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Abstraci— Supporting Quality of Service (QoS) guarantees in wireles t0 maximize resource utilization (and minimize call blocking)

E_e_tworks requires that adm_l_ssmn contro_l glgonthms incoporate user mo- subject to the Usel’Pdrop constraint.

ility, and limit the probability that sufficient resources are unavailable
when a user must handoff. In this paper, we develop a framewd for In this paper, we develop a new framework for designing and
designing admission control algorithms in wireless netwdes that support evaluating resource allocation and admission control algorithms
guaranteed QoS. First, we devise a taxonomy to explore the rieemati- . . . . .
cal structure and practical design tradeoffs encounteredri developing ad- !N ereless .and mobile .networks that s.u.pport quality of service,
mission control algorithms. We next introduce the Perfect kiowledge Ad- and in particular, algorithms that provision resources to control
mission Control Algorithm, which, while unrealizable in practice, serves as Pirop. OUr contributions are three-fold.
a benchmark for evaluating admission control algorithms byusing future
knowledge of handoff events to exactly control the admissib region. Fi- First, we formulate a taxonomy of admission control algo-

nally, we perform an extensive set of simulations (includig trace-driven  rithms for mobile multi-service networks which reveals both

simulations) and, applying the Perfect Knowledge Algorithm, we study sev- . .
eral admission control algorithms from the literature, identify a number of the structure and the fundamental deSIQn choices encountered

key system parameters for algorithm design, and quantify tle fundamental N designing such algorithms. In particular, we first classify ad-
tradeoffs in complexity and accuracy as revealed by the taxwomy. mission control algorithms according to whether they allocate

resources via &ell-occupancyapproach or apatial mobility
approach. In the former case, a cell's occupancy statistics are
controlled with use of a flow model which characterizes the be-
Resource allocation is an important component for futurgvior of call arrivals, departures, and handoffs into and out of a
packet networks to support multimedia applications with Quadell, irrespective of a mobile user’s previous or future locations.
ity of Service (QoS) requirements. In wireless networks thgi contrast, the latter approach allocates network resources by
support user mobility, client requirements are not limited texploiting the interdependence of cell-to-cell occupancies, i.e.,
QoS parameters such as packet loss probability and minima spatial mobility of a user or group of users. We next classify
throughput, as users may also experience performance degfgorithms depending on whether or not they model user loca-
dation due to properties of the wireless channel (e.g., fraidns and mobility in aspatially uniformmanner across the net-
physical-layer channel errors) and due to user mobility fromork’s cells, thereby incorporating heterogeneity among cells.
handoffs. While sophisticated service disciplines [9], [11] arEinally, we distinguish between algorithms that control traffic
medium access techniques [2], [4] may be used to mask the o a per-user basis and those that manage resources on an ag-
mer problem, admission control must be used to address the figate per-cell basis. Using these dimensions, we describe a
ter problem [1], [3], [5], [7], [8], [10], [12], [13], [15], [1T. number of algorithms from the literature within the context of
In particular, since a mobile user may handoff to neighboringis taxonomy and illustrate several key tradeoffs in the design
cells during the lifetime of its call, network resources must hsf admission control algorithms in terms of granularity of re-
reserved even in cells other than the one in which the user wagirce control, mathematical tractability, and efficacy of accu-
admitted. Otherwise, if sufficient resources are not availablerate|y controlling the admissible region while also provisi@nin
a new cell when the mobile user must hand off, the call mugie desired quality of service.
either suffer prolonged periods of signific_antly reduced QoS O_rSecond, we introduce theerfect Knowledge Algorithm
be d_rqpped a]l toget_her. Thus, we consider a key QOS..met(WA) to serve as a benchmark for performance evaluation
provisioned via admission control to l#&,,,, the probability

that insufficient resources are available for handin of'famob@f resource reservation algorithms in mobile networks. We
. " 9 . fow that PKA, while unrealizable for on-line admission con-
user. Moreover, we consider the critical factor for evaluatlr[

. o . . ..gol, serves its benchmarking purpose by achieving the maxi-
an admission control algorithm’s effectiveness to be its abilify ., QoS-constrained admissible region of any algorithm that

, has complete knowledge of the future mobility behavior of all
This work was supported by NSF CAREER Award ANI-9733610, NEBEnt

ANI-9730104, and the Texas Advanced Technology Prograre.&lithors may eStab”S_hed (admitted) calls as well as_the new C_a" reque_Sting
be reached at http://www.ece.rice.edu/networks. admission, but as would be the case with an on-line algorithm,
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without knowledge of calls that may request admission in thige capacity of calls that depart from the network from geily
future. By comparing the admissible regions and QoS paratimet asC(x, 4,0, t).

