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Parallel download protocols have the potential to reduce

file download time and to achieve a server-side load bal- I file file
ancing in replica systems, such as peer-to-peer networks, %ﬂ'e g&‘-endef n
content distribution networks and mirrored servers, by si-
multaneously establishing connections to multiple regdic
and downloading disjoint file parts in parallel. This paper
presents TCP-PARIS, a novel parallel download protocol
from multiple replicas to one receiver. Because the ideal
partitioning of the transfer volume from each server is a dy- o
namic and a difficult-to-predict function of network condi- receiver
tions, server load and data size, TCP-PARIS uses the stream
segmentation of TCP and congestion window information
to continuously adapt the assigned volume to each server
in proportion to the bandwidth-delay product to best ap-
proximate the optimal data partitioning. Analytical rets)l
simulation and Internet experiments with a transport-laye
implementation characterize the performance and the re- transfer. Finally, parallel download protocols shed load o
source requirements of TCP-PARIS and allow a comparisonmultiple servers and therefore automatically achieve d loa
with related protocols. Extensive simulations with vagyin  balancing, resulting in higher server availability.
network and application parameters show download time  The challenges in the design of parallel download proto-
reductions of up to 52% compared to single-flow downloads co|s arise because network conditions in the Internet dre he
and up to 52% compared to related protocols. erogeneous, dynamic and difficult to predict, and because

file sizes follow a distribution that varies from applicatio

to application. Current parallel download protocols ondy e
1 Introduction ist as application-layer solutions that target specifidiapp

tion demands and network environments. CDNs download

Data replication is a key building block for large-scale small pictures (ads) in parallel from low-latency servers.

distributed storage systems such as Mirrors, Contentibistr  Slicing protocols, such as BitTorrent [6], split multime-
bution Networks (CDNs) and peer-to-peer (p2p) file shar- dia files of several MB into smaller slices and coordinate
ing applications. Parallel download protocols that essabl  the download of individual slices from multiple peers. Fi-
multiple connections to distributed replica servers and si nally, Digital Fountain [2] targets unreliable environnen
multaneously download individual parts of the data in par- (e.g., multicast), where the redundancy in the form of codes
allel, as depicted in Figure 1, promise a reduction of thadat eliminates a download coordination. Unfortunately, the us
download time by up to a factor ef when usingr parallel of these parallel download protocols is limited to specific
connections, compared to a download from a single serverscenarios (e.g., CDNs are bound to http requests), and pro-
only. Moreover, the failure of a replica during the down- tocol performance is dismal if the assumptions about file
load reduces the download rate, but does not interrupt thesize or bandwidth are not met.

sender 1

Figure 1. Parallel download from multiple
servers



In this paper we develop TCP-PARIS, a novel
PArallel download protocol foReplicaS. TCP-PARIS is a
multipoint-to-point protocol that provides reliable filed
livery by establishing: individual TCP subconnections and
coordinating the download from thesereplica servers.
The key novelty of TCP-PARIS is to tightly couple the coor-
dination with the TCP subconnections. In particular, TCP-

downloads in Grid environments, or even for multimedia
real-time streaming. Therefore, a single parallel dowdloa
protocol that can be used independent of a specific appli-
cation scenario and that achieves the promised performance
objective even under dynamic network conditions will sig-
nificantly expand the use and the benefits of parallel down-
loads.

PARIS uses the TCP segmentation to coordinate the down-

load by assigning each server the responsibility to deliver

2.1 Requirements

only a subset of the segments. Moreover, TCP-PARIS uses

congestion control information of the subconnections to dy

In our quest to design a parallel download protocol, we

namically adapt the downloaded volume from each server,will address the following protocol requirements

allowing TCP-PARIS to achieve a near-optimal download
independent of the network heterogeneity and dynamics.

This paper makes the following contributions. First, we
develop the TCP-PARIS protocol. We show that the down-
load coordination can be integrated with TCP congestion
control with only two components: the partition rules that
store for every sender which TCP segments it must deliver,
and the Largest Assigned Sequence number (LAS), which
allows the receiver to coordinate the download such that no
segment is transmitted by two senders. While congestion
control information is integrated to coordinate the down-
load, TCP-PARIS does not modify congestion control of
the subconnections.

Second, we describe two implementation variants of

TCP-PARIS, one with receiver-based TCP connections and
The fact

the other with sender-based TCP connections.
that the parallel download coordination is steered by the
client simplifies the TCP-PARIS protocol with receiver-
based TCP. We present implementations of TCP-PARIS in
ns-2 and in the Linux kernel.

