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Abstract

In networks that support Quality of Service (QoS), an adimissontrol algorithm determines whether or not a new
traffic flow can be admitted to the network such that all uselig@ceive their required performance. Such an algoritem i
a key component of future multi-service networks as it deiees the extent to which network resources are utilized and
whether the promised QoS parameters are actually deliv€adgoals in this paper are threefold. First, we descriltk an
classify a broad set of proposed admission control algosthSecond, we evaluate thecuracyof these algorithms via
experiments using both on-off sources and long traces opoessed video; we compare the admissible regions and QoS
parameters predicted by our implementations of the algostwith those obtained from trace-driven simulationsaiyn
we identify the key aspects of an admission control algorittecessary for achieving a high degree of accuracy and hence
a high statistical multiplexing gain.

1 Introduction

Provisioning network resources to meet the Quality of Service (QoSaddsnof bursty traffic sources is a key issue for
future multi-service networks. Such resource provisioning mayhbézed by an admission control algorithm, which has
the function of limiting the number of traffic flows in a class such thatrequired QoS constraints can be satisfied. The
design of admission control algorithms has important consequencestieonk performance, as an algorithm that unnec-
essarily denies access to flows that could have been successfully admitteddetutilize network resources; similarly,
an algorithm that incorrectly admits too many flows will induce QoSatiohs.

Unlike a deterministic service [2], a statistical or soft real-timeviserassociates a smaiflolation probability with de-
lay and throughput bounds, as needed to obtain a utilization gain oveely prorst case approach. Developing resource
allocation schemes for a statistical service has proven particularly chalpehggrto both the multiple-time-scale character-
istics of many multimedia applications, e.g., [3, 4, 5], as well as piatidntractabilities arising from complex interactions
among traffic flows and the shared multiplexer.

Our goals in this paper are threefold. First, we describe a broad set idsadmcontrol algorithms from the literature
which we divide into the following five classes: (1) tests based oregeeand peak rate combinatorics [6, 7], (2) tests based
on additive effective bandwidths [8, 9, 10, 11], (3) tests based omeagng the “loss curve” [12, 13, 14, 15], (4) tests
based on maximum variance approaches [16, 17, 18], and (5) tests based oramtiireraffective bandwidths using large
deviations theory.

Second, we perform a large number of experiments to evaluate the accuraffeatideness of these admission control
algorithms under realistic workloads, namely, thirty-minute tradesoable-rate MPEG-compressed video and exponen-
tial on-off sources commonly used to model voice traffic. To achievewrdijrst implement a number of algorithms from
the aforementioned classes and determine their respective admissibtesfegigarious traffic mixes and QoS parameters.
We then simulate a 45 Mbps multiplexer servicing the same traffic witk, each flow’s arrival sequence given by either
a video trace with a random start time, or an on-off source. For each conanirdtiraffic flows and a particular buffer
size, we measure the flows’ resulting performance parameters. By comgaingeasured admissible regions with those
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predicted by the algorithms, we assess an algorittao&iracy i.e., its effectiveness in predicting QoS parameters and
controlling the admissible region.

Finally, from our experimental results, we identify the componehtmaadmission control test essential to achieving a
high degree of accuracy and find that (1) the assumption of a bufferldplexer has a significant utilization penalty, (2)
an algorithm must exhibit economies of scale in the number of multldélows, (3) observed shapes of the “loss curve”
can be quite different than the commonly assumed exponential relatioridhithe traffic model, or parameters used to
describe the properties of traffic flows to the network, requires nmfoeration than is currently standardized, and (5) an
algorithm’s accuracy with exponential on-off sources does not assureaagaumith bursty compressed-video sources.

In addition to the above classes of admission control algorithmsrakather approaches have been developed, including
measurement-based algorithms which control the admissible region basejregate traffic measurements [19, 20, 21,
22], enforceable statistical services which provision resources based stcase statistics of policed traffic flows [23, 24,
25] and algorithms for special-purpose systems such as video on denGa2dJ2while review of such schemes is beyond
the scope of this paper, we note that many of these approaches buildthedhies and techniques which e consider,
so that our conclusions may provide guidelines for evaluating thesersshas well.

The remainder of this paper is organized as follows. First, in Sectioreywerview five classes of admission control
algorithms. Next, in Section 3, we describe experimental resultsrautdiom trace-driven simulations and our implemen-
tations of the admission control algorithms. Finally, in Sectiowd,discuss the aspects of an algorithm most critical for
achieving a high degree of accuracy, and in Section 5, we conclude.

2 Admission Control Tests for Statistical Service

In this section, we describe five classes of admission control testsakatlhieen proposed for providing statistical QoS
guarantees in multi-service networks. While these classes do not encaafigasposed schemes, they do provide broad
coverage of the techniques applied to admission control. For QoS meteicgnsider two variations of what is commonly
referred to as “loss probability”. First, we denote the “tail probapilif the queue length distribution by (Q > B), which
refers to the fraction of time an infinite-buffer queue’s occupancy excBe@®econd, we denote the “loss probability” by
P, which refers to the fraction of bits dropped by a queue that has finftertspaceB.

Throughout, we denote the link capacity 6yand the buffer size bys, and denote the arrivals of traffic floyvin the
interval[s, t] by A;[s, t].