eters obtained using a given admission control algorithm with ) ] )

those obtained by PKA, we can assess the error introduced/pySpatially Uniform Occupancy Allocation

an admission control algorithm’s approximations used for ana-An admission control algorithm which we classify as “spa-
lytical tractability, and simplifications used to limit complexitytially uniform occupancy allocation” may be described as fol-
and communication overhead. lows. First, under a spatially uniform model, users are equally
Finally, we perform an extensive set of simulation and admigkely to be located in any cell of the mobile network (or of a
sion control experiments using a two-dimensional 64-cell nefell cluster). In other words, denoting the location of the mobile

work. Using implementations of several admission control akserz at timet by L(z,t), and denoting the number of cells in
gorithms and a suite of mobility models including the traces efcluster by,

[16], we use the Perfect Knowledge Algorithm to quantify the

impact of the taxonomy’s design tradeoffs in practical scenarios. P(L(z,t) = j) = 1 (1)
. . )
Moreover, we use this framework to explore the importance of M
several design issues for admission control algorithms suchigsa| usersr and all cellsj = 1,---, M in the cluster. Notice
) ) N

the mobility model, mobility speed, heterogeneity of bandwidtlp 5t \with such uniformity of location, aggregate and per-user
demands, and call arrival rate. Our results yield insights not Oré{}Sproaches are equivalent as indicated in Figure 1.
to the key issues for designing admission control algorithms, butyyathematically, resource allocation algorithms in this class

also illustrate areas where further study is needed. For example, concerned with a cell’'s occupancy behavior. We deqgte
we find that while algorithms from the literature are successfyk 5 typical cell's occupancy at timdexpressed in bandwidth

in limiting network access to satisfy mobility QoS constraints,nits for example), which may be expressed in terms of the ag-
they can be quite conservative in certain environments SUChg"i’égate flow model of Figure 2 as

high spatial correlation of user locations (e.g., as in a “down-
town” mobility model) and low probability of handoff drop. Qt) = Z Z Cla, k,- t) — Z Z C(z,- kt) (2

keH;, kEH,,
Il. TAXONOMY OF ADMISSION CONTROL ALGORITHMS v ke v keHout

where H;,, denotes the set of cells with users handing off into
the cell (including new calls) anfl,,.; denotes the set of cells
from users flowing out, which includes call departures.

Mobile Admission Control Algorithms

Cell-Occupancy Allocation Spatial-Mobility Allocation AS an example, |f eaCh df/[ Ce”S haS the Capacity to SUp-
port C' users, each requiring capacity 1, then the probability
Uniform Non-Uniform Non-Uniform that a cell is in an overload state (and hence hand-offs are be-
ing dropped) whemV users are active in the system is given by
Aggregate Per-User Aggregate Per-User
1 1 1 1 o N N 1\" 1\ N-n
Coarse-grain Granularity of Resource Control Fine-grain P(Q(t) > C) = Z;J <n> <M> (1 — M) (3)
n=

Fig. 1. Taxonomy of Admission Control Algorithms
A key advantage of a spatially uniform occupancy approach
In this section, we introduce a taxonomy of admission coas taken in [1], [12] for example, is that it provides a framework
trol algorithms for mobile and wireless cellular networks. Wéor overcoming state-space explosion problems encounteredin a
classify algorithms along three dimensions which, while hawulti-dimensional Markov model of a mobile network, as both
ing a simple mathematical representation, have significant iper-user mobility and cell-to-cell interactions are not explicitly
plications regarding an algorithm’s computational complexitynodeled. Moreover, using the flow model as in Figure 2, this
analytical tractability, and accuracy in properly controlling thtamework can be applied to problems such as estimating the
admissible region. The taxonomy is illustrated in Figure 1 amdean overflow duration, i.e., the mean time thét) > C (as
as described in the Introduction leads to three design choiced1]), or determining an optimal capacity to set aside for guard
(2) cell occupancy vs. spatial mobility, (2) spatially uniform vschannels [12], [13].
non-uniform, and (3) aggregate vs. per-user control. Roughly, an admission control algorithm’s granularity of re-
Below, we show how this taxonomy results in five classes sburce control is affected by the available information (whether
admission control algorithms for mobile networks. Throughouateasured, communicated by other cells, specified by users, etc.)
the discussion, we denot&(z, j, k, t) as thecumulativecapac- so that the order of the algorithmic complexity can be expected
ity handed off from cellj to cell £ in the intervall0, ¢] from user to increase with the amount of information processed. The spa-
x. For simplicity of notation, denot€'(x, 0, k, t) as the capac- tially uniform occupancy allocation approach can be character-
ity in cell k£ used by user: which originated its call in celk. ized as in Equation (3), with a probability distribution vector of
Hence, if user’s call request originates in a cell other than sizeC. Since this is the same for all cells, we can say that the
thenC(z,0,k,t) = 0 for all ¢. Similarly, denote the cumula- information granularity of resource control is of order
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Fig. 2. Cell Occupancy vs. User Mobility Model