Finally, we perform an extensive set of simulation ex-
periments to evaluate the impact of the systems’ key perfor-
mance factors. In particular, we assess the ability of TCP-
PARIS to achieve a near-to-optimal download time for a
single flow under varying network and application param-
eters and compare the results to slicing protocols. More-
over, we study the system performance of multiple inter-
acting TCP-PARIS flows in a distributed environment and
show that TCP-PARIS achieves download time reductions
of up to 52% compared to single-server downloads and up
to 52% compared to related parallel download protocols.

2 Designrationale

The ability of a parallel download protocol to cover a

e Bandwidth heterogeneity. The protocol must ac-
commodate a large variety of physical bandwidth
rates, ranging from kb/sec connections (e.g., in p2p
and CDNs) up to high-speed networks with Gb/sec
speed [17, 16]. Moreover, the available bandwidth is a
difficult-to-predict function of network conditions and
server load.

File size heterogeneity. The protocol must ensure an
efficient download for different file size distributions.
For CDNs, e.g., embedded objects may range from 100
KB (pictures) to several MB (large pictures, movies).
Similarly, p2p file sharing applications may share files
from 10s to 100s of MB. Finally, Grid applications
may download files of several GB.

Reliability. The protocol must guarantee to deliver the
file even if servers suddenly and unexpectedly termi-
nate a connection.

Generality. The protocol must be broadly applica-
ble to multi-point to point transfer. For example, the
performance of real-time streaming multimedia down-
loads (applications or as embedded Web documents)
could significantly be increased via parallel down-
loads, but only under the condition that the parallel
streams synchronized in their delivery.

By focusing on these requirements, we will not discuss
three importantissues in this paper, as they can be addresse
independently of TCP-PARIS. First, we ignore how an ap-
plication learns the location of the servers on which the file
is located. Current solutions range from explicit knowledg
(e.g., a list of mirrors) to dynamic searches for servers or
documents (as in p2p). Second, we assume that the applica-
tion verifies that the documents on all servers are consisten

large span of network and application parameters is crucialEnsuring consistency should be done prior to the download.
for the download performance. As data replication is in- Finally, we ignore that servers may be malicious and mod-
creasingly used in distributed systems, the benefits ofpara ify the content during the download. Solutions can be de-
lel downloads can be exploited for a large variety of appli- ployed independent of TCP-PARIS, or TCP-PARIS can be
cations: Web (where parallel downloads can be made by aextended to check consistency, e.g. by downloading the
client browser or a proxy), peer-to-peer, mirrors, higeegp ~ same segments from multiple replicas.



2.2 Performance Objective been proposed for high-speed networks [1, 7, 20]. TCP-
PARIS takes parallel download to a next level by allowing

The performance objective of a parallel download pro- @ download from distributed replica servers.
tocol is to minimize the download time at a client. This

minimization is determined by two factors: (i) the ability t . .
efficiently use the available bandwidth and (ii) the abitity Code-based protocols, such as Digital Fountain [4],
poplitStream [5] and Bullet [13], add redundant code to

coordinate the volume downloaded from each server suc 3

that all downloads terminate at the same time. Consider aeach packet in the form of Tornado Codes _[3] or Erasure

volume of data denoted by (bits) to be downloaded by a Codes [2]. The redundancy enables the client to decode
and reconstruct the original file when it receivasy nk

client from serverd,2,--- ,n. DenoteV; > 0 as the vol- e : Y
ume transferred from servemith 3, V; = V, and denote packets of the originat packets. While no coordination
! is necessary as to which server must deliver which data,

T; as the download time for servér Finally, denoter; (¢) X
as the transmission bandwidth that a TCP flow obtains fromthe overhead in redundant data averages 36% for Tornado
Codes [3]. In networks with little packet loss, this overthea

replica: to the receiver during the download, and denote ~-~°" X )

R — L [, (t)dt as the average download rate for the significantly increases the download time and reduces the
1 T Tz 0 3

entire transfer. The download time of replicis then goodput of a network.

Ti = Vi/R; 1) Protocols where the receiver coordinates the download

to ensure a non-disjoint data delivery have been proposed
within different application contexts. First, Content fis
bution Networks (CDNSs) such as Akamai, download indi-
vidual subdocuments embedded infanm request from
different servers. As the volume of the subdocuments is
fixed, CDNs must try to approximate, rather than optimize
Equation 1. This approximation may be sufficient for small
volumesV; whereR; is dominated by the latency. However,
significant performance drawbacks are expected for larger
documents, and no parallel download support is provided
for real-time streaming.

