whereas the connection delay metric is used
when Mallory prevents L4 or L7 availability. From Mallory’s
perspective, for the attack to be successful, Mallory either
causes a large throughput degradation so that the connection is
unusable for Alice and Bob, or Mallory causes a long delay or

AP

Bob1

Bob2Internet

Server 1
(Alice 1)

Server N
(Alice N)

BobN

Mallory

802.11 Wi-Fi

e2e HTTP(s) connection over TCP/IP

Server 2
(Alice 2)

Fig. 2: Threat model: End-to-end network scenario with
servers, an AP, and Bobs. Mallory jams Wi-Fi control messages
to disrupt higher layer control plane functions.

timeout for TCP or application connection establishment and
thus she creates a significant availability outage.

Since Mallory also aims to remain stealthy while launching
the DoS attack, we use the jamming air-time percentage to
quantify Mallory’s exposure. We consider the entire transmis-
sion time of the jammed L2 control frames as jamming time
such that the percentage of air-time jammed is the total air
time of jammed L2 control frames divided by the total air time,
expressed as a percentage.

III. IMPLEMENTATION AND EXPERIMENTAL PLATFORM

Here, we describe our implementation of Mallory’s capabil-
ities in the PERFORM WLAN testbed, along with the exper-
imental setup for end-to-end experiments using real elements
spanning from commercial web servers to commercial client
web browsers.

A. PERFORM WLAN emulation

To experimentally study the impact of jamming across net-
working layers, we conduct the experiments using the PER-
FORM testbed [10], [11], which allows real-world Internet traf-
fic experiments by emulating the link layer frame exchanges.

Unfortunately, to realize an over-the-air Mallory encoun-
ters the obstacle that commercial Wi-Fi modules are pre-
programmed and thus cannot be easily modified unless with
laborious reverse engineering [19]. Although some APs provide
access to PHY [20] parameters such as the signal-to-noise ratio,
received signal strength, and modulation, they are not suffi-
ciently accessible and programmable for Mallory’s purposes.

In contrast, PERFORM enables full control and observably
of Wi-Fi, including Wi-Fi features such as MIMO trans-
missions, channel contention with binary exponential back-
off, while simultaneously being embeddable with real clients
and the Internet to yield end-to-end real-time network traffic
integration. Namely, PERFORM is capable of routing traffic
from any of the networking layers. For example, if a client
wants to open Netflix on a web browser, PERFORM can
receive the traffic from the Netflix server and forward it to
the client, emulating the station to AP Wi-Fi link.

The basic idea behind PERFORM is to emulate WLAN
in infrastructure mode using a high-speed wired LAN and
precise timing control. The platform is implemented in C

code on a Linux kernel based on in-built libraries (IPT-
ABLES/NFQUEUE) for traffic filtration. To implement the
complete Wi-Fi module, PERFORM consists of four major
parts:

1. Commodity devices: PERFORM allows physical or
virtual 802.11 devices to act as Wi-Fi stations.

2. Physical connection: Ethernet cables are used to connect
the AP and the stations for traffic exchange.

3. Queue manipulation: The platform deploys 4 queues,
2 at the AP and 2 at the stations, to store uplink and
downlink Wi-Fi traffic. A real-time scheduler releases the
Wi-Fi frames in these 4 queues according to the 802.11
standard timing.

4. MAC protocol implementation: PERFORM provides
programmable user-space that allows implementations of
MAC protocols for a given 802.11 standard using C
programming.

B. Coupled control plane jamming implementation

We customize the C code to implement Mallory’s jamming
functionality on PERFORM. We implement the MAC protocols
from the latest 802.11ax with MU-MIMO. For simplicity, we
use MU-MIMO in the downlink only while the uplink is single
user.

The platform abstracts the PHY model such that the true
physical channel is the LAN cable between the AP and the
stations. We note that even though the Ethernet cable between
the two computers can provide Gbps rates, the emulator code
runs a scheduler to match the Wi-Fi timing. Unlike wireless
connections, the Ethernet cable ensures minimal losses due
to the physical environment. Thus, any network degradation
comes solely from the impact of emulated jamming.