Hence, spatially uniform occupancy allocation is both conspatial non-uniformity of user locality using a set of simulation
putationally simple for on-line resource allocation as well as aexperiments that include mobile users with non-uniformly dis-
alytically tractable by treating mobile users on an aggregate ldbuted destinations.
sis and assuming spatially uniform user occupancy. In Section ) ) .

IV, we consider the impact of such a coarse-grained approdeh SPatially Non-Uniform Per-User Occupancy Allocation

on an admission control algorithm’s accuracy. In contrast to the classes above, a spatially non-uniform per-
) ) ) user occupancy allocation scheme controls network resources

B. Spatially Non-Uniform Aggregate Occupancy Allocation  5ccqrding to individual user's occupancy characteristics.

An admission control algorithm which allocates resources in Thus, in this class of admission control algorithms, each user
a spatially non-uniform manner according to the aggregate ligs an associated steady-state per-cell occupancy density func-
havior of the mobile users differs from the aforementioned afion given by
proach in that different cells may have different occupancy char-

acteristics. In particular, the occupancy of cglat timet is f@j,e) = zrlgnoo
given by >r, (EkEHljn Clekdt)=Lpeni c(z,j,k,t)> ©)
Q(J’ t) = Z Z C(;L’, k, 3, t) - Z Z C(CL’,j, k, t) i1 iz (Ekern C(w7k7i7t)_z’“EHéut C(w7i’k’t)>

T keHin,; T k€Hours By incorporating each user’'s occupancy densiiiés, j, c)

(4) into an admission control algorithm, resources may potentially

While cells need not have the same occupancy statistics,b%more accurately allocated than in an aggregate approach. The

. . . . ’spatially non-uniform per-user occupancy approach associates a
this class of admission control algorithms, cell occupancies i y P pancy app

neighboring cells are assumed to be uncorrelated. In particuPaerr'CeII occupancy density with each user as in Equation (6). In

. . : . paftticular, the size of information content in this case would be

in a cell-occupancy approach, the spatial covariance functio . .
. of orderN - M for N active users in ai/-cell network. How-

approximated as zero such that

ever, such an approach also raises the question of how to obtain
Ve (4, k) = EQ(j, )k, t) — EQ(j, ) EQ(k, 1) ~ 0,5 # k. each user'sf(z, j, ¢) in practice as well as how to determine
(5) Py,.,p from these distributions.

In [17] an algorithm in this class is proposed in which this
Here, we make the distinction between “occupancy” approachiesue is addressed by having a user specify the set of cells that
versus “mobility” approaches according to whether the algé-expects to occupy during its connection lifetime as part of its
rithm incorporates thigorrelation among occupancies in dif- traffic specification. In other words, at connection set-up time,
ferent cells, i.e., whethep, (5, k) =~ 0, for j # k. users requiring QoS support must always specify their desired

Thus, algorithms in this class have more fine grain resour@Q@S parameters as well as their future bandwidth demands usu-
control than in the uniform case, and can explicitly address tally in the form of a maximum average rate and a maximum
issue of spatial “hot spots”, such as that which might arise indarst size. In [17], this specification is augmented with a set
cellular network with a downtown, for example. This class dff cells A, that userz will occupy such that if uset requires
algorithms therefore increases the order of the size of the infoapacityc, the occupancy distributions are given by
mation content tal/ - C' as each cell maintains its own proba- 1 .

d L : (r>0) j&A.
bility distribution vector for the occupancy. An example of an F(z,j,r) = { 1r>c¢) jeA
admission control algorithm in this class is found in [3] where a “
decoupling-of-states approach is introduced to address the statieere 1(-) is an indicator function. Hence, with the use af
space explosion problems incurred in Markov modeling of cgdriori user mobility profiles, [17] performs admission control
lular networks. In Section IV, we further address the issue o$ing spatially non-uniform per-user occupancy allocation.