The first objective of a parallel download protocol is to
utilize the transmission bandwidth(¢) by ensuring that the
server always has data to send-gt) to avoid starvation.

If a server starves, the achieved transmission rate will be
lower thanr;(¢) and, in some cases, even result in a termi-
nation of the connection. This objective is achieved if the
assigned volum® server, v} (t) is always larger than the
bandwidth-delay product of the connection, i.e.,

v (t) > ri(t) - rtti(t) ()

The second objective requires that the difference in the
total download time from each server must be minimized, as

: . ) ) Alternatively, slicing protocols used in p2p applications
the download is not completed until the last byte is received y gp b<p app

split large files into multiple equally-sized slices thahca
be downloaded in parallel from different servers [14, 15].
min(max (71, ..., T)) (3)  The key problem for slicing protocols is to determine the
best slice size: while small slices increase the flexibility
of the protocol to meet the second performance objective,
small slices are more likely to incur server starvation. §hu
the best slice size depends on dynamic run-time parame-
)fer, and a wrong selection leads to a significant increase in

width is known and heterogeneous, the solution to E uationthe download time [8]. BitTorrent [6] uses slice sizes of
g ’ q 256 KB, but additionally ensures that every server has at

(3) y|elds. tha.tVz/Rz . Vi/R;. The Key challenge N pro leastk sub-pieces of: KB outstanding at the server. With
tocol design is to achieve the objectives in the case that the ~ .

o . typical values ofk = 5 andx = 16 KB, BitTorrent gen-
rates are not knowa priori, but change over time.

erally avoids server starvation for average maximal conges
. tion window sizes of 64 KB. While these parameter settings
2.3 Overview of related protocols are efficient for most p2p downloads, slice sizes of 256 KB
limit ability of the protocol to adjust the volume for small
Related work can be separated into 3 groups: parallelfiles and/or limit the number of parallel connections. More-
TCP connections between a single client-server pair, code-over, a non-trivial adjustment of the above parametersis re
based protocols and coordination-based protocols. quired for high-speed environments for larger maximal con-
First, parallel download protocols that establish mudtipl gestion windows. Finally, slicing protocols lack real-6m
TCP connections between the same client-server pair havestreaming support for multimedia.

Obviously, this goal is achieved when all downloads termi-
nate at the same time, i.€; = T} for all replicasi, ;.

In the simplest case in which the bandwidthis static,
known and homogeneous, the objectives are achieved b
downloading a volumé&; = V/n. Moreover, if the band-
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Figure 3. Sliding window
congestion control /
reliable delivery

download coordination

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, the bandwidth-delay product of this subconnection threugh
out the download, i.e.

Figure 2. Parallel download with TCP-PARIS
v (£) ~ ri(t) - rtti(t) (4)
3 TCP-PARIS: a parallel download protocol

. r;(t) is the rate achieved by each individual subconnec-
for replicas

tion and isnotmodified by TCP-PARIS. Thus, at any time,
) each subconnection is TCP-friendly by itself, whereas the
3.1 Coordinated download total rate of a TCP-PARIS connection is the aggregation of
the individual rates. Thus, a TCP-PARIS connection can
TCP-PARIS is a multipoint-to-point protocol. A TCP-  gptain ann-fold throughput of a single-flow download. In
PARIS ﬂOW ConSiStS Oh Subconnections that connecta Sin' cases Where thﬁ Subconnections Share a common botﬂe_
gle receiver withn replica servers via point-to-point TCP neck, this aggregation is unfair and we will address this
subconnections, as depicted in Figure 2. The client sendsynfairness in future work. At the moment, we argue that
a file request to the servers, which is acknowledged by theTcp.pARIS is as unfair as other currently deployed parallel
senders. Then, the TCP-PARIS receiver starts coordinatinggjownload protocol.
the. parallel download by assigning every subconnectionin- ¢ any given timet, the assigned volume to a subcon-
dividual TCP segments to deliverEvery server sends only  pection; corresponds to the size of the congestion window.

those segments that are requested by the receiver. v (t) is therefore the smallest volume assigned to a server

