
TCP-PARIS: a Parallel Download Protocol for Replicas

Roger P. Karrer
Deutsche Telekom Laboratories

TU Berlin
Berlin, Germany

roger.karrer@telekom.de

Edward W. Knightly
ECE Department
Rice University
Houston, TX

knightly@ece.rice.edu

Abstract

Parallel download protocols have the potential to reduce
file download time and to achieve a server-side load bal-
ancing in replica systems, such as peer-to-peer networks,
content distribution networks and mirrored servers, by si-
multaneously establishing connections to multiple replicas
and downloading disjoint file parts in parallel. This paper
presents TCP-PARIS, a novel parallel download protocol
from multiple replicas to one receiver. Because the ideal
partitioning of the transfer volume from each server is a dy-
namic and a difficult-to-predict function of network condi-
tions, server load and data size, TCP-PARIS uses the stream
segmentation of TCP and congestion window information
to continuously adapt the assigned volume to each server
in proportion to the bandwidth-delay product to best ap-
proximate the optimal data partitioning. Analytical results,
simulation and Internet experiments with a transport-layer
implementation characterize the performance and the re-
source requirements of TCP-PARIS and allow a comparison
with related protocols. Extensive simulations with varying
network and application parameters show download time
reductions of up to 52% compared to single-flow downloads
and up to 52% compared to related protocols.

1 Introduction

Data replication is a key building block for large-scale
distributed storage systems such as Mirrors, Content Distri-
bution Networks (CDNs) and peer-to-peer (p2p) file shar-
ing applications. Parallel download protocols that establish
multiple connections to distributed replica servers and si-
multaneously download individual parts of the data in par-
allel, as depicted in Figure 1, promise a reduction of the data
download time by up to a factor ofn when usingn parallel
connections, compared to a download from a single server
only. Moreover, the failure of a replica during the down-
load reduces the download rate, but does not interrupt the

sender 1

sender
 n

...

receiver

file

file

file

file

sender 2
 sender 3

Figure 1. Parallel download from multiple
servers

transfer. Finally, parallel download protocols shed load on
multiple servers and therefore automatically achieve a load
balancing, resulting in higher server availability.

The challenges in the design of parallel download proto-
cols arise because network conditions in the Internet are het-
erogeneous, dynamic and difficult to predict, and because
file sizes follow a distribution that varies from application
to application. Current parallel download protocols only ex-
ist as application-layer solutions that target specific applica-
tion demands and network environments. CDNs download
small pictures (ads) in parallel from low-latency servers.

Slicing protocols, such as BitTorrent [6], split multime-
dia files of several MB into smaller slices and coordinate
the download of individual slices from multiple peers. Fi-
nally, Digital Fountain [2] targets unreliable environments
(e.g., multicast), where the redundancy in the form of codes
eliminates a download coordination. Unfortunately, the use
of these parallel download protocols is limited to specific
scenarios (e.g., CDNs are bound to http requests), and pro-
tocol performance is dismal if the assumptions about file
size or bandwidth are not met.

1

In this paper we develop TCP-PARIS, a novel
PArallel download protocol forReplIcaS. TCP-PARIS is a
multipoint-to-point protocol that provides reliable file de-
livery by establishingn individual TCP subconnections and
coordinating the download from thesen replica servers.
The key novelty of TCP-PARIS is to tightly couple the coor-
dination with the TCP subconnections. In particular, TCP-
PARIS uses the TCP segmentation to coordinate the down-
load by assigning each server the responsibility to deliver
only a subset of the segments. Moreover, TCP-PARIS uses
congestion control information of the subconnections to dy-
namically adapt the downloaded volume from each server,
allowing TCP-PARIS to achieve a near-optimal download
independent of the network heterogeneity and dynamics.

This paper makes the following contributions. First, we
develop the TCP-PARIS protocol. We show that the down-
load coordination can be integrated with TCP congestion
control with only two components: the partition rules that
store for every sender which TCP segments it must deliver,
and the Largest Assigned Sequence number (LAS), which
allows the receiver to coordinate the download such that no
segment is transmitted by two senders. While congestion
control information is integrated to coordinate the down-
load, TCP-PARIS does not modify congestion control of
the subconnections.

Second, we describe two implementation variants of
TCP-PARIS, one with receiver-based TCP connections and
the other with sender-based TCP connections. The fact
that the parallel download coordination is steered by the
client simplifies the TCP-PARIS protocol with receiver-
based TCP. We present implementations of TCP-PARIS in
ns-2 and in the Linux kernel.

Finally, we perform an extensive set of simulation ex-
periments to evaluate the impact of the systems’ key perfor-
mance factors. In particular, we assess the ability of TCP-
PARIS to achieve a near-to-optimal download time for a
single flow under varying network and application param-
eters and compare the results to slicing protocols. More-
over, we study the system performance of multiple inter-
acting TCP-PARIS flows in a distributed environment and
show that TCP-PARIS achieves download time reductions
of up to 52% compared to single-server downloads and up
to 52% compared to related parallel download protocols.

2 Design rationale

The ability of a parallel download protocol to cover a
large span of network and application parameters is crucial
for the download performance. As data replication is in-
creasingly used in distributed systems, the benefits of paral-
lel downloads can be exploited for a large variety of appli-
cations: Web (where parallel downloads can be made by a
client browser or a proxy), peer-to-peer, mirrors, high-speed

downloads in Grid environments, or even for multimedia
real-time streaming. Therefore, a single parallel download
protocol that can be used independent of a specific appli-
cation scenario and that achieves the promised performance
objective even under dynamic network conditions will sig-
nificantly expand the use and the benefits of parallel down-
loads.