C. Experimental setup

We conduct all experiments on PERFORM for the scenario
where all stations download the same TCP network application
from a local or distant web server and PERFORM allows the
traffic flow between AP and stations using the Wi-Fi timings.
We use virtual machines (VMs) as the stations. PERFORM
sends all data emulating Wi-Fi 6 MAC features such as multi-
user beamforming and MIMO in the downlink, all traffic being
best-effort.

The PHY parameters for the MIMO channel are full-rank,
and thus the aggregate rate is proportional to the number of
users in the network. For simplicity, we use MCS zero for
all the Wi-Fi frames, including the data frame. The data sent
at MCS zero emulates the transmissions of aggregated data
frames with longer duration. Note that tuning the control and
data frames to different MCS values will result in different
frame airtime and system throughput, yet, once normalized, the
throughput degradation caused by jamming remains similar.

We implement selective jamming for the three control frame
types preceding the MU data transmission: Null data packet
announcement (NDPA), null data packet (NDP), and com-
pressed beamforming report (CBR), as described in Section

II-B. We configure channel sounding to precede every (multi-
user/single-user) L2 downlink data transmission, and every
jamming attempt by Mallory is successful.

Each user establishes an independent TCP/UDP flow with a
server connected to the AP, either using Iperf3 or accessing a
website. For TCP, the AP sends the TCP traffic from the Iperf3
server to the users using downlink multi-user beamforming
after connection establishment. As UDP does not have a 3-
way handshake, the downlink data flows start immediately.
We record the transmissions under jamming for 60 seconds.
For throughput experiments, we use the download throughput
reported by Iperf3 as the network throughput. For the web
server DoS experiments, we use commercial web browsers and
servers. We obtain the delay measurements for the TCP and
HTTP availability DoS attacks from the Wireshark traces.

IV. MALLORY’S ATTACK EFFICIENCY AT LAYER 2

We begin with experiments in which Mallory attacks only
the layer two control plane, without coupling the attack to
other network control functions. These experiments serve as a
baseline for studying more sophisticated attacks by quantifying
layer two vulnerabilities in isolation. Thus, here, we consider
fully backlogged UDP downlink traffic in which Mallory jams
the beamforming control frames preceding the multi-user data
transmissions, as their failure can prevent transmission to all
stations included in the multi-user frame. We study the jamming
of different types of control frames and different jamming
frequencies and measure the corresponding throughput degra-
dation and air-time exposure.

Experimental design and setup: We configure a scenario
with 1 AP and 4 stations, all receiving UDP data, as shown
in Figure 1. UDP traffic allows studying the L2 jamming
effects without the additional L4 congestion control effects as
in closed-loop TCP traffic, which is Mallory’s ultimate target
in Section V. We conduct the experiments on PERFORM with
one computer acting as the AP while the other computer has
four virtual machines to emulate Wi-Fi stations, as described
in Section III-C. We use Iperf3 to generate one UDP flow per
station, resulting in downlink traffic from the AP to all stations
in the WLAN. To study jamming multi-user WLAN scenarios,
we configure the AP to employ multi-user data transmissions
to the stations.

The UDP transmissions last for 60 seconds, and Mallory
begins jamming after 5 seconds when the network reached a
steady state. Mallory selects one of the three MU setup frames:
NDPA, NDP, and CBR. As described in Section II-B, and jams
the selected control frames 7 times consecutively: As per the
802.11 standards, the AP will drop the multi-user data frames
after a maximum retransmission limit, 7 in this case, and hence
Mallory’s choice. After the 7 consecutive jams, Mallory lets w
subsequent messages pass without jamming so that a larger
w indicates a less aggressive attack. That is, after jamming,
Mallory has a wait cycle, w which, for this set of experiments,
varies from 1 to 10. If w = 0, Mallory jams all of the selected
MU setup frames, which in this configuration, would yield
zero throughput. To quantify network performance degradation

0 2 4 6 8 10 12
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
w=10

w=9
w=8

w=7

w=6

w=5

w=4

w=3

w=2

w=1

NDPA

NDP

CBR

Fig. 3: Jamming beamforming setup control frames for quan-
tifying throughput and air time on UDP traffic in a multi-user
WLAN

and Mallory’s exposure, we use throughput, reported by Iperf3,
and jamming air time, calculated from the number of jammed
frames.