The TCP-PARIS receiver coordinates the download of it ensures that the server never starves in its deliveny. D
the subconnections using a sliding window protocol that re- ing an increase in the congestion window sizeis also in-
flect§ the status of the p_aral_lel download (i.e., of al! subco crementally increased. During a (multiplicative) deceeas
nections), as depicted in Figure 3. The boundaries of thepoyever,* is temporarily larger than the product as the
sliding window are maintained by 2 variables: the Largest reqyction ofv; requires several round-rip times. We will
Assigned Sequence numbeASand the the Smallest Miss-  ghqy that this delayed adaptation has an impact only if it
ing Sequence numbe8MS Segments are assigned sequen- gceyrs at the end of a transmission. Moreowgris set to

tially to subconnections by the TCP-PARIS receiver when- e sjze of the congestion window. Finally, the total down-
ever the congestion control of the subconnection allows the, ;4 volume/* — fOTi V¥ (t)dt is proportional to the av-

transmission of a new segment, ensuring that each segmer]g[rage download ratg, as zstated in Equation 1
T .

IS ass!gned to only one _subconnectlon. The SMS is UYP" " The second data structure to coordinate the download
dated if the smallest missing segment of all subconnections.

. . ; Is the partition rule. For each segment between SMS and
is received, allowing all data up to the SMS to be passed - ; .

o - . oo LAS, the partition rule stores to which subconnection the
to the application. The sliding window maintains a well-

: segment has been assigned. TCP-PARIS uses the reliable
defined download status, as sequence numbers larger tha . . .
ata delivery mechanism of each TCP subconnection to en-

the LAS have not been assigned yet, segments between LA sure the delivery of all (assigned) segments, i.e., thas-mis
and SMS are in transit, and all segments smaller than the Y 9 9 T

SMS have been successfully received by the TCP-PARISMY ;e_gments are detected and re.transmltted. Thl.st’ upon
. - ) L receiving a segment, a subconnection uses the partitien rul
receiver. Moreover, the sliding windows of each individual

subconnection are contained in the boundaries set by LASto distinguish _betvveer_1 missing and unassigned _segments: if
a subconnection receiver receives a segment with sequence
and SMS. numberm and the last received segment wasthe re-
The coupling of the assignment with the congestion con- 9

) . ceiver checks its partition rule whether any segmienith
trol ensures that the assigned voluijeto serveri equals . . ;
k < I < m has been assigned to it. If so, the receiver must

Lwe assume that all subconnections use the same segment size assume that segmeinis lost and retransmit the segment.
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Here, we describe 2 realizations of TCP-PARIS, one
with receiver-based and one with sender-based TCP. = a2 S ‘
Receiver-based TCP [10, 12] is a request-reply protocol K e ” -
designed to improve response times for web traffic [10], to
improve performance for wireless links [12], and to reduce
state and overhead for web servers [10]. In receiver-based
TCP, the receiver is responsible for congestion control and
reliable delivery by requesting individual segments frowm t
sender. The number of segments allowed to be requested igeiver. Then, the receiver ensures that the partition e ¢
controlled by a congestion window. Upon detecting miss- tainsmin(maz_cwnd, 2 - cwnd) segments. Since the size
ing segments, the receiver re-requests them and performgf congestion window has an upper bouneh{z_cwnd) and
congestion window reductions and timeouts in analogy to the congestion window at most doubles in one RTT, this as-
sender-based TCP. The implementation of TCP-PARIS with signment ensures that the server does not starve and thus
receiver-based TCP subconnections is simplified by the lo-fulfills Equation 3. Second, a copy of the partition rule is
cal availability of all status information and all main et®n  piggybacked from the receiver to the sender in the acknowl-
at the receiver. In particular, receiver-driven TCP’s use o edgment that will allow the sender to determine which seg-
receivers to control the data delivery cycle provides a-atu ments to send and to distinguish non-assigned from lost seg-
ral mechanism for TCP-PARIS’ receiver to coordinate data ments. Thus, with sender-based TCP, modifications are re-
delivery across subconnections. Figure 4 depicts the-inter quired at both the sender and receiver side. Both sender
actions for a TCP-PARIS receiver coordinating the down- and receiver must store a copy of the partition rule, and the
load of two subconnections. The figure shows that the TCP-sender must determine whether a segment is in the parti-
PARIS receiver coordinates the download via the partition tion rule prior to sending. Following our concept of design-
rules. At the sender, no modifications are necessary foring a transport-layer protocol that requires as few changes
TCP-PARIS as the senders continue to deliver the packetdn the application as possible, we integrated this check in-
that are required by the receiver. side the sending routine of the TCP sender. Alternatively,
Today, however, most TCP implementations have the sender-side modifications could also be made on top
sender-based control. Thus, an information exchange be-of the transport layer: by exposing the partition rule be-
tween the TCP-PARIS receiver and each subconnectionyond the transport layer, e.g., to the application, theiappl
sender is necessary. First, the TCP-PARIS receiver mustion could send only those segments defined in the partition
be informed about the number of segments it must as-rule. Since this solution would only alleviate, but not elim
sign. Therefore, we piggyback the congestion window size inate the sender-side transport-layer changes, we opted fo
(cwnd) in every data segment from the sender to the re- an implementation that maintains the transparency between