2.1 Requirements

In our quest to design a parallel download protocol, we
will address the following protocol requirements

• Bandwidth heterogeneity. The protocol must ac-
commodate a large variety of physical bandwidth
rates, ranging from kb/sec connections (e.g., in p2p
and CDNs) up to high-speed networks with Gb/sec
speed [17, 16]. Moreover, the available bandwidth is a
difficult-to-predict function of network conditions and
server load.

• File size heterogeneity. The protocol must ensure an
efficient download for different file size distributions.
For CDNs, e.g., embedded objects may range from 100
KB (pictures) to several MB (large pictures, movies).
Similarly, p2p file sharing applications may share files
from 10s to 100s of MB. Finally, Grid applications
may download files of several GB.

• Reliability. The protocol must guarantee to deliver the
file even if servers suddenly and unexpectedly termi-
nate a connection.

• Generality. The protocol must be broadly applica-
ble to multi-point to point transfer. For example, the
performance of real-time streaming multimedia down-
loads (applications or as embedded Web documents)
could significantly be increased via parallel down-
loads, but only under the condition that the parallel
streams synchronized in their delivery.

By focusing on these requirements, we will not discuss
three important issues in this paper, as they can be addressed
independently of TCP-PARIS. First, we ignore how an ap-
plication learns the location of the servers on which the file
is located. Current solutions range from explicit knowledge
(e.g., a list of mirrors) to dynamic searches for servers or
documents (as in p2p). Second, we assume that the applica-
tion verifies that the documents on all servers are consistent.
Ensuring consistency should be done prior to the download.
Finally, we ignore that servers may be malicious and mod-
ify the content during the download. Solutions can be de-
ployed independent of TCP-PARIS, or TCP-PARIS can be
extended to check consistency, e.g. by downloading the
same segments from multiple replicas.

2

2.2 Performance Objective

The performance objective of a parallel download pro-
tocol is to minimize the download time at a client. This
minimization is determined by two factors: (i) the ability to
efficiently use the available bandwidth and (ii) the abilityto
coordinate the volume downloaded from each server such
that all downloads terminate at the same time. Consider a
volume of data denoted byV (bits) to be downloaded by a
client from servers1, 2, · · · , n. DenoteVi ≥ 0 as the vol-
ume transferred from serveri with

∑
i Vi = V , and denote

Ti as the download time for serveri. Finally, denoteri(t)
as the transmission bandwidth that a TCP flow obtains from
replica i to the receiver during the download, and denote
Ri = 1

Ti

∫ Ti

0
ri(t)dt as the average download rate for the

entire transfer. The download time of replicai is then

Ti = Vi/Ri (1)

The first objective of a parallel download protocol is to
utilize the transmission bandwidthri(t) by ensuring that the
server always has data to send atri(t) to avoid starvation.
If a server starves, the achieved transmission rate will be
lower thanri(t) and, in some cases, even result in a termi-
nation of the connection. This objective is achieved if the
assigned volumeto serveri, v∗i (t) is always larger than the
bandwidth-delay product of the connection, i.e.,

v∗i (t) ≥ ri(t) · rtti(t) (2)

The second objective requires that the difference in the
total download time from each server must be minimized, as
the download is not completed until the last byte is received:

min(max(T1, . . . , Tn)) (3)

Obviously, this goal is achieved when all downloads termi-
nate at the same time, i.e.,Ti = Tj for all replicasi, j.

In the simplest case in which the bandwidthRi is static,
known and homogeneous, the objectives are achieved by
downloading a volumeVi = V/n. Moreover, if the band-
width is known and heterogeneous, the solution to Equation
(3) yields thatVi/Ri = Vj/Rj . The key challenge in pro-
tocol design is to achieve the objectives in the case that the
rates are not knowna priori, but change over time.

2.3 Overview of related protocols

Related work can be separated into 3 groups: parallel
TCP connections between a single client-server pair, code-
based protocols and coordination-based protocols.

First, parallel download protocols that establish multiple
TCP connections between the same client-server pair have

been proposed for high-speed networks [1, 7, 20]. TCP-
PARIS takes parallel download to a next level by allowing
a download from distributed replica servers.

Code-based protocols, such as Digital Fountain [4],
SplitStream [5] and Bullet [13], add redundant code to
each packet in the form of Tornado Codes [3] or Erasure
Codes [2]. The redundancy enables the client to decode
and reconstruct the original file when it receivesany ηk
packets of the originalk packets. While no coordination
is necessary as to which server must deliver which data,
the overhead in redundant data averages 36% for Tornado
Codes [3]. In networks with little packet loss, this overhead
significantly increases the download time and reduces the
goodput of a network.

Protocols where the receiver coordinates the download
to ensure a non-disjoint data delivery have been proposed
within different application contexts. First, Content Distri-
bution Networks (CDNs) such as Akamai, download indi-
vidual subdocuments embedded in anhtml request from
different servers. As the volume of the subdocuments is
fixed, CDNs must try to approximate, rather than optimize
Equation 1. This approximation may be sufficient for small
volumesVi whereRi is dominated by the latency. However,
significant performance drawbacks are expected for larger
documents, and no parallel download support is provided
for real-time streaming.