2.1 Average/Peak Rate Combinatorics

In [7], sourcej is characterized by its peak ratg, ; and average rate,, ;. Assuming an on-off source that either transmits
at its peak rate or is idle, the probability that the souramiss given byp,,, ; = 74v.;/7pk,; @nd its rate distribution is given
by
1-— Pon,j z=0
f](l’) = Pon,j T = Tpk,j (1)
0 otherwise.

Using this rate distribution, an admission control algorithmdsigned that approximates the packet loss probability for a
bufferless multiplexer: in a bufferless multiplexer, packet loss ccadvenever the aggregate input arrival rate exceeds the
link capacity. Since the distribution of the aggregate arrival ratb®fultiplexed sources is given by a convolution of the
individual f;(z)'s, Lee et al. focus on efficient computation of the aggregate arrival ratédison and subsequently the
loss probability [7].

In [6], traffic flow j is also characterized by its peak and average rate. In contrast to [7] in whiglrepresents the
long-term average rate, in [6] it refers to the worst-case rate over agywahiof length/;. That is, sourcg is constrained
to send no more than,, ; - I; packets during any interval of lengif) (changing [6]'s notation for consistency). For
Earliest Deadline First schedulers, Ferrari shows how to compute tialpitity of delay-bound violation by examining
combinations of active flows (flows which aom with probability p,,, ;) that may cause a delay-bound violation, and by
summing their respective probabilities.

In this paper, we evaluate the test of [7], which we refer to as the “Aea}{Ptest.



2.2 Additive Effective Bandwidths

Variouseffective bandwidtladmission control tests have been proposed in the literature ingl{®ii®, 10, 11]. In such
schemes, each flow independently reserves a particular bandwidth between it® aretggeak rate. This bandwidth,
termedeffective bandwidthis a function of the required loss probabiliy and the particular flow’s stochastic properties
(such as autocorrelation function, or peak and average rate together with mnstafusation). Once the effective bandwidth
of flow j is determined, which we denote & (F;) (or equivalentlyE; (P(Q > B))), the admission control test requires
that

N
Y Ei(R) <C, (2)
j=1

whereN is the number of multiplexed flows. Effective-bandwidth type reshitve been devised using several inter-related
techniques, including eigenvalue decomposition of Markovian flowdd8je deviations theory [8, 11], and the theory of
envelope processes [28].

For example, [29] shows how the buffer occupancy distribution farkdv modulated fluid sources can be decomposed
according to the eigenvalues of the aggregate Markovian arrival process.tBéoverall tail probability?() > B) or loss
probability P, may be expressed as a sum of exponential terms, the largest eigenvalueywwtdehote by, dominates
with asymptotically large buffers. In other words, it has been fouatlttie loss probability or (tail probability) satisfies the
following relationship for some constaht

]Dl ~ K67637 (3)

where the similarity relationship(z) ~ g(z) of two functionsf(-) andg(-) indicates thatim,_, . f(z)/g(z) = 1. In the
additive effective bandwidth literature, the pretekmis approximated by1, or P, ~ e~%B. The admission control test
amounts to ensuring that(the dominant eigenvalue) is large enough to meet the required loss pitylzinstraint. For
example, for on-off sources, the effective bandwidth can be computegl Egimation (2) of [10].

Here, we evaluate the effective bandwidth test of [8] which has

(5 .
E;(Py) = vy + 52 @
where 1
7= Jim G vait4;0,1) ®

is the arrival sequence’s index of dispersion and —%.

Note that the effective bandwidth of a flow is independent of the prigsauf all other traffic flows as well as the number
of sourcesV and the link capacity’: it is determined only by the stochastic properties of the flow itedf,required loss
probability P;, and the buffer sizés.

2.3 Engineering the “Loss Curve”

We refer to doss curveas the relationship between loss probability and buffer size, which, htiegleffective bandwidths

is exponential and given i, ~ e~%B. As thee~°” approximation can be conservative for reasons outlined below, several
techniques have been proposed which seek to engineer the shape of thevess better reflect experimentally observed
relationships.

The approach in [15] stems from a simple observation based on the siutfwrk in video modeling [30, 31, 32].
When the input traffic is highly correlated as in the case of JPEG-encoded\a quasi-stationary approximation, called
the histogram model [32] (or generalized histogram model [31, 33]) wasd to be quite accurate becauiedoes not
significantly decrease whe# is increased beyond a certain range (referred to asateesgior). However, when applying
the histogram model to other less correlated sources, it was found thabthed could not predict the loss behavior well
for large buffer sizes. To overcome this difficulty, in [15], the authose the histogram model for the cell region (small
buffers), and a single exponential approximation for the bursore@arge buffers), with the cutoff point found by equating
the slopes of the two regions. This approach, which we refer to as theithscheme” can be used when the arrival process
is modeled as a general Markov modulated arrival process, and in the specifi€ tteess®larkov modulatedluid source P,
is expressed by a single exponential as in Equation (3). For exarophm figgregate Markov modulated Fluid source with

1while the pretermk is different for tail and loss probability, since effectisandwidth approximatek by 1, it does not distinguish between the two.



mean arrival rate\, stationary probabilityr; of being in stat&, and arrival rate\; corresponding to statie the probability

of loss is given by
P = )\ Ei T (1 )\i> e . (6)

Ai>C

In [14], Elwalid et al. observed that for Markov modulated fluid sourdas léss curve approximation of Equation (3)
could be improved by approximating the asymptotic constanby the loss probability in a bufferless multiplexer as
estimated by Chernoff's theorem, and usihgs the same dominant eigenvalue for Markovian sources as in the effective
bandwidth result. In particular, denotidg); as a random variable with the steady-state rate distribution of sgueg.,

R;’s distribution is given by Equation (1) for on-off sourcek),is given by

K = K'exp (— sup{sC — Zlog EGSR’}) ) Q)
s>0 i

where K' is a further refining term given by Equation (55) of [14K’ is based on Bahadhur Rao asymptotics and we
include it in our implementation of this approach.