Results: Figure 3 depicts average normalized throughput as
a function of the percentage of air time jammed. The blue,
orange, and purple curves show results when Mallory targets
NDPA, NDP, and CBR, respectively. Throughput is normalized
to the case of no jamming as described in Section II-D. The
wait cycle values from w = 1 to w = 10 are displayed on the
CBR (purple) plot only, and they follow the same order for the
other three curves.

First, observe that the NDP and NDPA curves are well
separated from the CBR curve and that Mallory’s attack is
far more effective for NDP/NDPA than CBR. This is because
they can be categorized as a group versus individual control
messages. In particular, if Mallory jams an NDP or NDPA
frame, the entire MU transmission is thwarted. In contrast,
if Mallory jams a CBR frame, then only the particular user
reporting CSI will be thwarted.

Next, consider the NDPA curve and note the trade-off
between throughput degradation and air time: With aggressive
jamming and a short wait cycle of 1 control frame (w = 1),
the throughput reduces by more than 50% of the no jamming
value while consuming 1.7% of the air time. Yet, even with
aggressive NDPA jamming and w = 1, Mallory’s attack is
largely ineffective and Mallory would need to jam all NDPA
frames (w = 0) to reduce the throughput to zero.

When Mallory jams the other beamforming setup frame
types (CBR), the same throughput vs. air time trade-off
exists but with different characteristics. For example, for a
particular throughput degradation, jamming NDP and NDPA
frames result in a similar air time, whereas jamming CBR
requires over four times more air time.

In addition, the slope of the CBR curve is less steep
indicating that for a similar change in throughput, Mallory must
invest more air time. For example, throughput difference for
NDPA and CBR from w = 10 to w = 1 is similar, 48% and
40% respectively. However, the air time difference for NDPA
is only 1% (0.7% vs 1.7%), while it is significantly higher for

CBR, 6.5% (5% vs 11.5%).
The performance impact from jamming different frame types

arises for two reasons: First, each control frame has a different
length, from shortest to longest being NDP, NDPA, and CBR.
More importantly, frame types such as NDPA and NDP occur
only once in the beamforming setup, whereas CBR occurs
multiple times, requiring Mallory to jam more of them to thwart
the entire downlink transmission.

Findings: Mallory can realize the largest throughput
degradation for a particular air-time exposure by jamming
NDPA/NDP frames instead of CBR, as NDP/NDPA controls
the entire MU transmission whereas CBR frames control an
individual station. This difference will therefore amplify with
increasing group size. Most critically, when Mallory attacks
only a single control plane at layer two, she fails to realize an
effective attack, since even aggressive jamming with wait cycle
w = 1 only decreases network throughput to approximately
40%.

V. DOS COUPLING MULTI-USER CONTROL AND
CONGESTION CONTROL

Here, we study Mallory’s ability to attack TCP’s congestion
control algorithm via jamming L2 control frames. Her objective
is to reduce TCP throughput with limited jamming air time
exposure. We refer to her attack as Multi-User Control to
Congestion Control DoS M2C.

Experimental design and setup: We use the same experi-
mental setup as previously, with two exceptions: First, all traffic
is TCP download with TCP data on the downlink and TCP
ACKs on the uplink. Second, because we found in Section IV
that the strongest threat is when Mallory jams NDP frames, we
henceforth consider only NDP jamming.

Because TCP uses loss as a congestion indicator and consec-
utive losses as a severe congestion indicator that can impede
fast recovery and cause timeouts [21], Mallory jams NDPs
corresponding to two consecutive segments. Thus, we define
Mallory’s M2C attack as targeting consecutive L4 losses by
jamming 14 consecutive NDPs such that Alice is forced to
drop two consecutive multi-user frames. Mallory exploits that
the jammed NDPs correspond to TCP payload so that Mallory
triggers a false severe congestion indicator. To maintain stealth,
Mallory waits until w NDPs have been successfully transmitted
before repeating the attack. As a baseline, we also implement
and study single loss jamming in which Mallory jams 7
consecutive NDPs corresponding to a single TCP segment loss
(per stream) before waiting for w.

Results: Figure 4 depicts average throughput vs. percentage
of air-time jammed. The orange curve depicts the case for
Mallory’s M2C strategy of jamming NDPs corresponding to
two consecutive segments before waiting, whereas the blue
curve depicts the baseline strategy in which Mallory jams NDPs
corresponding to only a single TCP segment before waiting.