Alternatively,slicing protocols used in p2p applications
split large files into multiple equally-sized slices that can
be downloaded in parallel from different servers [14, 15].
The key problem for slicing protocols is to determine the
best slice size: while small slices increase the flexibility
of the protocol to meet the second performance objective,
small slices are more likely to incur server starvation. Thus,
the best slice size depends on dynamic run-time parame-
ter, and a wrong selection leads to a significant increase in
the download time [8]. BitTorrent [6] uses slice sizes of
256 KB, but additionally ensures that every server has at
leastk sub-pieces ofx KB outstanding at the server. With
typical values ofk = 5 andx = 16 KB, BitTorrent gen-
erally avoids server starvation for average maximal conges-
tion window sizes of 64 KB. While these parameter settings
are efficient for most p2p downloads, slice sizes of 256 KB
limit ability of the protocol to adjust the volume for small
files and/or limit the number of parallel connections. More-
over, a non-trivial adjustment of the above parameters is re-
quired for high-speed environments for larger maximal con-
gestion windows. Finally, slicing protocols lack real-time
streaming support for multimedia.

3

sender 1
 r
 (
t
)

r
 (
t
)

1

n

file

file

file

TCP
-PARIS

sender 1

TCP
-PARIS

sender
 n

TCP

receiver 1

TCP

receiver
 n

TCP
-PARIS

receiver

LAS

SMS

Partition

Rule

download coordination

congestion control /

reliable delivery

sender
 n

transport layer

client

(application)

Figure 2. Parallel download with TCP-PARIS

3 TCP-PARIS: a parallel download protocol
for replicas

3.1 Coordinated download

TCP-PARIS is a multipoint-to-point protocol. A TCP-
PARIS flow consists ofn subconnections that connect a sin-
gle receiver withn replica servers via point-to-point TCP
subconnections, as depicted in Figure 2. The client sends
a file request to the servers, which is acknowledged by the
senders. Then, the TCP-PARIS receiver starts coordinating
the parallel download by assigning every subconnection in-
dividual TCP segments to deliver1. Every server sends only
those segments that are requested by the receiver.

The TCP-PARIS receiver coordinates the download of
the subconnections using a sliding window protocol that re-
flects the status of the parallel download (i.e., of all subcon-
nections), as depicted in Figure 3. The boundaries of the
sliding window are maintained by 2 variables: the Largest
Assigned Sequence number,LASand the the Smallest Miss-
ing Sequence number,SMS. Segments are assigned sequen-
tially to subconnections by the TCP-PARIS receiver when-
ever the congestion control of the subconnection allows the
transmission of a new segment, ensuring that each segment
is assigned to only one subconnection. The SMS is up-
dated if the smallest missing segment of all subconnections
is received, allowing all data up to the SMS to be passed
to the application. The sliding window maintains a well-
defined download status, as sequence numbers larger than
the LAS have not been assigned yet, segments between LAS
and SMS are in transit, and all segments smaller than the
SMS have been successfully received by the TCP-PARIS
receiver. Moreover, the sliding windows of each individual
subconnection are contained in the boundaries set by LAS
and SMS.

The coupling of the assignment with the congestion con-
trol ensures that the assigned volumev∗i to serveri equals

1we assume that all subconnections use the same segment size

SMS
 LAS

file

start

file

end

prule
 1

prule
 3

prule
 2

sliding window

Figure 3. Sliding window

the bandwidth-delay product of this subconnection through-
out the download, i.e.

v∗i (t) ∼ ri(t) · rtti(t) (4)

ri(t) is the rate achieved by each individual subconnec-
tion and isnotmodified by TCP-PARIS. Thus, at any time,
each subconnection is TCP-friendly by itself, whereas the
total rate of a TCP-PARIS connection is the aggregation of
the individual rates. Thus, a TCP-PARIS connection can
obtain ann-fold throughput of a single-flow download. In
cases where then subconnections share a common bottle-
neck, this aggregation is unfair and we will address this
unfairness in future work. At the moment, we argue that
TCP-PARIS is as unfair as other currently deployed parallel
download protocol.

At any given timet, the assigned volume to a subcon-
nectioni corresponds to the size of the congestion window.
v∗i (t) is therefore the smallest volume assigned to a server
that ensures that the server never starves in its delivery. Dur-
ing an increase in the congestion window size,v∗i is also in-
crementally increased. During a (multiplicative) decrease,
however,v∗i is temporarily larger than the product as the
reduction ofv∗i requires several round-trip times. We will
show that this delayed adaptation has an impact only if it
occurs at the end of a transmission. Moreover,v∗i is set to
the size of the congestion window. Finally, the total down-
loaded volumeV ∗

i =
∫ Ti

0
v∗i (t)dt is proportional to the av-

erage download rateRi as stated in Equation 1.
The second data structure to coordinate the download

is thepartition rule. For each segment between SMS and
LAS, the partition rule stores to which subconnection the
segment has been assigned. TCP-PARIS uses the reliable
data delivery mechanism of each TCP subconnection to en-
sure the delivery of all (assigned) segments, i.e., that miss-
ing segments are detected and retransmitted. Thus, upon
receiving a segment, a subconnection uses the partition rule
to distinguish between missing and unassigned segments: if
a subconnection receiver receives a segment with sequence
numberm and the last received segment wask, the re-
ceiver checks its partition rule whether any segmentl with
k < l < m has been assigned to it. If so, the receiver must
assume that segmentl is lost and retransmit the segment.

4

Sender 1
 Receiver 1
 Receiver 2

0

req
(0)

req
(2)

data(0)

req
(3)

2,3

1

4,5

data(2)

data(3)
 6,7,8

req
(6)

req
(7)

req
(8)

req
(9)

data(6)

6,7,8,9

10-12

10-13

TCP
-PARIS receiver

subconnection
 1

Partition rule

Figure 4. Data delivery with TCP-PARIS(R)

3.2 Integration with TCP

Here, we describe 2 realizations of TCP-PARIS, one
with receiver-based and one with sender-based TCP.