Consequently, sinc& can in practice be substantially less than 1 (its approximated value fdivadeffective band-
widths), algorithms utilizing this term can have improved accuracy ageoeal to effective bandwidth tests.

2.4 Maximum Variance Based Approaches

We classify the next group of admission control algorithms as Mawirkariance (MV) Approaches. Defining; as

X = ZAj[s—t,s] — Clt, (8)

the tail probability is given by [34]
P(Q>B):P<supXt>B> . (9)

t>0
MV approaches are based on the observation th#t i Gaussian, one can derive accurate bounds and approximations
to the right hand side of Equation (9). A§ is composed of the aggregate arrivals from a large number of sources)afi
be a reasonable assumption in high-speed networks. For Gaugsidre normalized maximum variance &%, given by

B var{ X;}
(72B = mgx m, (10)

plays an important role in evaluating the maximum probabiﬁt{(supt20 X > B). For example, the time-instantat

which ﬂ{% achieves its maximum valug}, is the same time-instant at whidh(X, > B) achieves its maximum

value. Hence, one approximation used to estimate Equation (9) is

P (sup Xy > B) ~ mtaxP(Xt > B). (12)

t>0

It can be easily seen that the resulting approximaties, P(X; > B) is a lower bound to the tail probability of the buffer
occupancy distribution, and is quite easy to compute. Choe and Shédfffve shown through an extensive empirical study
that Equation (11) is quite accurate when the arrival process can be effeativdled as a Gaussian process. In [16], the
authors have also developed an asymptotic (in termi3)afpper bound based on the normalized maximum variafige
which they refer to as the Maximum Variance Asymptotic upper boundeoMWA upper bound. The authors show that
the MVA upper bound in practice behaves like a global upper bound, yathter with the lower bound encapsulates the
tail probability within a narrow envelope. More recently, the MVA apgio has been extended by Kim and Shroff [17] to
also estimatd’, by normalizing the MVA upper bound by the exact probability of losa bufferless system.

2The supremum can be replacedrbgxwhen the maximum exists, otherwise it is the least upper thoun



Knightly proposed a related technique using the perspective of staclradtic envelopes [18]. A stochastic traffic
envelope bounds some statistical propertiesigfs, s + ¢] as a function of the interval length In particular, traffic is
characterized via mte-variance envelopéefined by:

RV;(t) > var (M) (12)

which describes a flow’s second moment correlation structure. Based ormiseRlb; (¢) characterizations as well as their
mean rates, admission control tests are devised whereby the stochastaperofethe aggregate traffic is approximated
with a Gaussian envelope with variangg t> RV (t) over intervals of lengti. The envelope-based tests then consider the
maximal buffer overflow probability in all interval lengths up to the rimaal busy period. Consequently, the shape of the
loss curve is determined by the properties of the aggregate envelope.

2.5 Refinements to Effective Bandwidths and Large Deviations

Two key shortcomings of the additive effective bandwidth approach atkeelresult is not applicable to traffic sources
which exhibit long range dependence and 2) by adding the bandwidtheetgnts of sources, the effects of economies of
scale with a large number of sources are not exploited.

An alternative definition of effective bandwidth is given by [35, 36 37

Ej(s,t) = it log Ee*4i[0:4 (13)
S
so that the tail probability of the queue length distribution §iats

.1 .
A}gnoo N log P(Q > B) = sgp II;f[SthjEj(S,t) — s(b+ ct)] (14)
j

scaling resources 10 = N¢, B = Nb, andN p; sources of typg.

This result is based on Large Deviations theory, which is also applieevieral other approaches above and has been
widely used in providing general results on the asymptotic behafiogd’ () > B) [38, 36, 39]. Here, we briefly review
related Large Deviations techniques. In [39] for example, Glynn andt\Hnitv that for a large class of stochastic processes

log P(Q) > B) ~ —0B. (15)

However, for many important types of processes, such as self-similéherlong-range dependent processes [40, 41], the
tail probability may not be exponential, and more generally, even (E5) mot hold. To address this problem, Duffield
and O’Connell exploit the generality of Large Deviation technique$ §8@l extended the above result through an elegant
scaling technique to obtain

log P(Q > B) ~ —g(B), (16)

whereg(B) is some increasing function @&, which may not be linear ilB. However, the significant generality of this
result does come at a cost, namely, poor “resolution”, as the similaréiarlgiven by (16) captures only the leading (most
rapidly growing) term ofog P(Q > B). For example, ify(B) = B satisfies (16), thep(B) = B + /B also satisfies
(16), even though it is a very different function Bf Therefore, in general, approximations B¢ > B) based on (16)
should be used with some caution, since (16) provides relatively weakdtical support to the asymptotic behavior of
these approximations (note that compared to Equation (3), which stiovilarity, the large deviation results only show
log-similarity).