(7)



D. Aggregate Mobility Allocation analytical tractability in specifying and manipulating such de-
The following two classes of admission control algorithmta”ed.user profiles, and in computing the relevant QoS parame-
ers given these profiles.

usemobility allocationand differ from the occupancy alloca- . u "
tion schemes in that the temporal and spatial correlation of aWe classify the "shadow cluster” approach of [7] as employ

; . . . . 7. "Ing per-user mobility allocation. In [7], the complexity issues
user’s locations or a group of users’ locations over time is ex-

plicitly addressed. We refer to algorithms which account foencountered in this class of admission control algorithms are ad-

such cell-to-cell interactions as employing “mobility allocationprress.ed with a m_easurerPen'_[-based _approach.. !n p?rucglar, each
such that the spatial occupancy covariance may be non zero H%?r IS characterized by “active mobile probabllljtles which are
w(j, k) # 0 for somet, j, andk. More generally, a character-2 aptive and measurement-based versior$ @f, j, k, s, ¢) SO

ization of aggregate mobility behavior can be described b thheatanew mobile useris admitted only if a set of test&fondi-
distributionggasg y Y T&te that a new mobile call has sufficient probability of surviving

for the duration of its call without encountering a hand-off drop.
. ) While state-space explosion issues are largely avoided with this
P - Q " . o
(Z{C(w’J’k’t-'_ 8) = Cla, g, b, 1)} < C 19, approach, additional computational and communication over-
heads are encountered, as neighboring base-stations must dy-
namically adjust and communicate the active mobile probabili-

so thatG is the distribution of the capacity of all handoffs fromt les of each user.

cell j to k over intervals of lengtls given the network’s current ] )
occupancy. Hence, an admission control algorithm in the aggfe-Discussion

gate mobility class requires a model or measurement scheme fah summary, with design decisions trading coarse to fine grain
determiningG (4, k, s, ¢) and a mechanism for estimatid®,,, resource control for algorithmic scalability and simplicity, the
from theG'’s. above taxonomy can be viewed largely in terms of aggregation
While this occupancy vs. mobility distinction is quite sim-and heterogeneity. In particular, the above taxonomy distin-
ple conceptually, it has significant implications in the design gluishes among algorithms according to their aggregation prop-
admission control algorithms: for example, explicit modeling adrties, namely (1) whether handoffs into a cell from neighboring
cell-to-cell interactions using a multi-dimensional Markov chaioell are aggregated into an occupancy model (irrespective of the
results in a state space explosion [3]. Approaches to addressiaiading-off cell) or treated individually according to a mobil-
issue include [14], in which the asymptotic regions of very sloiwy model which accounts for their previous locations; and (2)
and very fast mobility are considered. whether users (handing off or occupying a cell) are treated indi-
Thus, this class of admission control algorithms is the firgtdually or on an aggregate per cell basis. Second heterogeneity
under our taxonomy to explicitly address cell-to-cell mobilityalso plays a key role in that the taxonomy distinguishes among
Consequently, such algorithms must address how to model ahgorithms according to whether they exploit spatial heterogene-
characterize the cell-to-cell correlation via #€j, k, s, ¢) dis- ity (as in a non-uniform approach) and whether they exploit user
tribution, and require an increased granularity of information tieterogeneity (as in a per-user approach).
M?.C-T, whereT is the average call holding time in dd-cell In general, with a more fine grain approach, state-space ex-
network, expressed in time slots. plosion and analytical complexity issues become more press-
ing, and we have described a number of techniques that have
been proposed to address these issues including decoupling of
states, mobility traffic descriptors, asymptotic approximations,
As the name implies, per-user mobility allocation differs frorand measurement-based approaches. In Figure 1's illustration
the scheme above in that each user has a mobility préfile of the taxonomy, algorithm granularity is increasing from left to
given by right as

xT€j
l:]_,"',M):G(j,k,S,C) (8)

E. Per-User Mobility Allocation

2 2
P(Cla,ji bt +3) = Cla,g,kt) < C'| Lz, 1) €< MO WAL < AT < M

= H(z,j,k,s,c) (9) inanM-cell network for/V active users with mean call holding
time 7', cell capacityC', and assumingv ~ M C'. To illustrate
which describes the distributions of the user’s future locatiotl¥s granularity tradeoff using a scenario from Section IV with
and handoffs given its current location (or more generally, i€ ~ 40, M ~ 64, N ~ 2560,T ~ 10, we have
past locations as well).