Receiver-based TCP [10, 12] is a request-reply protocol
designed to improve response times for web traffic [10], to
improve performance for wireless links [12], and to reduce
state and overhead for web servers [10]. In receiver-based
TCP, the receiver is responsible for congestion control and
reliable delivery by requesting individual segments from the
sender. The number of segments allowed to be requested is
controlled by a congestion window. Upon detecting miss-
ing segments, the receiver re-requests them and performs
congestion window reductions and timeouts in analogy to
sender-based TCP. The implementation of TCP-PARIS with
receiver-based TCP subconnections is simplified by the lo-
cal availability of all status information and all main events
at the receiver. In particular, receiver-driven TCP’s use of
receivers to control the data delivery cycle provides a natu-
ral mechanism for TCP-PARIS’ receiver to coordinate data
delivery across subconnections. Figure 4 depicts the inter-
actions for a TCP-PARIS receiver coordinating the down-
load of two subconnections. The figure shows that the TCP-
PARIS receiver coordinates the download via the partition
rules. At the sender, no modifications are necessary for
TCP-PARIS as the senders continue to deliver the packets
that are required by the receiver.

Today, however, most TCP implementations have
sender-based control. Thus, an information exchange be-
tween the TCP-PARIS receiver and each subconnection
sender is necessary. First, the TCP-PARIS receiver must
be informed about the number of segments it must as-
sign. Therefore, we piggyback the congestion window size
(cwnd) in every data segment from the sender to the re-

0 50 100 150
0

0.5

1

1.5

2

time [s]

T
ra

n
sm

is
si

o
n

 b
a

n
d

w
id

th
 [
M

b
/s

e
c]

ftp 3

subconnection 2

cbr 1 cbr 2

cbr 1
stop

ftp 1

ftp 2

subconnection 1

(a) Transmission bandwidth

0 50 100 150
0

0.1

0.2

0.3

0.4

0.5

time [s]

A
ss

ig
n

e
d

 v
o

lu
m

e
 [
M

B
]

subconnection 1

subconnection 2

(b) Assigned volume

0 50 100 150
0

1

2

3

4

5

6

7

time [s]

C
u

m
u

la
tiv

e
 v

o
lu

m
e

 [
M

B
]

subconnection 1

subconnection 2

cbr 1

cbr 2

ftp

cbr 1
stop

ftp

ftp

1
2

3

(c) Cumulative Volume

Figure 5. Dynamics of a single flow

ceiver. Then, the receiver ensures that the partition rule con-
tainsmin(max cwnd, 2 · cwnd) segments. Since the size
of congestion window has an upper bound (max cwnd) and
the congestion window at most doubles in one RTT, this as-
signment ensures that the server does not starve and thus
fulfills Equation 3. Second, a copy of the partition rule is
piggybacked from the receiver to the sender in the acknowl-
edgment that will allow the sender to determine which seg-
ments to send and to distinguish non-assigned from lost seg-
ments. Thus, with sender-based TCP, modifications are re-
quired at both the sender and receiver side. Both sender
and receiver must store a copy of the partition rule, and the
sender must determine whether a segment is in the parti-
tion rule prior to sending. Following our concept of design-
ing a transport-layer protocol that requires as few changes
in the application as possible, we integrated this check in-
side the sending routine of the TCP sender. Alternatively,
the sender-side modifications could also be made on top
of the transport layer: by exposing the partition rule be-
yond the transport layer, e.g., to the application, the applica-
tion could send only those segments defined in the partition
rule. Since this solution would only alleviate, but not elim-
inate the sender-side transport-layer changes, we opted for
an implementation that maintains the transparency between

5

IP

TCP

Ethernet

 dev
ice

raw socket

socket

kernel

packet filter

send

recv

firewall
 copy of

recvd
 packets

setup

master

connections

Application

PARIS

library

read

buffer

server 1
 server 3

server 2

Figure 6. Implementation at the client

applications and the transport layer.
Figure 5 shows the TCP-PARIS behavior for a parallel

download with 2 subconnections using ns-2. Figure 5(a)
shows the transmission bandwidthri(t) of the 2 TCP sub-
connections. The bandwidth of the subconnections varies
as a function of the cross traffic: betweent = 10 sec and
t = 50 sec, a CBR flow with rate 768 kb/sec interferes
with subconnection 1. Att = 30 sec, another CBR flow
starts from server 1 with rate 128 kb/sec. Att = 70 sec,
t = 80 sec andt = 90 sec, 3 ftp sessions are started that in-
terfere with the bandwidth of subconnection 2. Figure 5(b)
shows theassignedvolumev∗i (t) of the subconnections dur-
ing the download time. The assigned volume follows the
transmission bandwidth in Figure 5(a). A slicing proto-
col, in comparison, would create a square-wave-like func-
tion that approximates the behavior of TCP-PARIS. Finally,
Figure 5(c) shows the cumulative assigned volume during
the download,V ∗

i =
∫ T

0
vi(t)dt. Initially, both volumes

increase with the same rate. Att = 10 sec, the increase of
volume 1 slows down because of the drop in available band-
width rate. Betweent = 50 andt = 70 sec, TCP-PARIS
increases both volumes again at the same rate. Finally, after
t = 70 sec, when the rate of subconnection 2 is reduced due
to the ftp traffic, volume 2 increases only slightly compared
to volume 1. Therefore, at the end of the download, the
downloaded volumes ofV1 = 6.1 MB andV2 = 3.9 MB
reflect the average transmission bandwidth of the respec-
tive subconnections, as required in Equation 1, even though
the transmission bandwidth varied dynamically during the
download.