First, observe that compared to targeting only layer two
control with UDP traffic (Figure 3), M2C is not only a more
severe DoS threat (throughput is significantly lower), but is also
significantly more stealthy as jamming air time is decreased by

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

w=1 w=2

w=3

w=4

w=5

w=6
w=7

w=8
w=9

w=10

w=1 w=2

w=3
w=4

w=5

w=6
w=7
w=8

w=9w=10

M2C single

M2C consective

Fig. 4: Jamming NDP frames for congestion control DoS

an order of magnitude. For example, with w = 1 wait cycle,
Mallory can only reduce UDP throughput to 48%, whereas
for the M2C attack coupling to congestion-controlled traffic,
she reduces throughput to 2%. Moreover, for w = 1 and
both variants of M2C, Mallory requires only 0.1% air-time
which is less than 10× the air-time used for jamming UDP
with the same w. The dissimilarity stems from TCP’s recovery
mechanism from the false severe congestion indicator that
causes the TCP congestion window to be cut in half twice,
requires two TCP retransmissions, and potentially results in a
TCP time out. Yet, despite the severity of the attack, by the
design of M2C, Mallory never jams TCP data or TCP ACKs
directly, but only jams associated L2 control frames. That is,
she jams “off target.”

Second, recall that in the experiments solely targeting L2
control with UDP traffic, jamming air time always decreases
with wait cycle, as Mallory’s increased pauses in jamming
reduce her total time spent jamming. In contrast, with M2C,
jamming air-time is not monotonic with w. In particular, once
Mallory decreases the wait cycle to below w = 3, the air time
decreases as does TCP throughput, yielding an increasingly
effective attack by both metrics, even as Mallory becomes more
aggressive. Wireshark analysis reveals that when w ≤ 3, Alice
cannot utilize fast transmissions. Indeed, the number of fast
retransmissions reduces, as w decreases from 10 to 3 and is
0 for w ≤ 3. Thus, for w > 3, even after two consecutive
discarded TCP segments, the wait cycle allows the TCP sender
to utilize fast retransmission and rapidly recover.

When w ≤ 3, most retransmissions occur after the TCP ACK
timer (retransmission timeout or RTO) expires. RTO is set to
an initial value of 0.02 seconds in our TCP implementation.
Moreover, after a timeout, TCP infers severe congestion, sets
its congestion window to one, and enters a slow start. Thus,
because the sender is now transmitting data much slower,
Mallory needs very little jamming air time to subsequently keep
throughput low and the congestion window small.

Finally, we study the importance of jamming NDPs corre-
sponding to consecutive segments vs. individual segments. The
blue curve in the figure depicts this baseline in which Mallory
jams 7 consecutive NDPs (corresponding to a single segment)
before waiting. First, observe that even with single segment

jamming, Mallory can still trigger TCP’s severe congestion
indicators and realize the same non-monotonicity described
above, albeit less effectively and with an inflection point at
when w = 2. For example, with w = 1 and single-segment
jamming, Mallory reduces throughput to 14% with jamming air
time 1.01%. In contrast, using M2C targeting two consecutive
segments, Mallory further disrupts TCP’s congestion control
algorithm exploiting its vulnerability to consecutive losses and
reduces throughput to 1.0% with a jamming air time of 0.1%.

Findings: Mallory’s attack successfully couples the L2
control plane and L4 control plane to reduce throughput to
below 1.0% with a minimal footprint of less than 0.1% jamming
air time. She realizes this regime by triggering false indicators
of severe congestion, effectively disabling fast retransmit, and
forcing Alice to rely on RTOs to retransmit segments. Moreover,
despite Mallory’s target of TCP segments, she maintains stealth
and low air time by never directly jamming segments, but rather
jamming L2 NDP control messages. Surprisingly, the attack
effectiveness is non-monotonic with Mallory’s pauses between
attacks and she no longer needs to have a high wait time to
keep her total jamming time small.

VI. TCP 3-WAY HANDSHAKE DOS

With the M2C attack, while Mallory radically reduces net-
work throughput, Alice and Bob are still able to communicate,
albeit at a very low rate. Here, we study a DoS attack on
availability in which Mallory uses L2 control frame jamming
to prevent TCP’s connection establishment. In particular, as
with the M2C attack, Mallory never directly jams the targeted
messages, which in this case, is TCP’s 3-way handshake used
to establish the connection. Instead, Mallory repeatedly jams
the beamforming control frames that precede the handshake
messages that are to be transmitted on the AP’s downlink.

