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Abstract

In networks that support Quality of Service (QoS), an admission control algorithm determines whether or not a new
traffic flow can be admitted to the network such that all users will receive their required performance. Such an algorithm is
a key component of future multi-service networks as it determines the extent to which network resources are utilized and
whether the promised QoS parameters are actually delivered. Our goals in this paper are threefold. First, we describe and
classify a broad set of proposed admission control algorithms. Second, we evaluate theaccuracyof these algorithms via
experiments using both on-off sources and long traces of compressed video; we compare the admissible regions and QoS
parameters predicted by our implementations of the algorithms with those obtained from trace-driven simulations. Finally,
we identify the key aspects of an admission control algorithm necessary for achieving a high degree of accuracy and hence
a high statistical multiplexing gain.

1 Introduction

Provisioning network resources to meet the Quality of Service (QoS) demands of bursty traffic sources is a key issue for
future multi-service networks. Such resource provisioning may be realized by an admission control algorithm, which has
the function of limiting the number of traffic flows in a class such thatthe required QoS constraints can be satisfied. The
design of admission control algorithms has important consequences for network performance, as an algorithm that unnec-
essarily denies access to flows that could have been successfully admitted will under-utilize network resources; similarly,
an algorithm that incorrectly admits too many flows will induce QoS violations.

Unlike a deterministic service [2], a statistical or soft real-time service associates a smallviolation probability with de-
lay and throughput bounds, as needed to obtain a utilization gain over a purely worst case approach. Developing resource
allocation schemes for a statistical service has proven particularly challenging due to both the multiple-time-scale character-
istics of many multimedia applications, e.g., [3, 4, 5], as well as potential intractabilities arising from complex interactions
among traffic flows and the shared multiplexer.

Our goals in this paper are threefold. First, we describe a broad set of admission control algorithms from the literature
which we divide into the following five classes: (1) tests based on average and peak rate combinatorics [6, 7], (2) tests based
on additive effective bandwidths [8, 9, 10, 11], (3) tests based on engineering the “loss curve” [12, 13, 14, 15], (4) tests
based on maximum variance approaches [16, 17, 18], and (5) tests based on refinements of effective bandwidths using large
deviations theory.

Second, we perform a large number of experiments to evaluate the accuracy andeffectiveness of these admission control
algorithms under realistic workloads, namely, thirty-minute traces of variable-rate MPEG-compressed video and exponen-
tial on-off sources commonly used to model voice traffic. To achieve this,we first implement a number of algorithms from
the aforementioned classes and determine their respective admissible regions for various traffic mixes and QoS parameters.
We then simulate a 45 Mbps multiplexer servicing the same traffic mix,with each flow’s arrival sequence given by either
a video trace with a random start time, or an on-off source. For each combination of traffic flows and a particular buffer
size, we measure the flows’ resulting performance parameters. By comparing the measured admissible regions with those
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predicted by the algorithms, we assess an algorithm’saccuracy, i.e., its effectiveness in predicting QoS parameters and
controlling the admissible region.

Finally, from our experimental results, we identify the components of an admission control test essential to achieving a
high degree of accuracy and find that (1) the assumption of a bufferless multiplexer has a significant utilization penalty, (2)
an algorithm must exhibit economies of scale in the number of multiplexed flows, (3) observed shapes of the “loss curve”
can be quite different than the commonly assumed exponential relationship, (4) the traffic model, or parameters used to
describe the properties of traffic flows to the network, requires more information than is currently standardized, and (5) an
algorithm’s accuracy with exponential on-off sources does not assure accuracy with bursty compressed-video sources.

In addition to the above classes of admission control algorithms, several other approaches have been developed, including
measurement-based algorithms which control the admissible region basedon aggregate traffic measurements [19, 20, 21,
22], enforceable statistical services which provision resources based on worst-case statistics of policed traffic flows [23, 24,
25] and algorithms for special-purpose systems such as video on demand [26, 27]. While review of such schemes is beyond
the scope of this paper, we note that many of these approaches build on thetheories and techniques which wedo consider,
so that our conclusions may provide guidelines for evaluating these schemes as well.

The remainder of this paper is organized as follows. First, in Section 2, we overview five classes of admission control
algorithms. Next, in Section 3, we describe experimental results obtained from trace-driven simulations and our implemen-
tations of the admission control algorithms. Finally, in Section 4,we discuss the aspects of an algorithm most critical for
achieving a high degree of accuracy, and in Section 5, we conclude.

2 Admission Control Tests for Statistical Service

In this section, we describe five classes of admission control tests that have been proposed for providing statistical QoS
guarantees in multi-service networks. While these classes do not encompassall proposed schemes, they do provide broad
coverage of the techniques applied to admission control. For QoS metrics,we consider two variations of what is commonly
referred to as “loss probability”. First, we denote the “tail probability” of the queue length distribution byP (Q > B), which
refers to the fraction of time an infinite-buffer queue’s occupancy exceedsB. Second, we denote the “loss probability” by
P

l

, which refers to the fraction of bits dropped by a queue that has finite buffer spaceB.
Throughout, we denote the link capacity byC and the buffer size byB, and denote the arrivals of traffic flowj in the

interval[s; t] byA
j

[s; t].