4 Implementation

We implemented both receiver- and sender-based TCP-
PARIS for the Linux 2.4.19-web 100 kernel. Due to space
limitations, we only highlight the parts that need special at-

sockbuf{}

mbuf_chain

sockbuf{}

mbuf_chain

sock{}

sock{}

receive_queue

write_queue

subconnections []

receive_queue

receive_queue

write_queue

write_queue

sockbuf{}

mbuf_chain

paris_sock{}

Figure 7. Socket I/O with TCP-PARIS (client
side)

tention. The API of TCP-PARIS offers a new protocol type
that is instantiated using the standard socket call:psock
= socket(AF INET, SOCK PARIS, 0). Moreover,
theconnect call is modified to pass multiple server ad-
dresses instead of one. Afterwards, data is exchanged via
the standardsend andreceive calls. Thus, since the API
is analogous to a single-flow download, an application can
be migrated to parallel downloads with only two changes in
the application code.

Figure 6 shows the implementation of client with
receiver-based TCP subconnections. We first implemented
receiver-based based on IP firewalls and packet filters, a
frequently used technique, e.g., in Sting [18], and then ex-
tended it with the download coordination of TCP-PARIS.
For various reasons (e.g., security), this implementationfirst
establishes a set of master subconnections to the sender and
exchanges initial requests via these connections. Then, af-
ter a successful completion, the firewall and the packet filter
are set up and the data transfer is made via the raw sockets.
Note that a single packet filter is used per download. Thus,
the data from the different subconnections is automatically
merged. The implementation of the sender is analogous.

The implementation of sender-based TCP-PARIS adds
and modifies the data structures within the kernel. Figure 7
shows the modification of the read- and write queues of the
subconnections at the receiver. Each subconnection has its
own write queue to send information to the server. How-
ever, the read queue is shared, allowing merging the data
from multiple subconnections to be passed to the applica-
tion. Moreover, the information exchange between senders
and receiver is implemented as two TCP options, requiring
8 bytes for thecwnd and up to 40 bytes per ack for the
partition rule.

6

receiver

sender 0

sender
 n
access
 bw
 (
n
)

access
 bw
 (0)

Figure 8. Setup for single downloads

1 MB file
bwi [kbps] tPARIS tslicing

1 1024 8.27 8.27
2 56 / 968 14.3/7.67 36.35/6.43
2 128 / 896 8.92/7.9 15.92/6.94
2 256 / 768 8.71/7.82 8.07/7.98
2 512 / 512 8.82/8.8 8.85/8.79
4 56/128/256/584 13.4/12.8/8.2/7.1 36.3/15.9/8.0/3.5
4 56/128/328/512 13.8/13/8.6/7.3 36.3/15.9/6.2/4.0
4 56/56/56/856 12.9/12.9/12.9/7.03 36.3/36.3/36.3/2.4
4 256/256/256/256 8.3/8.3/8.3/8.3 8.3/8.3/8.3/8.3
8 8*128 7.99 - 7.79 n/a
8 7*56/632 11.66 - 6.28 n/a

Table 1. Download times for TCP-PARIS and
BitTorrent for a 1 MB file, as a function of
the number of subconnections and the band-
width distribution

5 Evaluation

In this section, we systematically study the performance
of TCP-PARIS using ns-2. First, we study the ability of
a single TCP-PARIS download to achieve the performance
objectives as a function of the volume and the bandwidth
distribution. Second, we study the effects of multiple inter-
acting TCP-PARIS downloads in a distributed environment.
In both cases we compare TCP-PARIS to related protocols,
such as different slicing implementations and coding proto-
cols.

5.1 Single download

We simulate a parallel download withn subconnections,
as depicted in Figure 8. Round-trip times are 20 ms, the
core bandwidth is 100 Mb/sec, and we vary the server-side
bottleneck bandwidth such that the total download band-
width bw =

∑
i bw(i) is 1Mb/sec. Thus, an optimal down-

load protocol would result in the same download time for a
given volume independent of the number of subconnections
and their bandwidth distribution.

Table 1 shows the download times for TCP-PARIS and
BitTorrent for a 1 MB file as a function of the downloaded
volume, the number of subconnections and the bandwidth

distribution. TCP-PARIS is able to achieve the performance
objective within 10%, except for downloads with 56 kb/sec
links. The larger differences of the latter, however, arisebe-
cause of the simplicity of our simulation. With all queues
initially empty, those slow connections open the congestion
window far beyond the bandwidth-delay product and de-
crease it after receiving duplicate acks. As discussed in Sec-
tion 3, the assigned volumev∗i is adjusted only after several
round-trip times, resulting in an increased download time.
However, these effects disappear in simulations where the
queues are not empty, as the congestion control finds its
equilibrium faster. BitTorrent, in contrast, lacks the abil-
ity of a fine-grained volume adjustment. With 1MB files
and 256kB slices, it is unable to use more than 4 parallel
connections. Moreover, it must assign at least 25% of the
volume to each server. Thus, the performance objectives
are met only if the bandwidth distribution ratio matches the
volume ratio, e.g. in row 4,bw1/bw2 = 1/3 andv1 = 25%
andv2 = 75%. For odd bandwidth ratios, however, TCP-
PARIS outperforms BitTorrent by up to a factor of 4.3 (row
2).