An admission control algorithm using such per-user, spatially
non-uniform mobility characterizations employs the most fin&/hile aggregation simplifies resource managementtasks, it may
grain resource control of the classes within the taxonomy, aimroducecostsin terms of accuracy, i.e., the ability of an algo-
has information content of ordé¥ A/2T. Such fine-grain con- rithm to maximally utilize resources while also satisfying user’s
trol has potential benefits to an algorithm’s accuracy, but eQoS constraints. We attempt to quantify such costs using the
counters formidable problems of computational complexity ariBerfect Knowledge Algorithm” which we develop next.

40 < 2,560 < 163,840 < 1,638,400 < 104, 857, 600



I1l. PERFECFKNOWLEDGE ALGORITHM Procedure PKA (user x, profile P, timey, Q0SPy,0p) {
1. if (Cu[P[x].cell[to]][ to]+P[x].bw > C[P[x].cell[to]]) {
BLOCK(x);

return;

In this section, we introduce theerfect-Knowledge Algo- 5
rithm (PKA) to serve as a performance benchmark for admissiorb'
control algorithms in mobile multi-service networks. In partic 4
ular, one may view an admission control algorithm as making
a sequence of admission decisions upon the arrival of each ca@'
request, and, as described in Section II, admitting or rejecting7'
each call according to some resource reservation scheme. Iéf
evaluating the performance of a particular admission control al-™
gorithm, one must assess its effectiveness in making correct aqj
mission decisions, that is, whether the algorithm properly lim- "

newdrops=0; newhandoffs=0;
for (n=0; n< P[x].numhandoffs; n++]
newhandoffs++;
for (t=P[x].handofftime[n];
t < P[x].handofftime[n]+P[x].tresid; t++]
zone=P[x].cell[t];

ited the handoff dropping probability to below the targtt., 10. i (.Cu[_z_one]ﬂ+P[x].bv_v> Clzonel)
L ; ) o 11. if (t==P[x].handofftime[n]}
and whether it did so while maximally utilizing network re- DROP(X):
sources, admitting as many calls as possible subject to the Qog' o
: . newdrops++;
constraint. 14 break;  /*Goto line 23*/
Towards this end, we devise PKA, which, while unrealizt 15' } '

6. else if (NumHandoffs[P[x].cell[t]][t] > 0) {

7. DROP(HandOffUser[zone][t]
[Num_HandOff[zone][t]]);

Update(newdrops,newhandoffs);

knowledge of future handoff events to assure that the maximal
admissible region is obtained while satisfying tRg.,, con-
straint. Thus, we can evaluate the performance and effectiven BSS
of a practical on-line admission control algorithm by comparing 19' )
utilization and QoS values obtained by a certain algorithm Wil]hzo' }
those obtained using the idealized PKA. 21' )

The Perfect Knowledge Algorithm operates under the follow- " _
ing three assumptions when performing an admission cont 0122' fracdroptp?dL;] (to(tjat:froEs +\Ar;]em%rof|f3 S)_/
test for a call arriving at timé: (A1) Characteristics of calls ar- 23 Comput(ec()BaLossnB(()B;n)'ne andoffs);
riving at timesu > ¢ arenotknown; (A2) If the call is deemed 24' if ((frac;dropped<' P )’AND (BLoss < BGain)){
admissible at time, it must be admitted and the decision canngt 25' ADMIT(): = ~drop
be reversed; (A3) Future handoffs of the new call and all estab-26' totaLdrops’ += newdrops:
lished callsare known. Assumption (A1) and (A2) make PKA 27' totalhandoffs += ne\Ahar’1doffS'
analogous to an on-line admission control algorithm since n28' Update(Cu): '
both cases, future call requests are not known. With assumpt 059' } '
(A3), PKA differs from on-line algorithms in that (A3) allows 30' else BLOCK():
PKA to obtain an idealized admissible region using knowledgesl' return: '
of future handoff events. ' '

The goal of PKA is to maximize a cellular network’s aver }
age utilization[/, while satisfying the empirical QoS constraint Fig. 3. Perfect Knowledge Algorithm
ﬁdmp. Specifically,U is defined as the fraction of available ca-
pacity used over time, averaged over all cells

able in practice, serves its benchmarking purpose by exploiti 1%

to. The user has QoS requiremdny.,, and mobility profile

SM ST LG, t) P[z] which specifies user's hand-off pattern and cell residence
U==2tmm (10) times through the lifetime of the call. As indicated in Line 1,
T Zj:l &) PKA first checks that sufficient spare capacity is available in the

cell of call initiation atty, and if not, uset: is blocked (Line 2).