2.1 Average/Peak Rate Combinatorics

In [7], sourcej is characterized by its peak rater
pk;j

and average rater
av;j

. Assuming an on-off source that either transmits
at its peak rate or is idle, the probability that the source ison is given byp

on;j

= r

av;j

=r

pk;j

and its rate distribution is given
by

f

j

(x) =

8

<

:

1� p

on;j

x = 0

p

on;j

x = r

pk;j

0 otherwise.
(1)

Using this rate distribution, an admission control algorithm is designed that approximates the packet loss probability for a
bufferless multiplexer: in a bufferless multiplexer, packet loss occurs whenever the aggregate input arrival rate exceeds the
link capacity. Since the distribution of the aggregate arrival rate of the multiplexed sources is given by a convolution of the
individualf

j

(x)’s, Lee et al. focus on efficient computation of the aggregate arrival rate distribution and subsequently the
loss probability [7].

In [6], traffic flow j is also characterized by its peak and average rate. In contrast to [7] in whichr

av;j

represents the
long-term average rate, in [6] it refers to the worst-case rate over any interval of lengthI

j

. That is, sourcej is constrained
to send no more thanr

av;j

� I

j

packets during any interval of lengthI
j

(changing [6]’s notation for consistency). For
Earliest Deadline First schedulers, Ferrari shows how to compute the probability of delay-bound violation by examining
combinations of active flows (flows which areon with probabilityp

on;j

) that may cause a delay-bound violation, and by
summing their respective probabilities.

In this paper, we evaluate the test of [7], which we refer to as the “Avg/Peak” test.

2



2.2 Additive Effective Bandwidths

Variouseffective bandwidthadmission control tests have been proposed in the literature including [8, 9, 10, 11]. In such
schemes, each flow independently reserves a particular bandwidth between its average and peak rate. This bandwidth,
termedeffective bandwidth, is a function of the required loss probabilityP

l

and the particular flow’s stochastic properties
(such as autocorrelation function, or peak and average rate together with mean burst duration). Once the effective bandwidth
of flow j is determined, which we denote byE

j

(P

l

) (or equivalentlyE
j

(P (Q > B))), the admission control test requires
that

N

X

j=1

E

j

(P

l

) < C; (2)

whereN is the number of multiplexed flows. Effective-bandwidth type results have been devised using several inter-related
techniques, including eigenvalue decomposition of Markovian flows [9],large deviations theory [8, 11], and the theory of
envelope processes [28].

For example, [29] shows how the buffer occupancy distribution for Markov modulated fluid sources can be decomposed
according to the eigenvalues of the aggregate Markovian arrival process. Since the overall tail probabilityP (Q > B) or loss
probabilityP

l

may be expressed as a sum of exponential terms, the largest eigenvalue, whichwe denote by�, dominates
with asymptotically large buffers. In other words, it has been found that the loss probability or (tail probability) satisfies the
following relationship for some constantK

P

l

� Ke

��B

; (3)

where the similarity relationshipf(x) � g(x) of two functionsf(�) andg(�) indicates thatlim
x!1

f(x)=g(x) = 1. In the
additive effective bandwidth literature, the pretermK is approximated by1 1, orP

l

� e

��B . The admission control test
amounts to ensuring that� (the dominant eigenvalue) is large enough to meet the required loss probability constraint. For
example, for on-off sources, the effective bandwidth can be computed using Equation (2) of [10].

Here, we evaluate the effective bandwidth test of [8] which has

E

j

(P

l

) = r

av;j

+

�

j

2B

(4)

where



j

= lim

t!1

1

t

var(A
j

[0; t]) (5)

is the arrival sequence’s index of dispersion and� = �

log(P

l

)

B

.
Note that the effective bandwidth of a flow is independent of the properties of all other traffic flows as well as the number

of sourcesN and the link capacityC: it is determined only by the stochastic properties of the flow itself,the required loss
probabilityP

l

, and the buffer sizeB.

2.3 Engineering the “Loss Curve”

We refer to aloss curveas the relationship between loss probability and buffer size, which, for additive effective bandwidths
is exponential and given byP

l

� e

��B . As thee��B approximation can be conservative for reasons outlined below, several
techniques have been proposed which seek to engineer the shape of the loss curve to better reflect experimentally observed
relationships.

The approach in [15] stems from a simple observation based on the authors’ work in video modeling [30, 31, 32].
When the input traffic is highly correlated as in the case of JPEG-encoded video, a quasi-stationary approximation, called
the histogram model [32] (or generalized histogram model [31, 33]) was found to be quite accurate becauseP

l

does not
significantly decrease whenB is increased beyond a certain range (referred to as thecell region). However, when applying
the histogram model to other less correlated sources, it was found that themodel could not predict the loss behavior well
for large buffer sizes. To overcome this difficulty, in [15], the authors use the histogram model for the cell region (small
buffers), and a single exponential approximation for the burst region (large buffers), with the cutoff point found by equating
the slopes of the two regions. This approach, which we refer to as the “hybrid scheme” can be used when the arrival process
is modeled as a general Markov modulated arrival process, and in the specific case of the Markov modulatedfluid source,P

l

is expressed by a single exponential as in Equation (3). For example, for an aggregate Markov modulated Fluid source with

1While the pretermK is different for tail and loss probability, since effectivebandwidth approximatesK by 1, it does not distinguish between the two.
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mean arrival rate�, stationary probability�
i

of being in statei, and arrival rate�
i

corresponding to statei, the probability
of loss is given by:

P

l

=

1

�

X

i

�

i

>C

�

i

�

i

�

1�

C

�

i

�

e

��B

: (6)