[y
T

(c) Cumulative Volume

Figure 5. Dynamics of a single flow
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Figure 6. Implementation at the client side)

applications and the transport layer.
Figure 5 shows the TCP-PARIS behavior for a parallel

download with 2 §ub_connectio_ns using ns-2. Figure 5(a) tention. The API of TCP-PARIS offers a new protocol type
shows the transmission bandwidt{t) of the 2 TCP sub- that is instantiated using the standard socket qadlock

connectlor_ls. The bandwidth c_>f the subconnections varies_ socket (AF_I NET, SOCKPARI S, 0). Moreover,
as a function of the cross traffic. betweer= 10 sec and

" 50 S, 2 GO fow i e 165 Kses nerres COTNCE Al madfied o pass e serer
with subconnection 1. At = 30 sec, another CBR flow ’ ' 9

starts from server 1 with rate 128 kb/sec. At 70 sec, itQZizgdng;gdair;gr I(Z (.:fi;v:,/3;321?6;—:u;ﬁsénciég§<ﬁ1péan
t = 80 sec and = 90 sec, 3 ftp sessions are started that in- g 9 ' PP

terfere with the bandwidth of subconnection 2. Figure 5(b) :Jheerglgrﬁ(t:z(tji(t)?l r():irdaellel downloads with only two changes in
shows thessignediolumew; (¢) of the subconnections dur- PP ‘
ing the download time. The assigned volume follows the  Figure 6 shows the implementation of client with

transmission bandwidth in Figure 5(a). A slicing proto- recejver-based TCP subconnections. We first implemented
col, in comparison, would create a square-wave-like func- receiver-based based on IP firewalls and packet filters, a
tion that apprOXimateS the behavior of TCP-PARIS. Fina”y, frequent|y used technique, e.g., in St|ng [18], and then ex-
Figure 5(c) shows the cumulative assigned volume duringtended it with the download coordination of TCP-PARIS.
the downloadV;* = fOT v;(t)dt. Initially, both volumes  For various reasons (e.qg., security), this implementdiish
increase with the same rate. At= 10 sec, the increase of  establishes a set of master subconnections to the sender and
volume 1 slows down because of the drop in available band-exchanges initial requests via these connections. Then, af
width rate. Betweern = 50 andt = 70 sec, TCP-PARIS  ter a successful completion, the firewall and the packet filte
increases both volumes again at the same rate. Finally, afteare set up and the data transfer is made via the raw sockets.
t = 70 sec, when the rate of subconnection 2 is reduced dueNote that a single packet filter is used per download. Thus,
to the ftp traffic, volume 2 increases only slightly compared the data from the different subconnections is automaticall

to volume 1. Therefore, at the end of the download, the merged. The implementation of the sender is analogous.
downloaded volumes df; = 6.1 MB andV; = 3.9 MB

reflect the average transmission bandwidth of the respec- The implementation of sender-based TCP-PARIS adds
tive subconnections, as required in Equation 1, even thoughﬁmd modifies the data structures within the kernel. Figure 7

the transmission bandwidth varied dynamically during the Shows the modification of the read- and write queues of the
download. subconnections at the receiver. Each subconnection has its

own write queue to send information to the server. How-
. ever, the read queue is shared, allowing merging the data
4 Implementation from multiple subconnections to be passed to the applica-
tion. Moreover, the information exchange between senders
We implemented both receiver- and sender-based TCP-and receiver is implemented as two TCP options, requiring
PARIS for the Linux 2.4.19-web 100 kernel. Due to space 8 bytes for thecwnd and up to 40 bytes per ack for the
limitations, we only highlight the parts that need special a partition rule.
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Figure 8. Setup for single downloads

distribution. TCP-PARIS is able to achieve the performance
objective within 10%, except for downloads with 56 kb/sec
links. The larger differences of the latter, however, abise
cause of the simplicity of our simulation. With all queues
initially empty, those slow connections open the congestio
window far beyond the bandwidth-delay product and de-
crease it after receiving duplicate acks. As discussedén Se
tion 3, the assigned volumg is adjusted only after several
round-trip times, resulting in an increased download time.
However, these effects disappear in simulations where the