WhereQu_(],t) denqtes the cap_aC|_ty ut|I|zed_|n cgllat tmet Otherwise, subsequent time slots up to the call termination time
andC(y) is the available capacity in cell Notice thatC (5, ) e tested for overload (Lines 6-21). If at any time> ¢, in

is determined by the set of users which have been adm'ttecwﬂich userz makes a handoff attempt sufficient capacity is not

the network. The empirical dropping probability is defined : : ) : .
the fraction of handoffs dropped through timend is given by ai’}i':]aet\),:fd%g] s?: ii?:r]e.:rl-rz’e?]fee:jlsb(;/atl)lnve\zm(lLti)r? edlr%)ped (Line 12)

Narops(t) If admitted, user: may induce handoff drops on other users
N (1) in addition to possibly being dropped itself. Such a scenario is
considered in Lines 16-19 and all such drops are tallied in Line
where Nurops(t) is the number of failed handoff attempts, and8. Note thanewdropsandnewhandoffsmay not only be in-
Nhandoridt) is the total number of handoff attempts by time  cremented when user induces a drop, but alsdecremented
PKA, presented in pseudo-code in Figure 3, is invoked wharhen user:’s admission prevents a drop as a consequence of an
a new user requests admission to the cellular network at timearlier induced drop on another user. In Line 22, the empirical

ﬁdro t) =
p( ) Nhandoﬁ$t)



drop probability, denoteftac_dropped is computed as the frac- IV. PERFORMANCE STUDY OF MOBILE ADMISSION
tion of handoff requests dropped (possibly includingself) if CONTROL

userz is admitted. Next, in Line 23 PKA comput&sain, the
gain in bandwidth utilization if uset is admitted, andBLoss
the loss in bandwidth utilization due to drops induced by a
mitting userz. Note that admitting an additional user does n?rE
necessarily increase average utilization(asj, t) may be ad-
versely affected from induced handoff drops. Finally, usés
admitted (Line 25) iffrac_droppedwill remain within the QoS
requiremeniP,.,,, and if there is a net gain in utilization from
admitting the user, i.eBGain > BLoss(Line 24). Otherwise,
userz is blocked (Line 30).

Result: PKA maximizes average utilizatioti subject to as-
sumptions (A1)-(A3), while satisfying

In this section, we use an extensive set of simulation exper-
gpents to study admission control and resource allocation in
obile multi-service networks. We first illustrate the use of
e Perfect-Knowledge Algorithm as a benchmark for the de-
sign and evaluation of admission control algorithms: we study
a number of algorithms from the literature by exploring their
ability to control the admissible region relative to PKA. We also
use this study to illustrate key performance tradeoffs encoun-
tered relative to the algorithm taxonomy presented in Section
II. Finally, we consider several system parameters such as the
user mobility model, speed of the mobile units, and traffic het-
erogeneity. We study the impact of such parameters on both the
idealized PKA as well as on the performance of on-line admis-
sion control algorithms. The results of our study provide in-
sights into the admission control design considerations of great-
est impact and point to aspects of admission control algorithms
requiring further study.

Our simulation scenario as described below uses a two-

terminates or is dropped, which ever occurs first. Denote tflinensional cellular network with heterogeneous traffic sources

set of such conflicting users By. It is possible that because o@nd a diverse set of mobility models, including real-time mobil-
usery being dropped at timé,, a userz that would have been ity traces [16].

dropped at time’,, would be able to avoid being dropped up to
timet” > t’. Denote the set of such users By

Let H(z) denote the number of handoff attempts of user
during its call holding time, andi, the number of successful
handoffs such that if useris not droppedH, is equal toH (x).
Let ty,+1 denote the time when useris dropped or when its
call terminates. Then PKA admits useif:

(CL) (trgt1 —to) - ba+ Y (H1 —1) b > Y (ty —ty) - by

z2€Z yey

ﬁdrop(t) S Pdrop Vi

Proof: Let t, denote the time that user initiates a call,t;,
the time that it hands off for thith time, and,, its bandwidth
demand. Le't’y denote the time that usercomes in conflict
with usery, andt; > t; denote the time at which usgis call

Y

cell boundary

v

4 4 a —

Nrops(t)+newdropg)
Nhandoftdt)-+newhandoffge)