Experimental design and setup: As the TCP handshake is
a three message exchange process, Mallory can target any one
of those messages to prevent TCP connection establishment.
Here, we show experiments only with Mallory targeting the
first message, i.e., the SYN, as it is transmitted from the AP to
the stations. We use the same experimental setup as previously,
except that Mallory only jams NDPs preceding SYN messages.
In this setup (without other background traffic) SYNs arrive at
the AP asynchronously and are unlikely to be grouped into a
multi-user transmission. In such cases, the AP employs single-
user beamforming which employs the same setup procedure as
multi-user, and hence Mallory retains her strategy of jamming
NDP control frames.

To prevent a successful TCP handshake, Mallory must have
no wait cycle for this target, i.e., w = 0. Thus, Mallory
prevents connection establishment for as long as she jams
NDPs associated with SYNs. Hence, we use average connection
establishment latency as a key performance metric for the dam-
age done by Mallory in this attack. We define the connection
establishment delay as the difference between the time when
Iperf3 starts and the time when the actual data transmission
starts. Mallory controls the jamming air time by selecting the

0 0.005 0.01 0.015 0.02
0

20

40

60

80

100

120

140

Fig. 5: Impact of jamming NDPs corresponding to TCP SYN
handshake message for TCP connection establishment delay

number of NDP frames to be jammed, always in multiples of
7 to ensure layer two loss.

Results: Figure 5 shows the average TCP connection estab-
lishment delay in seconds vs. the fraction of air time jammed.
Each experiment is repeated 5 times and the standard deviation
is also depicted.

First, observe that Mallory can realize second- to minute-
scale outages with only a small fraction of air-time exposure.
For example, in the lowest jamming point on the curve, Mallory
can delay connection establishment by over 5 seconds with
only 0.001% of air time corresponding to 0.6 ms of total
jamming time. She realizes this attack by jamming 7 NDPs
corresponding to the SYN requests before she stops jamming
and Mallory is successful.

Second, the curve gradually increases until approximately
60 seconds and has a sharp upward trend thereafter: After
transmitting each SYN, Alice expects a SYN-ACK reply. When
it is not received after RTO, Alice retransmits the SYN and
increases RTO starting from the initial value of 1 second.
With every SYN retransmission, the RTO increases from 1
to 3, 7 seconds, etc., until approximately 64 seconds. The
default TCP implementation in Linux [22] allows 6 SYN
retries that correspond to an RTO value of 64 seconds. If
Mallory continues to jam Alice’s sixth retransmitted SYN,
then Alice times out the connection. This corresponds to the
flattening of the curve at 124 seconds, in which the connection
is never established. Although 6 SYN retries correspond to
approximately 64 seconds, the maximum timeout in our results
is 124 seconds.

Findings: By attacking multi-user control frames associated
with TCP connection establishment, Mallory can deny service
indefinitely (timing out the establishment process) with only
0.0157% jamming air time. Likewise, she can delay connection
establishment by seconds to minutes with even less air time
due to Alice’s default one second initial RTO value and her
subsequent increments of doubling values upon failure.

VII. APPLICATION LAYER CONTROL-PLANE DOS

Analogous to the L4 availability attack, here we study
an attack in which Mallory uses the L2 control plane to

target application layer control messages. In particular, Mallory
targets HTTP session setup messages by jamming the preceding
NDP frames.

Experimental design and setup: The experimental setup
differs from previous experiments in two ways: First, Mallory
jams the NDPs preceding HTTP response messages rather
than TCP SYNs. Second, unlike traffic generated via Iperf3
in previous experiments, Mallory attacks traffic generated by
a web server. In particular, the client (Bob) attempts to access
the web page cluthcitycf.com via HTTP. When Bob enters a
website URL into the browser, a DNS probe first converts the
site name in the URL to the server’s (Alice’s) IP address and
Alice and Bob establish a TCP connection. Mallory does not
attempt to disrupt these initial procedures, and she instead waits
until after they have been completed to target the subsequent
HTTP response to the HTTP GET message. Mallory controls
the jamming air time by selecting the number of NDP frames
to be jammed, always in multiples of 7 to ensure layer two
loss.