In [14], Elwalid et al. observed that for Markov modulated fluid sources, the loss curve approximation of Equation (3)
could be improved by approximating the asymptotic constantK by the loss probability in a bufferless multiplexer as
estimated by Chernoff’s theorem, and using� as the same dominant eigenvalue for Markovian sources as in the effective
bandwidth result. In particular, denotingR

j

as a random variable with the steady-state rate distribution of sourcej (e.g.,
R

j

’s distribution is given by Equation (1) for on-off sources),K is given by2

K = K

0

exp

0

@

� sup

s�0

fsC �

X

j

logEe

sR

j

g

1

A

; (7)

whereK 0 is a further refining term given by Equation (55) of [14].K 0 is based on Bahadhur Rao asymptotics and we
include it in our implementation of this approach.

Consequently, sinceK can in practice be substantially less than 1 (its approximated value for additive effective band-
widths), algorithms utilizing this term can have improved accuracy as compared to effective bandwidth tests.

2.4 Maximum Variance Based Approaches

We classify the next group of admission control algorithms as Maximum Variance (MV) Approaches. DefiningX
t

as

X

t

=

X

j

A

j

[s� t; s]� Ct; (8)

the tail probability is given by [34]

P (Q > B) = P

�

sup

t�0

X

t

> B

�

: (9)

MV approaches are based on the observation that ifX

t

is Gaussian, one can derive accurate bounds and approximations
to the right hand side of Equation (9). AsX

t

is composed of the aggregate arrivals from a large number of sources, this may
be a reasonable assumption in high-speed networks. For GaussianX

t

, the normalized maximum variance ofX
t

, given by

�

2

B

= max

t

varfX
t

g

(B �E(X

t

))

2

; (10)

plays an important role in evaluating the maximum probabilityP

�

sup

t�0

X

t

> B

�

. For example, the time-instant^t at

which varfX
t

g

(B�E(X

t

))

2

achieves its maximum value�2

B

is the same time-instant at whichP (X

t

> B) achieves its maximum
value. Hence, one approximation used to estimate Equation (9) is

P

�

sup

t�0

X

t

> B

�

� max

t

P (X

t

> B): (11)

It can be easily seen that the resulting approximationmax

t

P (X

t

> B) is a lower bound to the tail probability of the buffer
occupancy distribution, and is quite easy to compute. Choe and Shroff [16] have shown through an extensive empirical study
that Equation (11) is quite accurate when the arrival process can be effectivelymodeled as a Gaussian process. In [16], the
authors have also developed an asymptotic (in terms ofB) upper bound based on the normalized maximum variance�

2

B

,
which they refer to as the Maximum Variance Asymptotic upper bound or the MVA upper bound. The authors show that
the MVA upper bound in practice behaves like a global upper bound, and together with the lower bound encapsulates the
tail probability within a narrow envelope. More recently, the MVA approach has been extended by Kim and Shroff [17] to
also estimateP

l

by normalizing the MVA upper bound by the exact probability of loss in a bufferless system.

2The supremum can be replaced bymaxwhen the maximum exists, otherwise it is the least upper bound.
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Knightly proposed a related technique using the perspective of stochastic traffic envelopes [18]. A stochastic traffic
envelope bounds some statistical properties ofA

j

[s; s + t] as a function of the interval lengtht. In particular, traffic is
characterized via arate-variance envelopedefined by:

RV

j

(t) � var

�

A

j

[s; s+ t]

t

�

(12)

which describes a flow’s second moment correlation structure. Based on the flows’ RV
j

(t) characterizations as well as their
mean rates, admission control tests are devised whereby the stochastic envelope of the aggregate traffic is approximated
with a Gaussian envelope with variance

P

j

t

2

RV

j

(t) over intervals of lengtht. The envelope-based tests then consider the
maximal buffer overflow probability in all interval lengths up to the maximal busy period. Consequently, the shape of the
loss curve is determined by the properties of the aggregate envelope.

2.5 Refinements to Effective Bandwidths and Large Deviations

Two key shortcomings of the additive effective bandwidth approach are 1) the result is not applicable to traffic sources
which exhibit long range dependence and 2) by adding the bandwidth requirements of sources, the effects of economies of
scale with a large number of sources are not exploited.

An alternative definition of effective bandwidth is given by [35, 36, 37]

E

j

(s; t) =

1

st

logEe

sA

j

[0;t] (13)

so that the tail probability of the queue length distribution satisfies

lim

N!1

1

N

logP (Q > B) = sup

t

inf

s

[st

X

j

�

j

E

j

(s; t)� s(b+ ct)] (14)

scaling resources toC = Nc, B = Nb, andN�

j

sources of typej.
This result is based on Large Deviations theory, which is also applied inseveral other approaches above and has been

widely used in providing general results on the asymptotic behavior of logP (Q > B) [38, 36, 39]. Here, we briefly review
related Large Deviations techniques. In [39] for example, Glynn and Whitt show that for a large class of stochastic processes

logP (Q > B) � ��B: (15)

However, for many important types of processes, such as self-similar or other long-range dependent processes [40, 41], the
tail probability may not be exponential, and more generally, even (15) may not hold. To address this problem, Duffield
and O’Connell exploit the generality of Large Deviation techniques [36] and extended the above result through an elegant
scaling technique to obtain

logP (Q > B) � �g(B); (16)

whereg(B) is some increasing function ofB, which may not be linear inB. However, the significant generality of this
result does come at a cost, namely, poor “resolution”, as the similarity relation given by (16) captures only the leading (most
rapidly growing) term oflogP (Q > B). For example, ifg(B) = B satisfies (16), theng(B) = B +

p

B also satisfies
(16), even though it is a very different function ofB. Therefore, in general, approximations forP (Q > B) based on (16)
should be used with some caution, since (16) provides relatively weak theoretical support to the asymptotic behavior of
these approximations (note that compared to Equation (3), which showssimilarity, the large deviation results only show
log-similarity).