Table 2 shows the download times for TCP-PARIS and
BitTorrent for a 3 MB file as a function of the down-
loaded volume, the number of subconnections and the band-
width distribution. Compared to the Table 1, where the
file size was 1 MB, we note that the differences between
TCP-PARIS and BitTorrent are less pronounced. The last
2 columns show the volume distribution of TCP-PARIS
and BitTorrent: due to the larger file, BitTorrent is able to
achieve a similar volume partitioning as TCP-PARIS. The
exception is forn = 8 subconnections, where BitTorrent
is unable to adjust the volumes to large number of subcon-
nections. These results show that TCP-PARIS achieves a
near-to-optimal download because of the integration of con-
gestion control information. In contrast, the performance
of BitTorrent depends on relationship of file size and band-
width. While BitTorrent shows a good average performance
in typical current peer-to-peer scenarios, the download time
may be significantly higher for specific downloads. More-
over, we ignore how BitTorrent will perform in future high-
speed networks where the assumption that the maximal con-
gestion window is limited to 64 KB may no longer hold,
whereas the integration with TCP-PARIS ensures a near-to-
optimal download.

Finally, Figure 9 shows the download time of TCP-
PARIS for larger file downloads. The x-axis denotes a file
size multiplierx that is repeated in the labels of the individ-
ual lines. For example, for the line label denotingx∗1MB,
the file size isx times 1 MB, wherex is modified along the
x-axis. The y-axis denotes the download time, each line rep-
resents a different bandwidth distribution (see legend). The
main impression in this figure is that the download time in-
creases linearly with the downloaded file size. Thus, this

7

3 MB file
bwi [kbps] tPARIS tslicing vPARIS vslicing

1 1024 24.7 24.7 100 100
2 56/968 26.5/25.2 36.5/23.4 8/92 8/92
2 128/896 26.47/23.8 32.0/23.0 14/86 17/83
2 256/768 24.9/23.8 25.1/24.0 26/74 25/75
2 512/512 24.9/24.8 24.9/24.9 50/50 50/50
4 56/128/256/584 26.5/26.1/24.2/23.8 36.5/32.0/24.1/21.8 8.3/20/25/45 8.3/16.6/25/50
4 56/128/328/512 26.5/26.1/24.0/23.8 36.35/32.1/24.9/20.2 8.3/14/30/50 8.3/16.6/33.2/41.8
4 56/56/56/856 27.6/27.6/27.6/21.8 35.6/35.6/35.6/21.8 8/8/8/75 8/8/8/75
4 256/256/256/256 25.6 each 25.6 each 25 each 25 each
8 8*128 24.16 32.09-15.9 12.5 each 4 ∗ 8.3/4 ∗ 16.6
8 7*56/632 27.78 - 19.32 36.35-16.37 7 ∗ 8.1/43.3 7 ∗ 8.3/42

Table 2. Download times for TCP-PARIS and BitTorrent for a 3 M B file, as a function of the number of
subconnections and the bandwidth distribution

0

100

200

300

400

500

600

1
 2
 3
 4
 5
 6
 7
 8
 9
 10

D
o

w
n

lo
a
d

 t
im

e
 [

s
e
c
]

[56,128kb/sec]
 [512,1024kb/sec]
 [256,512,1024,2048kb/sec]

x*1MB

(1-10MB)

x*10MB (10-100MB)

40+x*10MB (50-100MB)

Figure 9. Download time for TCP-PARIS as a
function of the bandwidth distribution and the
volume.

figure enhances the fact that TCP-PARIS is able to achieve
the near-to-optimal download independent of the file size.

5.2 Evaluation of the system performance

In this section, we evaluate TCP-PARIS in a distributed
system where multiple applications share network and
server resources. As depicted in Figure 10, the system con-
sists of a high-speed core of 100Mb/sec links and end sys-
tems attached via slower access links. 50 applications are
randomly assigned to end systems, where each application
consists of 1 client andn servers. Thus, clients and servers
from different application may be located on the same end
system, sharing server and network resources. The access
link bandwidth has uniform distribution of among 56, 128,
256, 512 kb/sec and 1 Mb/sec, which approximates mea-

Core
 �
�

� �
� �

� �
� �

download 1

download 2

Figure 10. Setup for distributed system exper-
iments

surements from [19]. We perform experiments with 2 sets
of file size distributions. The first distribution, denoted as
large, approximates a peer-to-peer system [9]: 90% of the
files have a uniform distribution of 10-100MB, 3% of 1-
10MB and 7% of 100MB-1GB. The second distribution,
denoted assmall, uses the same distributions among file
size ranges of 100KB-1MB (90%), 1-10MB (3%) and 10-
100MB (7%). We assess the download time as a function
of the number of parallel connectionsn for TCP-PARIS as
well as BitTorrent, a Tornado Code based protocol, as well
as an unoptimized slicing protocol with slice sizes of 50kB
and 1MB slices. In these unoptimized protocols, the client
requests the next slice only after the complete download of
the previous slice. Thus, the two protocols show the effects
of starvation for two different slice sizes.