Results: Figure 6 shows the average and standard deviation
of web page loading time in seconds vs. percentage of air time
jammed.

First, observe that the maximum delay for establishing the
HTTP session is approximately 142 seconds, corresponding
to 9 GET response transmissions and re-transmissions. As
HTTP operates over TCP, when an HTTP control message
is dropped (due to NDP jamming), TCP retransmits it as a
TCP segment. In our experiments, when the HTTP response
message is first sent, the webserver can have an RTO value
below the 1 second default, as it can set it to twice the round-
trip-time that the server measured during the (non-attacked)
TCP session establishment handshake. Upon attack, the server
will rapidly increase RTO. In one experiment, we observe
the retransmitted responses arriving at the AP with increases
by nearly an order of magnitude from the initial value. For
example, the retransmission delays observed by repeated HTTP
responses at the AP are 0.28, 2.35, 6.75, and up to 90 seconds.
After nine attempts, the server aborts the HTTP response.

Finally, Mallory also disrupts the playback delay of the
short video that is part of the clutchcity.com home page. In
particular, we measure the playback delay at Bob’s Google
Chrome browser and find that in each jamming experiment,
the video on the home page loads approximately 30 seconds
after the arrival of the GET response. With no jamming, this
time difference is 5 seconds on average. The HTML script of a
website has multiple GET requests for different elements (text,
images, videos, etc.) on the website, and each has a different
order of execution in the JSON file designing script. If an
HTTP response is delayed, the order and the timing of the
other GET requests and responses are also affected. Thus, even
when the HTTP response is successful, the video loading takes
increased time. However, the text on the web page appears
approximately at the same time as the GET response arrival
observed in Wireshark.

Findings: Mallory can delay access to a website by several
seconds by jamming only the NDPs corresponding to the

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016
0

50

100

150

Fig. 6: The delay in application content delivery to the end-user
when Mallory jams NDPs corresponding to the HTTP payload.

targeted HTTP control messages and she can delay video
playback for more than one minute with only 0.01% air-time of
jamming. In this attack, Mallory allows the TCP connection to
be established before jamming. Consequently, Alice can set her
RTO corresponding to twice the estimated round trip time and
rapidly respond to the first jam in only 0.28 seconds. However,
after timing out, Alice’s second retransmission arrives 2.35
seconds later. This enables Mallory to remain inactive for long
periods of time, keeping her total jamming time minimal, while
also denying service to Bob.

VIII. RELATED WORK

L2 jamming. Many prior works have focused on jamming
vulnerability in 802.11 networks, including analysis of jam-
ming transmissions of data or control information [6], [8], [23]–
[25]. Prior work showed that similar throughput degradation
can be achieved by targeting control frames preceding data
transmissions [1], [3]–[5]. Moreover, if Mallory jams symbols
from the channel setup frames [2], [26]–[28], she can reduce
the achievable rates for the beamforming transmissions or
even thwart the communication leading to denial-of-service.
In addition, to control frame jamming, prior work also demon-
strated MAC DoS via short jamming pulses sent periodically to
mislead legitimate nodes into assuming the channel is busy or
occupied [29]–[31]. Such jamming schemes can significantly
reduce the packet delivery ratio, thus reducing the throughput.
Strategies that combine jamming and fake L2 frame injection
to deceive the clients into believing a false network state were
also studied [8]. In contrast to prior work that studies only link-
layer impacts, we for the first time demonstrate the coupling
of layer 2 control with control up to layer 7.

Cross-layer attacks and analysis. Another class of prior
work focused on attacking the TCP protocol by jamming the
TCP control packets like TCP ACKs (uplink or downlink or
TCP SYN-ACKs that can severely reduce the throughput or
even terminate the TCP connection [32]. Moreover, the effect
of TCP throughput has been shown to reduce by jamming the
link layer control frames like RTS, CTS, MAC ACK [15], [33],
[34]. In comparison, in our study, Mallory never jams TCP
control packets. Instead, she jams a layer two control message

that will be used to transmit such TCP messages. In this way,
we focus on coupled control algorithms.

IX. CONCLUSION

We present the first study of coupled control plane off-
target jamming in which Mallory can disrupt L2, L4, and L7
control mechanisms by jamming only the L2 beamforming
setup frames. We demonstrate jamming-based experimental
results on PERFORM, with real-time Internet traffic. We study
three types of off-target DoS attacks under a low air-time
regime and show that the adversary can successfully launch
a DoS attack that reduces performance by orders of magnitude
at L4 and L7 with air time less than 0.1%.