1 MB file gueues are not empty, as the congestion control finds its
? bwic[)kzaps] tsfzf‘?m g 2127”9 equilibrium faster. BitTorrent, in contrast, lacks thelabi
5 567968 1437767 36.35/6.43 ity of a fine-grained volume adjustment. With 1MB files
2 1287896 8.92/7.9 15.92/6.94 and 256kB slices, it is unable to use more than 4 parallel
2 256 /768 8.71/7.82 8.07/7.98 connections. Moreover, it must assign at least 25% of the
2 512/512 8.82/8.8 8.85/8.79 volume to each server. Thus, the performance objectives
i ggﬁggggggfg ig:gﬁg;g{ 2}3{ ;'1 zg:zﬁgjgg:gﬁ:g are met onlly if the_bandwidth distribution ratio matches the
4 | 56/56/56/856 || 12.9/12.9/12.9/7.03 36.3/36.3/36.3/2.4 volume ratio, e.g. in row 4w, /bw, = 1/3 andv; = 25%
4 | 256/256/256/256|| 8.3/8.3/8.3/8.3 8.3/8.3/8.3/8.3 andvy, = 75%. For odd bandwidth ratios, however, TCP-
8 8+128 7.99-7.79 nia PARIS outperforms BitTorrent by up to a factor of 4.3 (row
8 7*56/632 11.66 - 6.28 nia 2).

Table 2 shows the download times for TCP-PARIS and
BitTorrent for a3 MB file as a function of the down-
loaded volume, the number of subconnections and the band-
width distribution. Compared to the Table 1, where the
file size was 1 MB, we note that the differences between
TCP-PARIS and BitTorrent are less pronounced. The last
2 columns show the volume distribution of TCP-PARIS
and BitTorrent: due to the larger file, BitTorrent is able to
achieve a similar volume partitioning as TCP-PARIS. The

In this section, we systematically study the performance exception is forn = 8 subconnections, where BitTorrent
of TCP-PARIS using ns-2. First, we study the ability of s unable to adjust the volumes to large number of subcon-
a single TCP-PARIS download to achieve the performancenections. These results show that TCP-PARIS achieves a
objectives as a function of the volume and the bandwidth near-to-optimal download because of the integration of con
distribution. Second, we study the effects of multipleiinte  gestion control information. In contrast, the performance
acting TCP-PARIS downloads in a distributed environment. of BitTorrent depends on relationship of file size and band-
In both cases we compare TCP-PARIS to related protocols,width. While BitTorrent shows a good average performance
such as different slicing implementations and coding proto in typical current peer-to-peer scenarios, the downlaae ti
cols. may be significantly higher for specific downloads. More-
over, we ignore how BitTorrent will perform in future high-
speed networks where the assumption that the maximal con-
gestion window is limited to 64 KB may no longer hold,
We simulate a parallel download withsubconnections, whereas the integration with TCP-PARIS ensures a near-to-

as depicted in Figure 8. Round-trip times are 20 ms, the OPtimal download.
core bandwidth is 100 Mb/sec, and we vary the server-side Finally, Figure 9 shows the download time of TCP-
bottleneck bandwidth such that the total download band- PARIS for larger file downloads. The x-axis denotes a file
width bw = ", bw(i) is 1IMb/sec. Thus, an optimal down-  size multiplierx that is repeated in the labels of the individ-
load protocol would result in the same download time for a ual lines. For example, for the line label denotingl M B,
given volume independent of the number of subconnectionsthe file size ist times 1 MB, wherer is modified along the
and their bandwidth distribution. x-axis. The y-axis denotes the download time, each line rep-
Table 1 shows the download times for TCP-PARIS and resents a different bandwidth distribution (see legentie T
BitTorrent for a 1 MB file as a function of the downloaded main impression in this figure is that the download time in-
volume, the number of subconnections and the bandwidthcreases linearly with the downloaded file size. Thus, this