Recent work has focused on the asymptotic behavior ofP (Q > B) when the number of sources, the queue size, and
the service rate are all proportionally sent to infinity (e.g. [38]). This limit is quite a different limit from the one in
Equation (16). However, such results have generated approximations such as the one in [38] that when applied to Gaussian
processes produce the same expression as the MVA upper bound discussed above. This approach also allows for the use of
the Bahadhur Rao asymptotics (or Local Central Limit Theorem, also used in Section 2.3) to strengthen the log-asymptotic
results considerably (e.g. [42, 43]). In [43], the approximation based on the Bahadhur Rao asymptotics results in the same
expression as the MVA lower bound which we consider in this paper.
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We make the following observations about this class of approaches. First, these effective bandwidths are not “additive”
in the same sense as the previous approaches in that the resources required for a particular source depend on the properties
of all other sources (the dependencies are through the parameterss andt). Thus, these approaches achieve economies of
scale in the number of multiplexed sources and, as we will show in Section3, are considerably more accurate than the
previous additive effective bandwidth techniques. Second, we observe that without further assumptions on the traffic flows,
admission control tests in this class can be computationally expensive in their calculation of the supremums in Equation (14).
Nevertheless, we show in Section 3 that such approaches can work quite well empirically; moreover, they can address cases
of non-Gaussian traffic which the maximum-variance approaches discussed inSection 2.4 cannot.

3 Experimental Evaluation of Admission Control Tests

In this section, we evaluate the accuracy of the aforementioned admission control algorithms by performing a set of simu-
lation and admission control experiments. We consider two types of traffic:

� Actual traces of MPEG-compressed video.

� Markov modulated on-off sources, with on and off times distributed according to standard voice models.

We consider various scenarios with different loads, QoS parameters, etc., andcompare the actual admissible regions and
QoS values obtained in simulations with those predicted by the admission control tests.

Throughout the experiments, we focus on the following performancemetrics. The first is the average utilization of the
link, which is the total average rate of all flows divided by the link capacity. For the simulation, this average utilization is also
the total number of bits transmitted by the sources in the simulation, divided by the total number of bits that the server can
transmit over the duration of the simulation (the link capacity multiplied by the simulation time). Our second performance
metric isP (Q > B), the tail of the queue length distribution. For simulations thiscorresponds to the fraction of time an
infinite-buffer queue’s occupancy exceedsB. The third performance metric is the empirical fraction of packets that are
dropped due to buffer overflow in afinite-buffer queue with maximum buffer spaceB. We denote this measure of loss
probability byP

l

. In both cases, we consider a range of buffer sizesB which have a corresponding statistically-guaranteed
delay boundd = B=C.

3.1 Experimental Evaluation for Video Traces

Here we consider a thirty minute trace of MPEG-compressed video which exhibits statistical properties characteristic of
long-range-dependent traffic [18].

3.1.1 Scenario

The video is taken from an action movie, digitized to 384x288 pels and compressed at 24 frames per second using the
MPEG 1 compression algorithm with frame patternIBBPBBPBBPBB[44]. For the simulations, we consider each frame to

be transmitted at a constant rate over the frame time,1

24

th

of a second.
For the trace-driven simulations, a simulation cycle runs until all sources transmit their entire trace twice, with the traces

wrapped around to the beginning when they reach the end. The first run through the traces is discarded as a transient, and
statistics are collected on the second pass through the traces. In a particularscenario,N flows are multiplexed on a 45
Mbps link, with each flow’s arrival pattern given by the movie trace, and a start time chosen uniformly over the length of
the trace. For the purpose of obtaining small confidence intervals at low loss probabilities, ten thousand such simulation
were performed, each with independent start times. We calculate95% confidence intervals for each probability estimated
via simulation using the method of batch mean [45]. However, since theconfidence intervals are so small (the max and min
of the error bars virtually overlap each other), we do not show them in thefigures.

3.1.2 Tail Probability for Multiplexed Video Flows

The experiments reported in Figures 1 and 2 (for the tail and loss probabilities, respectively) are based on the above simu-
lation scenario for a fixed utilization of 84%, which corresponds to 69 video flows on the 45 Mbps link.
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Figure 1 depicts the tail probability versus the delay that a packet experiences in queue. In this scenario, even if a
multiplexer delays a packet beyond its deadline, the packet is not dropped,but held in the buffer in case its delay could be
made up down-stream.