Recent work has focused on the asymptotic behavid?@ > B) when the number of sources, the queue size, and
the service rate are all proportionally sent to infinity (e.g. [38]hisTlimit is quite a different limit from the one in
Equation (16). However, such results have generated approximaticimasthe one in [38] that when applied to Gaussian
processes produce the same expression as the MVA upper bound discussedrais approach also allows for the use of
the Bahadhur Rao asymptotics (or Local Central Limit Theorem, also usettio8 2.3) to strengthen the log-asymptotic
results considerably (e.g. [42, 43]). In [43], the approximatioretdas the Bahadhur Rao asymptotics results in the same
expression as the MVA lower bound which we consider in this paper.



We make the following observations about this class of approaches.tkr@se effective bandwidths are not “additive”
in the same sense as the previous approaches in that the resources reqairgatficular source depend on the properties
of all other sources (the dependencies are through the parameteds). Thus, these approaches achieve economies of
scale in the number of multiplexed sources and, as we will show in Seg8tiane considerably more accurate than the
previous additive effective bandwidth techniques. Second, we obsetmithout further assumptions on the traffic flows,
admission control tests in this class can be computationally expenghveii calculation of the supremums in Equation (14).
Nevertheless, we show in Section 3 that such approaches can work quite wieitallypmoreover, they can address cases
of non-Gaussian traffic which the maximum-variance approaches discusSedtion 2.4 cannot.

3 Experimental Evaluation of Admission Control Tests

In this section, we evaluate the accuracy of the aforementioned admissiial@gorithms by performing a set of simu-
lation and admission control experiments. We consider two types fittraf

e Actual traces of MPEG-compressed video.
e Markov modulated on-off sources, with on and off times distributed aliegito standard voice models.

We consider various scenarios with different loads, QoS parameters, etcompare the actual admissible regions and
QoS values obtained in simulations with those predicted by the admissntrol tests.

Throughout the experiments, we focus on the following performameteics. The first is the average utilization of the
link, which is the total average rate of all flows divided by the link caiya&ior the simulation, this average utilization is also
the total number of bits transmitted by the sources in the simuladivided by the total number of bits that the server can
transmit over the duration of the simulation (the link capacity rpli#d by the simulation time). Our second performance
metric isP(Q) > B), the tail of the queue length distribution. For simulations tusresponds to the fraction of time an
infinite-buffer queue’s occupancy exceells The third performance metric is the empirical fraction of packets that are
dropped due to buffer overflow in finite-buffer queue with maximum buffer spade We denote this measure of loss
probability by P,. In both cases, we consider a range of buffer seshich have a corresponding statistically-guaranteed
delay bound! = B/C.

3.1 Experimental Evaluation for Video Traces

Here we consider a thirty minute trace of MPEG-compressed video whiubitexstatistical properties characteristic of
long-range-dependenttraffic [18].

3.1.1 Scenario

The video is taken from an action movie, digitized to 384x288 pels and amspd at 24 frames per second using the
MPEG 1 compression algorithm with frame patté88PBBPBBPBRB44]. For the simulations, we consider each frame to

be transmitted at a constant rate over the frame t'ﬁfeh, of a second.

For the trace-driven simulations, a simulation cycle runs untilallses transmit their entire trace twice, with the traces
wrapped around to the beginning when they reach the end. The firstraugththe traces is discarded as a transient, and
statistics are collected on the second pass through the traces. In a pasgieuiario, N flows are multiplexed on a 45
Mbps link, with each flow’s arrival pattern given by the movie trace, anc# 8ime chosen uniformly over the length of
the trace. For the purpose of obtaining small confidence intervals abksyvprobabilities, ten thousand such simulation
were performed, each with independent start times. We calc@déteconfidence intervals for each probability estimated
via simulation using the method of batch mean [45]. However, sincedhfidence intervals are so small (the max and min
of the error bars virtually overlap each other), we do not show them ifighees.

3.1.2 Tail Probability for Multiplexed Video Flows

The experiments reported in Figures 1 and 2 (for the tail and loss pititleabrespectively) are based on the above simu-
lation scenario for a fixed utilization of 84%, which corresponds to é@eiflows on the 45 Mbps link.



Figure 1 depicts the tail probability versus the delay that a packet exquexs in queue. In this scenario, even if a
multiplexer delays a packet beyond its deadline, the packet is not dramadugld in the buffer in case its delay could be
made up down-stream.

The curve labeled “Simulation” reports the actual fraction of time théebeixceeds the threshold or the equivalent
delay bound. Notice that this curve drops sharply until buffer sizeappiroximately 10 msec, after which it flattens
considerably, indicating significant benefits for adding buffer space toltghexer, but in this case, only to the extent of a
10 msec delay.
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Figure 1: Tail Probability Comparisons for Video Sources

To obtain the upper curve of Figure 1 labeled “Effective BW”, we implemetitecadmission control algorithm Equa-
tions (2) and (4). As described in Section 2, the effective bandwidthoappation assumes that the loss (or tail) probability
decays exponentially with increasing delay or buffer size, hence the relaifiaadinear on the figure’s semi-log scale. The
simulations indicate that the actual loss probabilities for a givefebsize are considerably lower than that predicted
by the effective bandwidth scheme; moreover, the measured relationshipdpelwss probability and buffer size is not
exponential.