Table 1. Download times for TCP-PARIS and
BitTorrent for a 1 MB file, as a function of
the number of subconnections and the band-

width distribution

5 Evaluation

5.1 Singledownload



3 MB file

# bw; [Kbps] tpARIS Lslicing UPARIS Uslicing

1 1024 24.7 24.7 100 100

2 56/968 26.5/25.2 36.5/23.4 8/92 8/92

2 128/896 26.47/23.8 32.0/23.0 14/86 17/83

2 256/768 24.9/23.8 25.1/24.0 26/74 25/75

2 512/512 24.9/24.8 24.9/24.9 50/50 50/50

4 | 56/128/256/584| 26.5/26.1/24.2/23.8 36.5/32.0/24.1/21.8| 8.3/20/25/45| 8.3/16.6/25/50
4 | 56/128/328/512| 26.5/26.1/24.0/23.8 36.35/32.1/24.9/20.2 8.3/14/30/50| 8.3/16.6/33.2/41.9
4 56/56/56/856 || 27.6/27.6/27.6/21.8 35.6/35.6/35.6/21.8| 8/8/8/75 8/8/8/75

4 | 256/256/256/256| 25.6 each 25.6 each 25 each 25 each

8 8*128 24.16 32.09-15.9 12.5 each 4 %8.3/4%16.6
8 7*56/632 27.78-19.32 36.35-16.37 7x8.1/43.3 | 7x8.3/42

Table 2. Download times for TCP-PARIS and BitTorrent fora 3 M B file, as a function of the number of
subconnections and the bandwidth distribution

[-m=[56,128Kb/sec] ——[512,1024Kb/sec] —[256,512,1024,2048kb/sec] |
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Figure 10. Setup for distributed system exper-
iments

100 -

surements from [19]. We perform experiments with 2 sets

Figure 9. Download time for TCP-PARIS as a of file size distributions. The first distribution, denotesl a
volume. files have a uniform distribution of 10-100MB, 3% of 1-

10MB and 7% of 100MB-1GB. The second distribution,
denoted asmall uses the same distributions among file
figure enhances the fact that TCP-PARIS is able to achievesize ranges of 100KB-1MB (90%), 1-10MB (3%) and 10-
the near-to-optimal download independent of the file size. 100MB (7%). We assess the download time as a function
of the number of parallel connectiondor TCP-PARIS as
5.2 Evaluation of the system performance well as BitTorrent, a Tornado Code based protocol, as well
as an unoptimized slicing protocol with slice sizes of 50kB
In this section, we evaluate TCP-PARIS in a distributed and 1MB slices. In these unoptimized protocols, the client
system where multiple applications share network and requests the next slice only after the complete download of
server resources. As depicted in Figure 10, the system conthe previous slice. Thus, the two protocols show the effects
sists of a high-speed core of 100Mb/sec links and end sys-Of starvation for two different slice sizes.
tems attached via slower access links. 50 applications are Figure 11 shows the average download time in minutes
randomly assigned to end systems, where each applicatioras a function of the number of parallel connectienfor
consists of 1 client and servers. Thus, clients and servers the large distribution. Compared to download from a sin-
from different application may be located on the same endgle peer, TCP-PARIS reduces the mean download time with
system, sharing server and network resources. The access = 2 parallel connections from 6.4 min to 4.1 min, a net
link bandwidth has uniform distribution of among 56, 128, reduction of 36%. Using = 3 instead of 2 parallel connec-
256, 512 kb/sec and 1 Mb/sec, which approximates mea-tions reduces the download time further to 3.7 min, a reduc-
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tion by 5%, and fom = 8, TCP-PARIS reduces the down-
load time to 3 min, a total reduction comparedite= 1 by
52.8%. The reduction decreases with largén our sim-
ulation because the unused network bandwidth decreases
steadily. Withn = 1, every peer node statistically hosts an
application end point. By increasingbut maintaining the
number of peer nodes, no additional capacity is added to the
network. Therefore, the performance gains of langerre
only due to a better use of the available network resources.
BitTorrent achieves a similar performance as TCP- TCP-PARIS [
PARIS, with differences increasing up to 3% when paral- ——
lelism is increased. A protocol based on Tornado Codes, in 0 20 40 60
contrast, shows a difference of 20-35%, as the volume to be CDF[%]
downloaded increases due to the redundancy, a net differ-
ence of 1-2 minutes. Finally, the two non-optimized slicing Figure 13. Differences in the download time
protocols show the tradeoff between small and large slices:  among subconnections.
small slices incur frequent transmission gaps whereas larg
slices are less flexible to coordinate the volume. Therefore
with 50 KB slices, the download time difference decreases
from 29% to 34% with increased parallelism, whereas it in- 50 KB slices has a larger download time of 10%-42%.
creases from 12% to 50% for 1 MB slices. These results show that TCP-PARIS is able to reduce
Figure 12 shows the average download time for the smallthe download time independent of the file size distribution,
distribution. Due to the smaller files, the average down- whereas other protocols, in particular BitTorrent, are-lim
load time is reduced to seconds. Similar to the experimentited in their ability to coordinate the download for smaller
with larger files, TCP-PARIS is able to reduce the down- files, i.e., when the download time is in the order of sec-
load time by 51%, from 1.9 sec to 0.94 sec. In contrast, onds. In addition to the obvious advantage for the client,
BitTorrent shows now differences of up to 50% for= 8 the faster download also implies that server-side ressurce
compared to TCP-PARIS, first because the larger slice sizede.g., access link bandwidth) are freed faster.
limit the ability to use multiple streams (e.g., for a 1MB Next, we assess the influence of the access link band-
file, n = 4), and second because the larger assigned volumewidth distribution onto the protocol performance. As shown
limits the ability to ensure that all subconnections termtén  for a single flow, heterogeneous access link speeds increase
at the same time. The code-based protocol shows a simithe demand on a fine-grained volume adjustment. Here we
lar difference compared to TCP-PARIS as with large files, compare the difference in the termination time of the sub-
with 20%-35% larger download times, and a protocol with connections of TCP-PARIS to slicing protocols with 50 KB
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Figure 14. Download time for receiver-side
bottlenecks