5 sb

(CZ) S Pdropv vt

VvV vy

Therefore, at timé&,, when an admission decision about user \\f \\f \U

x is made, condition (C1) ensures that bandwidth utilization is

maximized subject to the QoS constraint (02). Fig. 4. Cellular topology
Thus, PKA can serve as a benchmark for evaluating the per-

formance of on-line admission control algorithms by comparing

their admissible regions with the maximal region obtained by, Network Topology and Traffic Model

the idealized Perfect-Knowledge Algorithm. our simulated network ists of 64 cells located i i
For a given set of admission control decisions, we define an ur simulated network consists ot 64 cells located in a rectan-

on-line admission control algorithm’s PK&rror Indexas gular grid as depicted in Figure 4. Each cell has four neighbors,
so that handoffs take place only between cells sharing an edge,

and not just a vertex. The network wraps around such that, for
example, a hand-off to the east of cell 63 wraps to cell 56. Each
cell has capacity to support 40 Bandwidth Units (BUs).

to reflect the utilization error of the on-line algorithm, i.e., PElI Mobile calls originate from a uniformly random location at
represents the difference in the admission decisions betweeRoisson rate of 1 call per minute per cell. Traffic demands
PKA and the on-line algorithm scaled to utilization. In Sectiononsist of four classes requiring 1, 2, 4, and 8 BUs. The respec-
IV, we study a number of on-line admission control algorithntsse probability that a new call belongs to one of these classes
under a diverse set of mobility models using PKA and the PKi& 0.5, 0.3, 0.1 and 0.1. Unless otherwise noted, time is slotted
Error Index. to 1 minute and calls have a geometrically distributed duration

PE| = Unc — Upka (12)
Upka
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Fig. 5. Cell-occupancy vs. Spatial-mobility distribution
80 ‘ R R —— calls with higher bandwidth demands than a voice call. Further
0F T et details of these models may be found in [6].
60 1 .
5 K’/ B. lllustration of PKA Benchmark and Taxonomy
gso 1 . . . . oy
% The goal of a call admission control algorithm is to utilize
g“o available resources as efficiently as possible such that the QoS
© 30 1 demand is satisfied. To evaluate the performance of admission
[
® ool t=12t=8 |l control algorithms, we compare their performance with that of
T {enods PKA, which achieves a maximal admissible region while main-
107 h_ T_ H . . .
--- §F124=16 taining the required;,..,. The PKA Error Index (PEI), as pro-
'3
% 0005 0oL o0ols o002 ooz posed in Section Ill, can be used as a measure of accuracy of
Pdrop an admission control algorithm. We consider two admission

control algorithms representative of two classes of our taxon-
omy: cell-occupancy ([1]), and spatial mobility ([7]). Figure
5(a) shows the average bandwidth utilization of the two algo-

with mean 12 minutes; cell residence time is geometrically digthms, and also of PKA. Notice that the two online admis-
tributed with mean 12 minutes. Simulations are performed f&ion control algorithms, representing two fundamentally differ-
6 hours of simulation time with a large number of call arrival§nt classes of the taxonomy, are conservative, particularly for
departures, and handoff attempts. In each plot, 95% confidelR¥ Farop- It may be noted that while PKA assumes knowledge

intervals are within 2 bandwidth units or 5% utilization, and ar@f the complete profile of a user, the two online algorithms use
not shown. only the mobility/occupancy distributions. The PEI vBy,..,

In order to study the impact of user mobility patterns on ¢ lot in Fig_ure 5(b) suggests that i, < 0.01, the two on-

pacity allocation, we use the following five mobility models i ine algorithms are almost 10% to 25(_)/9 more cqnservatlve as

our simulations: (LMultihop random at each handoff the usercompared to the PKA. The spatial-mobility allocation converges
o the PKA performance faPy,.,, > 0.0025, and outperforms

is equally likely to move in each of four possible directionsfh I I on b o h q
(2) Hierarchical highway the cellular network has an overlayin€ cell-occupancy allocation by 20% on the PKA Error Index,

of “highways”, or a set of mobility patterns that users are mo'Lu_'\ustrating the potential accuracy gains of finer granularity of
likely to follow, with H1 indicating major highways and H2 in- resource control.

dicating less popular roads. (Bestination modelusers move
toward a uniformly random location chosen when the call is i
tiated; the probability of handing off in a particular direction Among the system parameters to be considered for designing
is weighted according to the shortest path to the destinatiomobile admission control algorithms are the mean call holding