The curve labeled “Simulation” reports the actual fraction of time the buffer exceeds the thresholdB or the equivalent
delay bound. Notice that this curve drops sharply until buffer sizes ofapproximately 10 msec, after which it flattens
considerably, indicating significant benefits for adding buffer space to a multiplexer, but in this case, only to the extent of a
10 msec delay.
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Figure 1: Tail Probability Comparisons for Video Sources

To obtain the upper curve of Figure 1 labeled “Effective BW”, we implementedthe admission control algorithm Equa-
tions (2) and (4). As described in Section 2, the effective bandwidth approximation assumes that the loss (or tail) probability
decays exponentially with increasing delay or buffer size, hence the relationship is linear on the figure’s semi-log scale. The
simulations indicate that the actual loss probabilities for a given buffer size are considerably lower than that predicted
by the effective bandwidth scheme; moreover, the measured relationship between loss probability and buffer size is not
exponential.

The “Chernoff DE” approach refines the effective bandwidth result by addinga preterm to account for the loss probability
in a bufferless multiplexer. We compare the result in this figure to the exact tail probability, since it is usually closer to the
tail probability than the corresponding loss curve (e.g., compare this curve to the exact loss curve in Figure 2). Here, the tail
probability is approximated byKe

��B with K given by Equation (7), and� calculated the same as for effective bandwidth.
In these experiments, the preterm isK = 0:09 which correspondingly improves the estimate of the tail probabilityby
that factor. However, as shown in the figure, the estimate ofP (Q > B) is still conservative by approximately 4 orders
of magnitude for buffer sizes above 10 msec. Regardless, the asymptoticslopes of the effective bandwidth and Chernoff
Dominant Eigenvalue curves do match the slope of the “Simulation” curvein the region of 10-50 msec, indicating that [8]
does provide a good estimate of�. Unfortunately, this does not necessarily correspond to a good estimateof P (Q > B).

The curve labeled “MVA Upper Bound” provides an asymptotic upper bound to the tail probability as described in [16]
without assuming a specific shape of the loss curve. From the figure, wenote that this admission control curve follows the
measured tail probability quite accurately, including emulating its two-segment shape. Moreover, although this approach is
an asymptotic upper bound, empirical results suggest that behaves as a global upper bound, as is the case in Figure 1. Here,
we again note that when the large-deviations based expression for the tail probability in [38] is applied to the Gaussian
arrival case, the resulting tail probability yields the same curve as the MVA upper bound.

The curve labeled “Lower Bound” has been theoretically investigated in variouspapers in the context of both Large De-
viation techniques and Extreme Value Theory [38, 16, 43]. An extensivestudy in [16] showed that the lower bound provides
an accurate estimate to the tail probability and like the MVA upper bound,closely matches the shape of the tail probability
curve. Consequently, the MVA upper and lower bounds envelope the measuredtail probability to approximately within an
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order of magnitude. Finally, we note that the “Rate-Variance” approach for the loss probability (shown in Figure 2), while
devised using an entirely different technique with stochastic envelopes,is in fact the same curve as the “Lower Bound”
shown here [18].

3.1.3 Loss Probability for Multiplexed Video Flows

Figure 2 depicts the loss probability versus delay for the case in whicha packet is dropped at the multiplexer if it violates
its delay requirementd, i.e., the actual buffer size of the multiplexer isB = Cd.
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Figure 2: Loss Probability Comparisons for Video Sources

The curve labeled “Simulation” reports the actual fraction of packets droppeddue to buffer overflow. Notice that this
curve is quite similar to the simulated tail curve, except that it is one to two orders of magnitude lower than the corresponding
curve shown in Figure 1. The curve labeled “Avg/Peak” refers to the results of our implementation of [7]. For small buffers,
the Avg/Peak admission control test over-estimatesP

l

by only one order of magnitude. However, since this test assumes a
bufferless multiplexer, it is increasingly inaccurate for larger buffer sizes.

The “Hybrid” curve refers to the admission control test in [15]. Although the hybrid scheme captures the effect of
statistical multiplexing and results in an improvement over the effective bandwidth curve, it too is significantly inaccurate
in capturing the exact loss probability. The reason is that the hybridscheme is based on the “burst region” being of a single
exponential type. However, for sources that are correlated at multiple time-scales (such as the MPEG-video example shown
here), the loss probability curve does not converge to its asymptoticdecay rate quickly (even if there exists an asymptotic
decay rate), and hence approximations such as the hybrid scheme perform quitepoorly.

The curve labeled “Rate-Variance” (or MVA “Lower Bound”) in Figure 2 depicts the results of the admission control
test in [18]. This admission control test is able to capture the non-exponential relationship between loss and delay, and
although theoretically, the curve is a lower bound to the tail probability, it empirically behaves like an upper bound to the
loss probability.

Finally, the curve labeled “MV Approx” is the result of mapping the MVAupper bound for the tail probability to the
loss probability in a finite buffer system [17]. This curve follows the simulated tail probability quite closely, capturing the
non-exponential nature of the loss curve.

3.1.4 Admissible Region for Multiplexed Video Flows

An admission control test’s effectiveness is ultimately determined by itsability to correctly decide whether or not a new
traffic flow can be admitted while still satisfying the QoS constraintsof all established flows plus the new one. Figure 3
evaluates a number of admission control tests in such a manner.
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Figure 3: Admissible Region Comparisons for Video Sources

For a tail probability of10�6, the figure shows the maximum number of admissible flows, expressedas average utiliza-
tion, versus delay or buffer size. A point on one of the curves indicates the maximum value ofN for the corresponding
delay and tail probability. The simulation curve depicts themeasuredadmissible region, whereas the other curves depict the
admissible regions estimated by the corresponding admission control tests. A desirable property of an admission control
algorithm is that its admissible region be as close as possible to, but not greater than, the simulation curve. In other words,
the goal is to utilize resources as highly as possible without admitting more flows than can actually be supported, which
would result in violations of the promised QoS.