and 1 MB slices with 2 bandwidth distribution®1 has a
uniform distribution of among 56, 128, 256, 512 kb/sec and
1 Mb/sec (avg: 480 kb/secl2 has a uniform distribution

of among 56 kb/sec and 1 Mb/sec (avg: 540 kb/sec). Fig-
ure 13 depicts the time differences on a log-scaled y-axis fo
n = 2 parallel connections. The fine-grained adjustment of
TCP-PARIS limits the time differences to 2 sec for both
distributions. The differences for a slicing protocol wit

KB exceed the differences of TCP-PARIS by almost an or-
der of magnitude. The differences wifh2 increase by a
factor of 2 compared t@1. Finally, for 1 MB slices, the
differencesincrease by another order of magnitude, and als
the difference betweehR1 andD2 increases to a factor of 4.
Thus, in accordance with the results for a single flow, these
differences of 1 MB slices significantly hinder the protocol
to achieve an efficient parallel download.

Finally, Figure 14 shows the download time distribution
for TCP-PARIS for receiver-side bottlenecks. In particula
use the small file distribution and the same bandwidth dis-
tribution, but deliberately assign clients only to slowkién
The figure, which plots the CDF of the download time of the

50 applications shows that TCP-PARIS does not decrease

the download performance when usingoarallel connec-
tions. In contrast, the download time is slightly incregsed
corresponding to results found in literature (e.g. [11]).

6 Conclusions

This paper presents TCP-PARIS, a novel protocol for
parallel download fromn replica servers to a single client.
TCP-PARIS’ integration of congestion control information

ensures a near-optimal download coordination independent

of file size and network bandwidth distributions. Protocol
simulations as well as simulations with multiple interagti
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flows using TCP-PARIS show a download time reduction

by up 52% compared to single download, and up to 52%
compared to related parallel download protocols, such as
code-based or slicing protocols.

Our implementation shows that TCP-PARIS can be inte-
grated with minor changes in the application code. These
changes are limited to the connection establishment, but th
fact that the data is received from multiple sources is hid-
den from the application. Therefore, TCP-PARIS is easily
integrated with new and legacy applications.

Finally, TCP-PARIS opens new opportunities to address
fairness and performance in parallel downloads. So far,
TCP-PARIS does not modify the rate of a subconnection
and can thereby achieve anfold throughput of a single-
flow download. In future work, we will study means to
modify the throughput of the subconnections to mitigate
performance and fairness. Such a modification is only pos-
sible with an integration of the transport layer and would
contrast current peer-to-peer fairness model that base on t
for-that fairness objectives. Moreover, we will exploieth
streaming behavior to assess TCP-PARIS’ ability to sup-
port real-time parallel downloads for multimedia content i
future work.
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