The “Chernoff DE” approach refines the effective bandwidth result by addprgterm to account for the loss probability
in a bufferless multiplexer. We compare the result in this figurégoeixact tail probability, since it is usually closer to the
tail probability than the corresponding loss curve (e.g., compasethive to the exact loss curve in Figure 2). Here, the tail
probability is approximated bige %2 with I given by Equation (7), andlcalculated the same as for effective bandwidth.
In these experiments, the pretermAs = 0.09 which correspondingly improves the estimate of the tail probabiljty
that factor. However, as shown in the figure, the estimat®(@ > B) is still conservative by approximately 4 orders
of magnitude for buffer sizes above 10 msec. Regardless, the asynghoptas of the effective bandwidth and Chernoff
Dominant Eigenvalue curves do match the slope of the “Simulation” dartree region of 10-50 msec, indicating that [8]
does provide a good estimated®fUnfortunately, this does not necessarily correspond to a good estinBt€) > B).

The curve labeled “MVA Upper Bound” provides an asymptotic upper boarkle tail probability as described in [16]
without assuming a specific shape of the loss curve. From the figunepteehat this admission control curve follows the
measured tail probability quite accurately, including emulating its segment shape. Moreover, although this approach is
an asymptotic upper bound, empirical results suggest that behaves asibuglper bound, as is the case in Figure 1. Here,
we again note that when the large-deviations based expression forltheotzability in [38] is applied to the Gaussian
arrival case, the resulting tail probability yields the same curve as W Wpper bound.

The curve labeled “Lower Bound” has been theoretically investigated in vapepess in the context of both Large De-
viation techniques and Extreme Value Theory [38, 16, 43]. An extessiv®y in [16] showed that the lower bound provides
an accurate estimate to the tail probability and like the MVA upper botindely matches the shape of the tail probability
curve. Consequently, the MVA upper and lower bounds envelope the meaailigrdbability to approximately within an



order of magnitude. Finally, we note that the “Rate-Variance” approach édo#ts probability (shown in Figure 2), while
devised using an entirely different technique with stochastic envel@péasfact the same curve as the “Lower Bound”
shown here [18].

3.1.3 Loss Probability for Multiplexed Video Flows

Figure 2 depicts the loss probability versus delay for the case in vehjdtket is dropped at the multiplexer if it violates
its delay requirement, i.e., the actual buffer size of the multiplexerBs= Cd.
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Figure 2: Loss Probability Comparisons for Video Sources

The curve labeled “Simulation” reports the actual fraction of packets drogpedo buffer overflow. Notice that this
curve is quite similar to the simulated tail curve, exceptthatitis omed orders of magnitude lower than the corresponding
curve shown in Figure 1. The curve labeled “Avg/Peak” refers to theteesbibur implementation of [7]. For small buffers,
the Avg/Peak admission control test over-estimadlelsy only one order of magnitude. However, since this test assumes a
bufferless multiplexer, it is increasingly inaccurate for larger bufiees

The “Hybrid” curve refers to the admission control test in [15]. Altigh the hybrid scheme captures the effect of
statistical multiplexing and results in an improvement over the effedtandwidth curve, it too is significantly inaccurate
in capturing the exact loss probability. The reason is that the hgbHdme is based on the “burst region” being of a single
exponential type. However, for sources that are correlated at multiptedaales (such as the MPEG-video example shown
here), the loss probability curve does not converge to its asymputetiay rate quickly (even if there exists an asymptotic
decay rate), and hence approximations such as the hybrid scheme perforpoquiye

The curve labeled “Rate-Variance” (or MVA “Lower Bound”) in Figure 2 depicts tasults of the admission control
test in [18]. This admission control test is able to capture the xpomential relationship between loss and delay, and
although theoretically, the curve is a lower bound to the tail prolighil empirically behaves like an upper bound to the
loss probability.

Finally, the curve labeled “MV Approx” is the result of mapping the Mpiper bound for the tail probability to the
loss probability in a finite buffer system [17]. This curve follothe simulated tail probability quite closely, capturing the
non-exponential nature of the loss curve.

3.1.4 Admissible Region for Multiplexed Video Flows

An admission control test’s effectiveness is ultimately determined bghiigty to correctly decide whether or not a new
traffic flow can be admitted while still satisfying the QoS constragitall established flows plus the new one. Figure 3
evaluates a number of admission control tests in such a manner.
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Figure 3: Admissible Region Comparisons for Video Sources

For a tail probability oft0~¢, the figure shows the maximum number of admissible flows, expressaderage utiliza-
tion, versus delay or buffer size. A point on one of the curves indicatesiiximum value ofV for the corresponding
delay and tail probability. The simulation curve depictsiteasurecddmissible region, whereas the other curves depict the
admissible regions estimated by the corresponding admission ttedte A desirable property of an admission control
algorithm is that its admissible region be as close as possibletmob greater than, the simulation curve. In other words,
the goal is to utilize resources as highly as possible without admittiore flows than can actually be supported, which
would result in violations of the promised QoS.