From 1 msec to 50 msec delays, the trace-driven simulation curve of Figure 3 shows the actual achievable average
utilization of the multiplexer is in the range of 58% to 85%. Such high utilizations indicate that these MPEG-compressed
video flows are well suited to statistical multiplexing despite their burstiness over multiple time-scales. Note also that, as in
Figure 3, buffering has a considerable advantage up to approximately 10 to 20 msec; but beyond that, additional buffering
does not significantly increase the admissible region.

Of these admission control algorithms, the MVA upper bound (for the tail probability) most closely approximates the
measured admissible region, with the MVA loss, lower bound, and rate-variance tests also approximately following the true
admissible region and capturing trends such as the relative benefits of adding buffer space. The remaining approaches are
significantly more conservative. We investigate the reasons for these experimental observation in Section 4.

3.2 Empirical Evaluation for Voice Sources

In this section, we evaluate the admission control tests for input traffic that is modeled via Markov Modulated on-off
processes. We use this model for two reasons: first it provides a baseline for comparison of the admission control tests
under a simpler and more widely studied scenario. Second, this model is an accurate and accepted model for voice traffic
as it captures the behavior of encoded voice by alternating between “active” (on) and “inactive” (off) states.

3.2.1 Scenario

For our experimental setup, we again consider a 45 Mbps link serving multiplexed voice sources. With encoded voice’s
alternation between active and inactive states, Markov modulated on-off processes have frequently been used to model voice
traffic [46, 47]. A Markov modulated on-off source is one in which traffic is transmitted only in the on-state, and the source
spends an exponentially distributed duration of time in the on and off states. In theory, one could solve a series of equations
(balance equations) to calculate the exact loss or tail probability for a fluid queue serving on-off sources. However, in this
case, since well over a thousand voice sources can be multiplexed on a 45 Mbpslink, such an exact analytical solution
becomes computationally infeasible. Hence, we again use simulations to evaluate the various admission control algorithms.
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For these simulations, we assume a 1 msec slot size and use a discrete-time on-off Markov Modulated Fluid process as a
voice source model. For each source, when in the on-state traffic is generated with a fluid rate of 0.85 cells/second (which
corresponds to 32Kbps for an ATM size cell). Further, for each source, letp

ij

correspond to the transition probability from
statei to statej (for i = 0; 1 andj = 0; 1), where state0 corresponds to the off-state, and state1 corresponds to the
on-state. Then,p

00

= 0:9983; p

01

= 0:00167; p

10

= 0:0025; p

11

= 0:9975. To obtain reliable results at very low loss (or
tail) probabilities we use theimportance samplingsimulation technique described in [28].

3.2.2 Tail Probability for Voice Sources

The experiments reported in Figures 4 and 5 (for the loss and tail probabilities, respectively) are based on the above simu-
lation scenario with a utilization of 93%, which corresponds to 2900 voice flows on the 45 Mbps link.

Figure 4 depicts the tail probability versus delay that a packet experiences in the queue. As in the case for MPEG video,
in this scenario, even if a packet’s deadline is violated at a queue, the packet isnot dropped, but held in case its delay could
be made up down-stream.

Once again, note that the additive effective bandwidth approach results ina curve that is quite conservative, and results
in almost a 4 orders of magnitude overestimate of the tail probability. However, in this case, the Chernoff Dominated
Eigenvalue approach of [14] performs better than in the case of multiplexed video. The reason for this is that the prefactor
term used in [14] helps capture the statistical multiplexing gain due to the aggregation of the sources. Since multiplexed on-
off sources do not exhibit strong multi-time scale correlation, thesingle exponential approximation does manage to provide
a reasonable match with simulations (even though for larger buffer size the mismatch is almost two orders of magnitude).
The MVA upper bound and the lower bound both accurately track the tail probability and encapsulate it within a relatively
narrow envelope.
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Figure 4: Tail Probability Comparisons for On-Off (Voice) Sources

3.2.3 Loss Probability for Voice Sources

Figure 5 depicts the loss probability versus delay for the case in whicha packet is dropped at the multiplexer if it violates
its delay requirement.

The simulation curve again reports the actual fraction of packets that exceed the buffer level (or equivalently the delay
requirement). For small buffers, the Avg/Peak admission control test is more accurate than the effective bandwidth test, but
again becomes increasingly inaccurate for larger buffer sizes due to the assumption of a bufferless multiplexer.

The “Hybrid” scheme [15] accurately captures the effect of statistical multiplexing, and as can be seen in Figure 5,
accurately captures the loss probability for small buffer values. However,similar to the case of the Chernoff Dominant
Eigenvalue approach, for large values of delay, the scheme can overestimate theloss probability by up to two orders of
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Figure 5: Loss Probability Comparisons for On-Off (Voice) Sources

magnitude. The “Rate-Variance” (or MVA “Lower Bound”) approach performs worse than the hybrid scheme until larger
buffer sizes, and the “MV Approx” curve [17] most closely follows the measured loss curve.