ACKNOWLEDGEMENTS

This research was supported by Cisco, Intel, NSF grants
CNS- 1955075, CNS-1923782, CNS-1824529, CNS-2148132
and DOD: Army Research Laboratory grant W911NF-19-2-
0269.

REFERENCES

[1] F. Klingler and F. Dressler, “Jamming wlan data frames and acknowledg-
ments using commodity hardware,” in Proceedings of IEEE Workshop on
Conference on Computer Communications, Paris, France, 2019.

[2] X. Zhang and E. W. Knightly, “Pilot distortion attack and zero-startup-
cost detection in massive mimo network: From analysis to experiments,”
IEEE Transactions on Information Forensics and Security, vol. 13, no. 12,
pp. 3094–3107, 2018.

[3] A. Moussa and I. Jabri, “Impact of RTS/CTS jamming attacks in IEEE
802.11ah dense networks,” in Proceedings of IEEE IWCMC, 2021, pp.
1551–1556.

[4] D. Thuente and M. Acharya, “Intelligent jamming in wireless networks
with applications to 802.11b and other networks,” in Proceedings of
MILCOM, vol. 6, 2006, p. 100.

[5] G. Patwardhan and D. Thuente, “Jamming beamforming: A new attack
vector in jamming IEEE 802.11ac networks,” in Proceedings of IEEE
MILCOM, 2014, pp. 1534–1541.

[6] L. Zhang, F. Restuccia, T. Melodia, and S. M. Pudlewski, “Jam sessions:
Analysis and experimental evaluation of advanced jamming attacks in
mimo networks,” in Proceedings of ACM Mobihoc, Catania, Italy, 2019,
p. 61–70.

[7] H. Rahbari, M. Krunz, and L. Lazos, “Security vulnerability and
countermeasures of frequency offset correction in 802.11a systems,” in
Proceedings of IEEE INFOCOM, Totonto,Canada, 2014, pp. 1015–1023.

[8] W. Kim, S. Kim, and H. Lim, “Malicious data frame injection attack
without seizing association in IEEE 802.11 wireless LANs,” IEEE Access,
vol. 9, pp. 16 649–16 660, 2021.

[9] “IEEE standard for information technology–telecommunications and
information exchange between systems local and metropolitan area
networks–specific requirements part 11: Wireless lan medium access
control (MAC) and physical layer (phy) specifications amendment 1: En-
hancements for high-efficiency wlan,” IEEE Std 802.11ax-2021 (Amend-
ment to IEEE Std 802.11-2020), pp. 1–767, 2021.

[10] V. D. S. Goncalves and E. W. Knightly, “An experimental study of
triggered multi-user uplink access with real application traffic,” in pro-
ceedings of IEEE/ACM International Symposium on Quality of Service
(IWQoS), 2022.

[11] V. Da Silva Goncalves, “Perform: A platform for experimental research
in wlan with focus on real network traffic and multi-user channel access,”
Master’s thesis, Rice University, 2020.

[12] E. Khorov, I. Levitsky, and I. F. Akyildiz, “Current status and directions
of IEEE 802.11be, the future Wi-Fi 7,” IEEE Access, vol. 8, pp. 88 664–
88 688, 2020.

[13] J. Oh, H.-J. Hong, and H.-D. Choi, “Performance analysis for channel
sounding in IEEE 802.11ac network,” in Proceedings of IEEE ICTC,
2015, pp. 1240–1242.

[14] T. T. Thao Nguyen, L. Lanante, Y. Nagao, M. Kurosaki, and H. Ochi,
“MU-MIMO channel emulator with automatic channel sounding feedback
for IEEE 802.11ac,” in Proceedings of IEEE WCNC, 2016, pp. 1–6.

[15] A. Proano and L. Lazos, “Packet-hiding methods for preventing selective
jamming attacks,” IEEE Transactions on dependable and secure comput-
ing, vol. 9, no. 1, pp. 101–114, 2011.

[16] R. Miller and W. Trappe, “On the vulnerabilities of CSI in MIMO wire-
less communication systems,” IEEE Transactions on mobile Computing,
vol. 11, no. 8, pp. 1386–1398, 2011.