From 1 msec to 50 msec delays, the trace-driven simulation curve ofeé=gygshows the actual achievable average
utilization of the multiplexer is in the range of 58% to 85%. Suaghhitilizations indicate that these MPEG-compressed
video flows are well suited to statistical multiplexing despite thanstiness over multiple time-scales. Note also that, as in
Figure 3, buffering has a considerable advantage up to approximataety20rhsec; but beyond that, additional buffering
does not significantly increase the admissible region.

Of these admission control algorithms, the MVA upper bound (ferttil probability) most closely approximates the
measured admissible region, with the MVA loss, lower bound, andvaaiance tests also approximately following the true
admissible region and capturing trends such as the relative benefitsiog dudfer space. The remaining approaches are
significantly more conservative. We investigate the reasons for thpseieental observation in Section 4.

3.2 Empirical Evaluation for Voice Sources

In this section, we evaluate the admission control tests for inpificrthat is modeled via Markov Modulated on-off
processes. We use this model for two reasons: first it provides a a$alioomparison of the admission control tests
under a simpler and more widely studied scenario. Second, this model is aatacd accepted model for voice traffic
as it captures the behavior of encoded voice by alternating between “active” @tipaaotive” (off) states.

3.2.1 Scenario

For our experimental setup, we again consider a 45 Mbps link servingjphaxed voice sources. With encoded voice’s
alternation between active and inactive states, Markov modulated on-off pesdesve frequently been used to model voice
traffic [46, 47]. A Markov modulated on-off source is one in whichficak transmitted only in the on-state, and the source
spends an exponentially distributed duration of time in the on afstaites. In theory, one could solve a series of equations
(balance equations) to calculate the exact loss or tail probability foicadlieue serving on-off sources. However, in this
case, since well over a thousand voice sources can be multiplexed on a 43iMkpssich an exact analytical solution
becomes computationally infeasible. Hence, we again use simulations tatevle various admission control algorithms.



For these simulations, we assume a 1 msec slot size and use a disneetertoff Markov Modulated Fluid process as a
voice source model. For each source, when in the on-state traffic is geneithtedflwid rate of 0.85 cells/second (which
corresponds to 32Kbps for an ATM size cell). Further, for each sourcg;;lebrrespond to the transition probability from
statei to statej (for i = 0,1 andj = 0, 1), where statdé) corresponds to the off-state, and stateorresponds to the
on-state. Theryyy = 0.9983, po1 = 0.00167, p1p = 0.0025, p;; = 0.9975. To obtain reliable results at very low loss (or
tail) probabilities we use thimmportance samplingimulation technique described in [28].

3.2.2 Tail Probability for Voice Sources

The experiments reported in Figures 4 and 5 (for the loss and tail piitleabrespectively) are based on the above simu-
lation scenario with a utilization of 93%, which corresponds to 2906evflows on the 45 Mbps link.

Figure 4 depicts the tail probability versus delay that a packet experienttesgueue. As in the case for MPEG video,
in this scenario, even if a packet’s deadline is violated at a queue, the packéti®pped, but held in case its delay could
be made up down-stream.

Once again, note that the additive effective bandwidth approach resaltsurve that is quite conservative, and results
in almost a 4 orders of magnitude overestimate of the tail probabiltywever, in this case, the Chernoff Dominated
Eigenvalue approach of [14] performs better than in the case of muktiglexieo. The reason for this is that the prefactor
term used in [14] helps capture the statistical multiplexing gain dieg aggregation of the sources. Since multiplexed on-
off sources do not exhibit strong multi-time scale correlationsihgle exponential approximation does manage to provide
a reasonable match with simulations (even though for larger buffertsizemtsmatch is almost two orders of magnitude).
The MVA upper bound and the lower bound both accurately track the taibpitily and encapsulate it within a relatively
narrow envelope.

100 —=———
1072, \\\\\\\\\\ i
H R
Ebt\
2 —4; >
5 10 4
&
o
a -
F10° T
[
- Effective BW
.||~~~ Chemoff DE
10 " r|-=- MVA Upper Bound *
—e—  Simulation
* Lower Bound
-10 .

1 O I I I
0 2 4 6 8

Queue Length (msec)

Figure 4: Tail Probability Comparisons for On-Off (Voice) Sources

3.2.3 Loss Probability for Voice Sources

Figure 5 depicts the loss probability versus delay for the case in vehpdcket is dropped at the multiplexer if it violates
its delay requirement.

The simulation curve again reports the actual fraction of packets that exaebdfthr level (or equivalently the delay
requirement). For small buffers, the Avg/Peak admission controldesbie accurate than the effective bandwidth test, but
again becomes increasingly inaccurate for larger buffer sizes due to the aissuofipt bufferless multiplexer.

The “Hybrid” scheme [15] accurately captures the effect of statistical mekipy, and as can be seen in Figure 5,
accurately captures the loss probability for small buffer values. Howsirailar to the case of the Chernoff Dominant
Eigenvalue approach, for large values of delay, the scheme can overestimktestpeobability by up to two orders of
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magnitude. The “Rate-Variance” (or MVA “Lower Bound”) approach performs wadhan the hybrid scheme until larger
buffer sizes, and the “MV Approx” curve [17] most closely follows theasured loss curve.