Figure 11 shows the average download time in minutes
as a function of the number of parallel connectionsn for
the large distribution. Compared to download from a sin-
gle peer, TCP-PARIS reduces the mean download time with
n = 2 parallel connections from 6.4 min to 4.1 min, a net
reduction of 36%. Usingn = 3 instead of 2 parallel connec-
tions reduces the download time further to 3.7 min, a reduc-

8

1 2 3 4 5 6 7 8
3

4

5

6

7

8

9

10

Number of parallel connections n

A
ve

ra
ge

 d
ow

nl
oa

d
tim

e
[m

in
] TCP−PARIS

BitTorrent
Tornado
Slicing 50kB
Slicing 1MB

Figure 11. Average download time for large
file size distribution

tion by 5%, and forn = 8, TCP-PARIS reduces the down-
load time to 3 min, a total reduction compared ton = 1 by
52.8%. The reduction decreases with largern in our sim-
ulation because the unused network bandwidth decreases
steadily. Withn = 1, every peer node statistically hosts an
application end point. By increasingn but maintaining the
number of peer nodes, no additional capacity is added to the
network. Therefore, the performance gains of largern are
only due to a better use of the available network resources.

BitTorrent achieves a similar performance as TCP-
PARIS, with differences increasing up to 3% when paral-
lelism is increased. A protocol based on Tornado Codes, in
contrast, shows a difference of 20-35%, as the volume to be
downloaded increases due to the redundancy, a net differ-
ence of 1-2 minutes. Finally, the two non-optimized slicing
protocols show the tradeoff between small and large slices:
small slices incur frequent transmission gaps whereas large
slices are less flexible to coordinate the volume. Therefore,
with 50 KB slices, the download time difference decreases
from 29% to 34% with increased parallelism, whereas it in-
creases from 12% to 50% for 1 MB slices.

Figure 12 shows the average download time for the small
distribution. Due to the smaller files, the average down-
load time is reduced to seconds. Similar to the experiment
with larger files, TCP-PARIS is able to reduce the down-
load time by 51%, from 1.9 sec to 0.94 sec. In contrast,
BitTorrent shows now differences of up to 50% forn = 8
compared to TCP-PARIS, first because the larger slice sizes
limit the ability to use multiple streams (e.g., for a 1MB
file, n = 4), and second because the larger assigned volume
limits the ability to ensure that all subconnections terminate
at the same time. The code-based protocol shows a simi-
lar difference compared to TCP-PARIS as with large files,
with 20%-35% larger download times, and a protocol with

1 2 3 4 5 6 7 8
0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

Number of parallel connections n

A
ve

ra
ge

 d
ow

nl
oa

d
tim

e
[m

in
] TCP−PARIS

BitTorrent
Tornado
Slicing 50kB

Figure 12. Average download time for small
file size distribution

0 20 40 60 80 100
10

−2

10
−1

10
0

10
1

10
2

10
3

CDF[%]

T
im

e
di

ffe
re

nc
e

[s
ec

]

D1
D2

TCP−PARIS

50kB

1MB

Figure 13. Differences in the download time
among subconnections.

50 KB slices has a larger download time of 10%-42%.
These results show that TCP-PARIS is able to reduce

the download time independent of the file size distribution,
whereas other protocols, in particular BitTorrent, are lim-
ited in their ability to coordinate the download for smaller
files, i.e., when the download time is in the order of sec-
onds. In addition to the obvious advantage for the client,
the faster download also implies that server-side resources
(e.g., access link bandwidth) are freed faster.

Next, we assess the influence of the access link band-
width distribution onto the protocol performance. As shown
for a single flow, heterogeneous access link speeds increase
the demand on a fine-grained volume adjustment. Here we
compare the difference in the termination time of the sub-
connections of TCP-PARIS to slicing protocols with 50 KB

9

0 20 40 60 80 100
10

15

20

25

30

35

40

45

50

55

CDF[%]

D
ow

nl
oa

d
tim

e
[s

ec
]

n=1

n=2

n=8

Figure 14. Download time for receiver-side
bottlenecks

and 1 MB slices with 2 bandwidth distributions:D1 has a
uniform distribution of among 56, 128, 256, 512 kb/sec and
1 Mb/sec (avg: 480 kb/sec),D2 has a uniform distribution
of among 56 kb/sec and 1 Mb/sec (avg: 540 kb/sec). Fig-
ure 13 depicts the time differences on a log-scaled y-axis for
n = 2 parallel connections. The fine-grained adjustment of
TCP-PARIS limits the time differences to< 2 sec for both
distributions. The differences for a slicing protocol with50
KB exceed the differences of TCP-PARIS by almost an or-
der of magnitude. The differences withD2 increase by a
factor of 2 compared toD1. Finally, for 1 MB slices, the
differences increase by another order of magnitude, and also
the difference betweenD1 andD2 increases to a factor of 4.
Thus, in accordance with the results for a single flow, these
differences of 1 MB slices significantly hinder the protocol
to achieve an efficient parallel download.

Finally, Figure 14 shows the download time distribution
for TCP-PARIS for receiver-side bottlenecks. In particular,
use the small file distribution and the same bandwidth dis-
tribution, but deliberately assign clients only to slow links.
The figure, which plots the CDF of the download time of the
50 applications shows that TCP-PARIS does not decrease
the download performance when usingn parallel connec-
tions. In contrast, the download time is slightly increased,
corresponding to results found in literature (e.g. [11]).

6 Conclusions

This paper presents TCP-PARIS, a novel protocol for
parallel download fromn replica servers to a single client.
TCP-PARIS’ integration of congestion control information
ensures a near-optimal download coordination independent
of file size and network bandwidth distributions. Protocol
simulations as well as simulations with multiple interacting

flows using TCP-PARIS show a download time reduction
by up 52% compared to single download, and up to 52%
compared to related parallel download protocols, such as
code-based or slicing protocols.