3.2.4 Admissible Region
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Figure 6: Admissible Region Comparisons for On-Off (Voice) Sources

In Figure 6 we compare the simulated admissible region with those of the admission control algorithms. Following the
approach taken earlier, for a tail probability of10

�6, the figure shows the maximum number of admissible traffic flows,
expressed as average utilization, versus delay or buffer size. The simulation curve of Figure 6 shows the actual achievable
average utilization of the multiplexer is in the range of 91% to 94% or 3198 to 3303 multiplexed flows. These high
utilizations are again due to the fact that voice traffic is well suited to taking advantage of a statistical multiplexed system.

Of these admission control algorithms, the Rate Variance approach (or MVA Lower Bound) most closely approximates
the measured admissible region, but being a lower bound, slightly exceeds the admissible curve. The MVA upper bound
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follows the admissible region curve quite well, while being somewhat conservative (a useful feature for admission control).
In this case, the Chernoff Dominant Eigenvalue approach and Ave/Peak test alsowork reasonably well (the latter being
increasingly worse for larger allowable delays), while the additive effective bandwidth approach is again quite conservative.

4 Admission Control Tests: Approximations and Accuracy

4.1 The Rationale of Gaussian Modeling

The experiments of Section 3 have shown that modeling the aggregate arrival process as a general Gaussian process results
in good estimates of the tail probability even when the number of sourcesmultiplexed is moderate (as in the case of the
video sources). As discussed previously, the Gaussian characterization ismotivated by the Central Limit Theorem, since a
link in a high-speed network is expected to carry many traffic sources. One advantage of a Gaussian characterization versus
other types of models is that it requires less detailed knowledge of the source than for example Markov arrival models.
However, one could then ask the question, why not appeal to a Poisson limit theorem and characterize the aggregate traffic
to a multiplexer as a Poisson Process (after all the Poisson Process can becharacterized simply by its mean). The reason
is quite simple: the Poisson Limit theorem involves a very differenttype of scaling, and the Poisson traffic characterization
destroys the temporal correlation structure of the traffic, in fact makingit memoryless (independent and stationary incre-
ments!). Since real traffic is highly correlated, a Poisson characterization results in grossly incorrect loss (or tail) probability
calculation, and hence a wrong admissible region. The Gaussian characterization, on the other hand, is very useful since
it allows for different correlation structures (any function can be a validautocovariance function), and hence captures the
temporal correlation of the traffic. As an illustrative example, using the techniques of [48], one can compute the loss prob-
ability for fractional Brownian motion, a self-similar process, as a trivial special case, as it merely represents a particular
autocovariance function.

4.2 Impact of Buffering

The experiments of Section 3 evaluate the impact of buffer-size scaling onboth the multiplexer’s performance as well as the
effectiveness of the different admission control algorithms. The trace-driven simulation experiments indicate that even for
highly correlated traffic some buffering is of substantial benefit. For example, our simulations show that with 66 multiplexed
MPEG flows, 30 msec or approximately 170 kBytes worth of buffering decreases the loss probability from .003 to7 � 10�7.
Further, considering the admissible region and a loss probabilityof 10�6, 30 msec of buffering increases the admissible
region from 49 to 66 flows, for a 35% improvement. As noted in Section3, the incremental advantages of an increased
buffer size do not extend indefinitely, but rather decay quickly once the multiplexer has 10 to 20 msec of buffering. In the
case of on-off sources, buffering is of lesser benefit in that it does not result in as significant an increase in the admissible
region. However, in real systems one expects a mix of both multi-time scale correlated traffic such as video and short-term
correlated traffic such as voice, so that the resulting aggregate traffic willindeed exhibit multi-time scale properties. Hence,
the conclusions about buffers drawn from the experiments with videotraces are more relevant in realistic network design.

Thus, for the video sources with the importance of buffering in the actual system, admission control tests that take into
account buffer size scaling are able to significantly out-perform those that do not. Indeed, the Avg/Peak admission control
test of [7] is one of the more conservative tests partially because of itsassumption of a bufferless multiplexer.

We note however, that the aforementioned 35% increase in the admissibleregion of Figure 3, or the 4 orders-of-
magnitude decrease in the loss probability, comes at a cost: the costs of the memory itself; buffer management costs;
and potential increased complexity in the admission control tests, as tests incorporating network buffers must also consider
the traffic’s autocorrelation structure.

4.3 Economies of Scale in the Number of Flows

As the number of multiplexed sourcesN increases, the amount of resources (bandwidth and buffer space) that must be
reservedper sourceshould decrease as an effect of statistical multiplexing and a simple consequence of the law of large
numbers. In other words, we expect to have economies of scale in the number of multiplexed sources. While most admission
control tests we considered exploit such economies of scale, additive effective bandwidth tests do not, since such tests
determine a flow’s resource demands using only the stochastic properties of the source itself (e.g., its index of dispersion),
independent of the properties of other sources or the total number of sources being multiplexed. Indeed, independently
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summarizing the resource requirements of heterogeneous and bursty trafficsources by per-flow bandwidths was exactly the
goal of the original work on additive effective bandwidths. However,as is evident from Figure 3, the approach’s lack ofN

scaling significantly limits the achievable utilization.

4.4 Loss Curve

The relationship between the packet loss probability and the buffer size asin Figure 3 is often referred to as the loss curve.
While the ultimate goal of an admission control test is to correctly determine the admissible region, many admission control
tests have been designed with an intermediary focus on the shape of the loss curve. For example, [14] is motivated by the
dominant eigenvalue of Markovian sources to approximate the loss curve with an exponential relationshipP

l

� Ke

��B.
Effective bandwidth schemes also assume an exponential relationship but with K � 1.