[17] E. Aryafar, N. Anand, T. Salonidis, and E. W. Knightly, “Design and
experimental evaluation of multi-user beamforming in wireless LANs,”
in Proceedings of ACM MobiCom, Chicago, Illinois, 2010.

[18] I. . W. Group et al., “Part 11: wireless lan medium access control
(MAC) and physical layer (phy) specifications: higher-speed physical
layer extension in the 2.4 ghz band,” ANSI/IEEE Std 802.11, 1999.

[19] M. Vanhoef and F. Piessens, “Advanced Wi-Fi attacks using commodity
hardware,” in Proceedings of the 30th Annual Computer Security Appli-
cations Conference, 2014, pp. 256–265.

[20] S. Balakrishnan, S. Gupta, A. Bhuyan, P. Wang, D. Koutsonikolas, and
Z. Sun, “Physical layer identification based on spatial–temporal beam
features for millimeter-wave wireless networks,” IEEE Transactions on
Information Forensics and Security, 2019.

[21] M. Allman, V. Paxson, and E. Blanton, “Tcp congestion control,” Tech.
Rep., 2009.

[22] “Linux networking documentation.” [Online]. Available: Available:
https://docs.kernel.org/networking/ip-sysctl.html

[23] D. Nguyen, C. Sahin, B. Shishkin, N. Kandasamy, and K. R. Dandekar,
“A real-time and protocol-aware reactive jamming framework built on
software-defined radios,” in Proceedings of ACM Workshop on Software
Radio Implementation Forum, 2014.

[24] H. Pirzadeh, S. M. Razavizadeh, and E. Björnson, “Subverting massive
mimo by smart jamming,” IEEE Wireless Communications Letters, vol. 5,
no. 1, pp. 20–23, 2016.

[25] R. Chinta, T. F. Wong, and J. M. Shea, “Energy-efficient jamming attack
in IEEE 802.11 MAC,” in Proceedings of IEEE MILCOM, 2009, pp. 1–7.

[26] X. Zhou, B. Maham, and A. Hjorungnes, “Pilot contamination for active
eavesdropping,” IEEE Transactions on Wireless Communications, vol. 11,
no. 3, pp. 903–907, 2012.

[27] T. T. Do, H. Q. Ngo, T. Q. Duong, T. J. Oechtering, and M. Skoglund,
“Massive MIMO pilot retransmission strategies for robustification against
jamming,” IEEE Wireless Communications Letters, vol. 6, no. 1, pp. 58–
61, 2016.

[28] S. Gvozdenovic, J. K. Becker, J. Mikulskis, and D. Starobinski, “Truncate
after preamble: PHY-based starvation attacks on IoT networks,” in
Proceedings of the 13th ACM Conference on Security and Privacy in
Wireless and Mobile Networks, 2020, pp. 89–98.

[29] A. Benslimane, M. Bouhorma et al., “Analysis of jamming effects on
IEEE 802.11 wireless networks,” in Proceedings of IEEE ICC, 2011, pp.
1–5.

[30] A. Hussain, N. A. Saqib, U. Qamar, M. Zia, and H. Mahmood, “Protocol-
aware radio frequency jamming in Wi-Fi and commercial wireless
networks,” Journal of Communications and Networks, vol. 16, no. 4,
pp. 397–406, 2014.

[31] A. Ahmed, U. Ashraf, F. Tunio, K. Abu Bakar, and M. S. AL-Zahrani,
“Stealth jamming attack in WSNs: Effects and countermeasure,” IEEE
Sensors Journal, vol. 18, no. 17, pp. 7106–7113, 2018.

[32] T. X. Brown, J. E. James, and A. Sethi, “Jamming and sensing of
encrypted wireless ad hoc networks,” in Proceedings of ACM MobiHoc,
2006, pp. 120–130.

[33] M. Raya, I. Aad, J.-P. Hubaux, and A. El Fawal, “Domino: Detecting
MAC layer greedy behavior in IEEE 802.11 hotspots,” IEEE Transactions
on Mobile Computing, vol. 5, no. 12, pp. 1691–1705, 2006.

[34] A. Proaño and L. Lazos, “Selective jamming attacks in wireless net-
works,” in Proceedings of IEEE ICC, 2010, pp. 1–6.