3.2.4 Admissible Region
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In Figure 6 we compare the simulated admissible region with thbdeeadmission control algorithms. Following the
approach taken earlier, for a tail probability of—¢, the figure shows the maximum number of admissible traffic flows,
expressed as average utilization, versus delay or buffer size. The sonutative of Figure 6 shows the actual achievable
average utilization of the multiplexer is in the range of 91% to 9493198 to 3303 multiplexed flows. These high
utilizations are again due to the fact that voice traffic is well suited tmgpdvantage of a statistical multiplexed system.

Of these admission control algorithms, the Rate Variance approach (ArlldWer Bound) most closely approximates
the measured admissible region, but being a lower bound, sligktleels the admissible curve. The MVA upper bound
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follows the admissible region curve quite well, while being setnat conservative (a useful feature for admission control).
In this case, the Chernoff Dominant Eigenvalue approach and Ave/Peak testalsoeasonably well (the latter being
increasingly worse for larger allowable delays), while the additivectiife bandwidth approach is again quite conservative.

4 Admission Control Tests: Approximations and Accuracy

4.1 The Rationale of Gaussian Modeling

The experiments of Section 3 have shown that modeling the aggregaté process as a general Gaussian process results
in good estimates of the tail probability even when the number of souncdifplexed is moderate (as in the case of the
video sources). As discussed previously, the Gaussian characterizatiotivated by the Central Limit Theorem, since a
link in a high-speed network is expected to carry many traffic sources. Qua@tgje of a Gaussian characterization versus
other types of models is that it requires less detailed knowledge of tireesthan for example Markov arrival models.
However, one could then ask the question, why not appeal to a Poissibthorem and characterize the aggregate traffic
to a multiplexer as a Poisson Process (after all the Poisson Process daaraeterized simply by its mean). The reason
is quite simple: the Poisson Limit theorem involves a very diffetgpé of scaling, and the Poisson traffic characterization
destroys the temporal correlation structure of the traffic, in fact makimgmoryless (independent and stationary incre-
ments!). Since real traffic is highly correlated, a Poisson characterizaBatts in grossly incorrect loss (or tail) probability
calculation, and hence a wrong admissible region. The Gaussian charaatgripatthe other hand, is very useful since
it allows for different correlation structures (any function can be a \alitbcovariance function), and hence captures the
temporal correlation of the traffic. As an illustrative example, usirgtéthniques of [48], one can compute the loss prob-
ability for fractional Brownian motion, a self-similar process, asidal special case, as it merely represents a particular
autocovariance function.

4.2 Impact of Buffering

The experiments of Section 3 evaluate the impact of buffer-size scalibhgtarthe multiplexer’s performance as well as the
effectiveness of the different admission control algorithms. The tragerdsimulation experiments indicate that even for
highly correlated traffic some buffering is of substantial benefit. kan®le, our simulations show that with 66 multiplexed
MPEG flows, 30 msec or approximately 170 kBytes worth of bufferingekses the loss probability from .003e10~".
Further, considering the admissible region and a loss probabflitp—6, 30 msec of buffering increases the admissible
region from 49 to 66 flows, for a 35% improvement. As noted in Seciothe incremental advantages of an increased
buffer size do not extend indefinitely, but rather decay quickly once tHeptexer has 10 to 20 msec of buffering. In the
case of on-off sources, buffering is of lesser benefit in that it does ndglt ress significant an increase in the admissible
region. However, in real systems one expects a mix of both mulé-fiaale correlated traffic such as video and short-term
correlated traffic such as voice, so that the resulting aggregate traffiodéikd exhibit multi-time scale properties. Hence,
the conclusions about buffers drawn from the experiments with \tidees are more relevant in realistic network design.

Thus, for the video sources with the importance of buffering in theadgystem, admission control tests that take into
account buffer size scaling are able to significantly out-perform thagedthnot. Indeed, the Avg/Peak admission control
test of [7] is one of the more conservative tests partially becauseasstemption of a bufferless multiplexer.

We note however, that the aforementioned 35% increase in the admissjfide of Figure 3, or the 4 orders-of-
magnitude decrease in the loss probability, comes at a cost: the cosis wfemory itself; buffer management costs;
and potential increased complexity in the admission control tests, asriestporating network buffers must also consider
the traffic’s autocorrelation structure.

4.3 Economies of Scale in the Number of Flows

As the number of multiplexed sourc@é increases, the amount of resources (bandwidth and buffer space) that must be
reservedper sourceshould decrease as an effect of statistical multiplexing and a simple camsmgaf the law of large
numbers. In other words, we expect to have economies of scale in theenafmbultiplexed sources. While most admission
control tests we considered exploit such economies of scale, additive \edfféetndwidth tests do not, since such tests
determine a flow’s resource demands using only the stochastic pespefthe source itself (e.g., its index of dispersion),
independent of the properties of other sources or the total number afesolbeing multiplexed. Indeed, independently
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summarizing the resource requirements of heterogeneous and burstystraffies by per-flow bandwidths was exactly the
goal of the original work on additive effective bandwidths. Howewastis evident from Figure 3, the approach’s lack\of
scaling significantly limits the achievable utilization.