Our implementation shows that TCP-PARIS can be inte-
grated with minor changes in the application code. These
changes are limited to the connection establishment, but the
fact that the data is received from multiple sources is hid-
den from the application. Therefore, TCP-PARIS is easily
integrated with new and legacy applications.

Finally, TCP-PARIS opens new opportunities to address
fairness and performance in parallel downloads. So far,
TCP-PARIS does not modify the rate of a subconnection
and can thereby achieve ann-fold throughput of a single-
flow download. In future work, we will study means to
modify the throughput of the subconnections to mitigate
performance and fairness. Such a modification is only pos-
sible with an integration of the transport layer and would
contrast current peer-to-peer fairness model that base on tit-
for-that fairness objectives. Moreover, we will exploit the
streaming behavior to assess TCP-PARIS’ ability to sup-
port real-time parallel downloads for multimedia content in
future work.

References

[1] B. Allcock, J. Bester, J. Bresnahan, A. Chervenak, I. Fos-
ter, C. Kesselman, S. Meder, V. Nefedova, D. Quesnel,
and S. Tuecke. Data management and transfer in high-
performance computational grid environments.Parallel
Computing, 28(5):749–771, May 2002.

[2] J. Byers, J. Considine, M. Mitzenmacher, and S. Rost. In-
formed content delivery across adaptive overlay networks.
In Proceedings of ACM SIGCOMM’02, Pittsburgh, PA, Aug.
2002.

[3] J. Byers, M. Luby, and M. Mitzenmacher. Accessing mul-
tiple mirror sites in parallel: Using tornado codes to speed
up downloads. InProceedings of IEEE INFOCOM’99, New
York, NY, Mar. 1999.

[4] J. Byers, M. Luby, M. Mitzenmacher, and A. Rege. A dig-
ital fountain approach to reliable distribution of bulk data.
Computer Communication Review, 28(4), Oct. 1998.

[5] M. Castro, P. Druschel, A. Kermarrec, A. Nandi, A. Row-
stron, and A. Singh. SplitStream: High-bandwidth multicast
in a cooperative environment. InProceedings of SOSP’03,
Bolton Landing, NY, Oct. 2003.

[6] B. Cohen. Incentives build robustness in Bittorrent, May
2003. http://bittorrent.com/bittorrentcon.pdf.

[7] S. Floyd. HighSpeed TCP for Large Congestion Windows.
Request for Comment 3649, Dec. 2003.

[8] C. Gkantsidis, M. Ammar, and E. Zegura. On the ef-
fect of large-scale deployment of parallel downloading. In
Proceedings of IEEE Workshop on Internet Applications
(WIAPP’03), San Jose, CA, June 2003.

10

[9] K. Gummadi, R. Dunn, S. Saroiu, S. Gribble, H. Levy, and
J. Zahorjan. Measurement, modeling and analysis of a peer-
to-peer file-sharing workload. InProceedings of SOSP’03,
Bolton Landing, NY, Oct. 2003.

[10] R. Gupta, M. Chen, S. McCanne, and J. Walrand. A receiver-
driven transport protocol for the web. InProceedings of the
4th INFORMS Telecommunication Conference, Boca Raton,
FL, Mar. 2000.

[11] T. Hacker, B. Athey, and B. Noble. The end-to-end perfor-
mance effects of parallel TCP sockets on a lossy wide-area
network. InProceedings of IPDPS’02, Fort Lauderdale, FL,
Apr. 2002.

[12] H. Hsieh, K. Kim, Y. Zhu, and R. Sivakumar. A receiver-
centric transport protocol for mobile hosts with heteroge-
neous wireless interfaces. InProceedings of ACM Mobi-
Com’03, San Diego, CA, Sept. 2003.

[13] D. Kostic, A. Rodriguez, J. Albrecht, and A. Vahdat. Bullet:
high bandwidth data dissemination using an overlay mesh.
In Proceedings of SOSP’03, Bolton Landing, NY, Oct. 2003.

[14] P. Rodriguez and E. Biersack. Dynamic parallel-accessto
replicated content in the Internet.ACM/IEEE Transactions
on Networking, Aug. 2002.

[15] P. Rodriguez, A. Kirpal, and E. Biersack. Parallel-access for
mirror sites in the internet. InProceedings of IEEE INFO-
COM’00, Tel Aviv, Isr, Mar. 2000.

[16] S. Saroiu, P. Gummadi, R. Dunn, S. Gribble, and H. Levy.
An analysis of Internet content delivery systems. InPro-
ceedings of OSDI’02, Boston, MA, Dec. 2002.

[17] S. Saroiu, P. Gummadi, and S. Gribble. A measurement
study of peer-to-peer file sharing systems. InProceedings of
IS&T/SPIE Conference on Multimedia Computing and Net-
working (MMCN’02), San Jose, CA, Jan. 2002.

[18] S. Savage. Sting: a TCP-based network measurement tool.
In Proceedings of the 2nd USENIX Symposium on Internet
Technologies and Systems (USITS’99), Boulder, CO, Oct.
1999.

[19] S. Sen and J. Wang. Analyzing peer-to-peer traffic across
large networks. InProceedings of the Second SIGCOMM
Internet Measurement Workshop (IMW 2002), Marseille,
France, Nov. 2002.

[20] R. Sivakumar, S. Bailey, and R. Grossman. PSockets: the
case for application-level network striping for data intensive
applications using high speed wide area networks. InPro-
ceedings of the 2000 ACM/IEEE Conference on Supercom-
puting, Dallas, TX, Mar. 2000.

11