Our simulation results of Figure 3 depict a loss curve that is significantly different from exponential. While long range
dependence is a plausible explanation for this [38], it could also be that the multiple-time-scale correlation of the sources
results in this very slow convergence of the loss (or tail) probability to its asymptotic slope.

We note that the maximum variance based admission control tests of Section2.4 are able to track this non-exponential
loss curve quite well. These tests do not assume that traffic flows are long range dependent, but rather use a general second
moment traffic description to obtain the required loss (or tail) curves.

In [14], trace drive simulations were also performed and the reported loss curves are nearly exponential. Consequently,
the Chernoff Dominant Eigenvalue test of [14] was quite accurate for those experiments. While we found corroborating
results forvoicesources, for video sources we found that the measured tail or loss curve isfar from exponential so that the
Chernoff Dominant Eigenvalue test is considerably less accurate. This may have been due to a combination of the fact that
(1) [14] used a videoconference trace which likely does not exhibit multi-time-scale rate variation; and (2) [14] used JPEG-
rather than MPEG-compressed video, with the latter having substantially more rate variation on small time scales as well.

Here we note that for sources that are correlated over small time scales (e.g., the on-off voice sources), any admission
control test that accurately estimates the statistical multiplexing gain via the prefactorK in front of the exponential in
Equation (3), will capture the loss (or tail) probability quite well. However, techniques such as the additive effective
bandwidth that are unable to capture this statistical multiplexing gain, or techniques such as the Ave/Peak combinatorics
that do not account for non-zero buffers, will still tend to be rather conservative.

4.5 Important Traffic Parameters

In addition to assumptions about the shape of the loss curve and network buffer sizes, an admission control test must
characterize traffic flows according to a parameterized traffic model.

The on-off traffic model used in the admission control test of [7] is the simplest of the models we considered here (indeed,
peak and average rate are likely the minimum amount of information needed toprovide a statistical service). While this
model is simple and closely related to standard traffic models (which specifypeak rate, average rate, and burst length), it is
also quite closely tied to the assumption of a bufferless multiplexer, which as described above, has a considerable utilization
penalty for an admission control test. Indeed, to take into account the effects of buffering, more information is needed about
the traffic flows such as their autocorrelation structure, their maximum rates over various interval lengths [49], or at least a
burst length parameter.

While many admission control tests can work well with on-off sources, when these same admission control tests are
applied to the compressed video sources we have considered here, the tests exhibit considerable inaccuracies. For traffic
flows that exhibit multiple time scale rate variation, we argue that refined traffic models (beyond peak and average rate) are
needed to extract the full statistical multiplexing gain. For example, the proposed traffic model of [49] characterizes a source
by a family of rate-interval pairs where the rate is a bounding rate over the corresponding interval length. Such parameters
can also be used to bound or approximate stochastic parameters such as the rate-variance envelope considered here [24,
50]. A second possibility is to have users directly convey their secondmoment characteristics to the network, which our
experimental results indicate can accurately estimate the admissible region. Unfortunately, the downside to incorporating
more sophisticated traffic models is two fold: first, additional traffic parameters are needed beyond the standard three
parameter models, which also means that policing requires at least multi-levelleaky buckets rather than a single leaky
bucket (see [49]). Second, the more detailed the traffic parameter, the greaterthe burden on network clients to accurately
characterize their traffic in advance.
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It therefore appears that if a refined traffic model is not used, statistical services would yield such low resource utilization
for bursty traffic flows that either renegotiated services [51, 5] or measurement based services [19, 20, 21, 22] must be used
instead. While such services have their own merits as discussed in the respective works, they unfortunately cannot provide
statistical QoSguaranteesper se. Moreover, a renegotiated service requires increased signaling overhead and a measure-
ment based service must successfully make accurate predictions of future resource requirements using past measurements of
aggregate multiple time scale sources, which, as we have seen here, is a difficult problem even when future arrival statistics
areknown.

Lastly, we note that admission control tests differ in their computational complexity or the number of instructions that
must be executed upon the arrival of a new admission request. While exploration of this issue is beyond the scope of this
current work, we do note that all of the schemes we have considered were designed with implementation considerations,
with [7] giving this issue the most attention.

5 Conclusions

From the results of our trace-driven simulations and admission control experiments with a diverse set of admission control
algorithms, we make the following observations. (1) Assuming a bufferless multiplexer introduces a substantial utilization
penalty if the actual multiplexer does contain buffer space. (2) Economies ofscale in the number of multiplexed flows
is a crucial component to achieving a high degree of accuracy. (3) Experimentally observed loss curves (loss probability
vs. buffer size) for compressed video sources are quite different than the commonly assumed exponential relationship.
If indeed the curves do asymptotically (with buffer size) become exponential, the convergence rate is usually quite slow,
which renders exponential types of approximations fairly inaccurate over any meaningful buffer size or loss probability. (4)
Refinements of current standard traffic models are required in order to obtaina reasonable statistical multiplexing gain and
a statistical QoS guarantee. (5) Admission control tests that work demonstrably well with exponential on-off sources can
suffer from considerable inaccuracies when applied to multiple time scale sources such as compressed VBR video.

We found that a number of admission control tests from the literatureperform quite well experimentally for both on-off
sources and compressed video sources, including algorithms by the authors [16, 18] and others [38, 42, 43].
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