(4) Downtown modelthe four contiguous cells 0, 7, 56, andduration, the mean cell residence time (which is related to the
63 are regarded as a downtown area, and mobile users are highed of mobility of the users), the new call arrival rate, the mo-

likely to have a destination within this area. @&al-time mobil- bility pattern (which determines the correlation in the occupancy

ity traces users move according to traces of the San Francidewels of neighboring cells), and the heterogeneity of the usersin
Bay Area (voice) cellular network [16]. In this case, we use tldemanding different classes of services requiring different band-
actual Bay Area cellular network topology rather than that efidths. Below, we use the simulation set-up described in Sec-
Figure 4, and in the experiments, modify the traces to inclutlen IV-A, and, unless otherwise noted, we assume a destination

Fig. 6. Impact of mobility speed (or cell residence time)

nE' Design Issues for Admission Control
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Fig. 8. Impact of call arrival rate

model with geometrically distributed call holding duration andtilization remains nearly the same. Spatial mobility alloca-
cell residence time, with a mean of 12 minutes for both. tion and PKA also exhibit similar trends, indicating that for a
To investigate the impact of thmobility speedwe generate new call arrival rate above a certain threshold, the average band-
several traces varying the mean cell residence tinfeom 8 to  width utilization does not increase, while the blocking probabil-
16 minutes (keeping the mean call holding timethe same at ity does.
12 minutes). Figure 6 shows the average bandwidth utilizationln the experiments described in Figure 9, we investigate the
versusPy,., for the spatial mobility allocation. Observe thaimpact of themobility patternusing the traffic models described
with increasing,., the utilization is higher for the sam@;,.,,. in Section IV-A. Figure 9 illustrates how the average bandwidth
Thus, for higher speed of mobile users, the utilization decreasetilization depends on the mobility pattern. It shows that the av-
We vary the meawall holding timet;, from 8 to 16 minutes erage bandwidth utilization for the downtown model is almost
(keeping the mean cell residence timeat 12 minutes). From 20% higher than for other models. The destination model mobil-
Figure 7(a), observe that the average bandwidth utilizationiig pattern also decreases utilization by 4% to 5% as compared
almost the same for the range of the call holding time consit®the highway and the random hop mobility models. Thus, we
ered. Thus, it depends only on the mean cell residence time, &ad conclude that the mobility pattern is an important issue in
not the call holding time. However, Figure 7(b) indicates th#ne design of admission control algorithms as it reflects the im-
with longer duration of the calls, the number of calls blocke@ortance of the systems’ spatial correlation structure.
increases without affecting the utilization, implying that the rate To investigate the impact of theeterogeneityf the traffic,
of handoff is far more important than the cumulative number ofe vary the variance of the bandwidth demanded per call while
handoffs. keeping the mean bandwidth per call the same. From Figure
To investigate the impact of thaall arrival rate, we perform 10, observe that with increased heterogeneity of the traffic, the
simulations with cell-occupancy allocation by varying the ca#iverage bandwidth utilization decreases significantly.
arrival rate from 0.68 calls/cell/minute to 1.16 calls/cell/minute. Finally, Figure 11 shows the results for trace-driven simula-
From Figure 8, observe that an increased call arrival rate ns using real-time mobility traces. We observe that both al-
creases the blocking probability, while the average bandwidibrithms are again conservative for smal,..,, although the



spatial-mobility allocation algorithm converges to PKAs uti-
lization. Moreover, the spatial mobility allocation outperforms
the cell-occupancy allocation.
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V. CONCLUSIONS

In this paper, we first devised a taxonomy of admission cofjp;
trol algorithms to explore the structure and design issues en-
countered in algorithm design, and together with simulation X
periments, we quantified the fundamental tradeoffs between aA
admission control algorithm’s accuracy and granularity of re-
source control. We next designed a Perfect Knowledge Admi¥
sion Control Algorithm and showed how it exactly controls the
admissible region to serve as an ideal benchmark for evaluagl
ing practical on-line algorithms. Finally, we performed an ex-
tensive simulation study using a suite of mobility models angs)
traces. We applied the taxonomy and PKA and explored a num-

e R 15
ber of admission control design issues. We found for examp[le,
that algorithms from the literature can be quite conservative|irs)
certain environments such as high spatial correlation of userilo-
cations (such as in a “downtown” mobility model) and stringe Jt7]
QoS constraints on the probability of handoff drop. Our study
thus serves as a framework for designing admission control al-
gorithms that support guaranteed quality of service in wireless
and mobile networks.
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Fig. 11. Real-time mobility trace simulation
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