4.4 Loss Curve

The relationship between the packet loss probability and the buffer simd=agure 3 is often referred to as the loss curve.
While the ultimate goal of an admission control test is to correctly deter the admissible region, many admission control
tests have been designed with an intermediary focus on the shape ofgloeifes. For example, [14] is motivated by the
dominant eigenvalue of Markovian sources to approximate the loss cuttvamvexponential relationship, ~ Ke™%%.
Effective bandwidth schemes also assume an exponential relationshiftout we 1.

Our simulation results of Figure 3 depict a loss curve that is sianitly different from exponential. While long range
dependence is a plausible explanation for this [38], it could alsodttethle multiple-time-scale correlation of the sources
results in this very slow convergence of the loss (or tail) probghiiits asymptotic slope.

We note that the maximum variance based admission control tests of Seetiare able to track this non-exponential
loss curve quite well. These tests do not assume that traffic flowsragednge dependent, but rather use a general second
moment traffic description to obtain the required loss (or tail) curves.

In [14], trace drive simulations were also performed and the reportsddarves are nearly exponential. Consequently,
the Chernoff Dominant Eigenvalue test of [14] was quite accurate faetieaperiments. While we found corroborating
results forvoicesources, for video sources we found that the measured tail or loss ctavdrizm exponential so that the
Chernoff Dominant Eigenvalue test is considerably less accurate. This mayban due to a combination of the fact that
(1) [14] used a videoconference trace which likely does not exhibit #ioig-scale rate variation; and (2) [14] used JPEG-
rather than MPEG-compressed video, with the latter having substgmtialie rate variation on small time scales as well.

Here we note that for sources that are correlated over small time scalesh@.gn-tff voice sources), any admission
control test that accurately estimates the statistical multiplexing gainhe prefactod< in front of the exponential in
Equation (3), will capture the loss (or tail) probability quite wveHowever, techniques such as the additive effective
bandwidth that are unable to capture this statistical multiplexing, gaitechniques such as the Ave/Peak combinatorics
that do not account for non-zero buffers, will still tend to be rather eoragive.

4.5 Important Traffic Parameters

In addition to assumptions about the shape of the loss curve andrkebwiier sizes, an admission control test must
characterize traffic flows according to a parameterized traffic model.

The on-off traffic model used in the admission control test of [ fésgimplest of the models we considered here (indeed,
peak and average rate are likely the minimum amount of information neeqed\inle a statistical service). While this
model is simple and closely related to standard traffic models (which spexafyrate, average rate, and burst length), it is
also quite closely tied to the assumption of a bufferless multiplexgich as described above, has a considerable utilization
penalty for an admission control test. Indeed, to take into account theseffidmtiffering, more information is needed about
the traffic flows such as their autocorrelation structure, their maximues ater various interval lengths [49], or at least a
burst length parameter.

While many admission control tests can work well with on-off sourcdsemthese same admission control tests are
applied to the compressed video sources we have considered here, thehistsensiderable inaccuracies. For traffic
flows that exhibit multiple time scale rate variation, we argue thateefiraffic models (beyond peak and average rate) are
needed to extract the full statistical multiplexing gain. For exampéeptoposed traffic model of [49] characterizes a source
by a family of rate-interval pairs where the rate is a bounding rate tieecdrresponding interval length. Such parameters
can also be used to bound or approximate stochastic parameters such as vheaate envelope considered here [24,
50]. A second possibility is to have users directly convey their secomghent characteristics to the network, which our
experimental results indicate can accurately estimate the admissible.réfgitartunately, the downside to incorporating
more sophisticated traffic models is two fold: first, additional tcaffarameters are needed beyond the standard three
parameter models, which also means that policing requires at least multidakgl buckets rather than a single leaky
bucket (see [49]). Second, the more detailed the traffic parameter, the ghealberden on network clients to accurately
characterize their traffic in advance.
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It therefore appears that if a refined traffic model is not used, statistisétesmould yield such low resource utilization
for bursty traffic flows that either renegotiated services [51, 5] or measemt based services [19, 20, 21, 22] must be used
instead. While such services have their own merits as discussed in teetiespvorks, they unfortunately cannot provide
statistical QoSyuaranteegper se. Moreover, a renegotiated service requires increased signaling overti@achaasure-
ment based service must successfully make accurate predictions of futuneeasmuirements using past measurements of
aggregate multiple time scale sources, which, as we have seen herefisu#t gifoblem even when future arrival statistics
are known.

Lastly, we note that admission control tests differ in their companati complexity or the number of instructions that
must be executed upon the arrival of a new admission request. Whileratipn of this issue is beyond the scope of this
current work, we do note that all of the schemes we have considered wegaekbsiith implementation considerations,
with [7] giving this issue the most attention.

5 Conclusions

From the results of our trace-driven simulations and admission daxperiments with a diverse set of admission control
algorithms, we make the following observations. (1) Assumingféebess multiplexer introduces a substantial utilization
penalty if the actual multiplexer does contain buffer space. (2) Economissaté in the number of multiplexed flows
is a crucial component to achieving a high degree of accuracy. (3) Expediliyestiserved loss curves (loss probability
vs. buffer size) for compressed video sources are quite different than thaaly assumed exponential relationship.
If indeed the curves do asymptotically (with buffer size) become expaletite convergence rate is usually quite slow,
which renders exponential types of approximations fairly inaccurate oyanaaningful buffer size or loss probability. (4)
Refinements of current standard traffic models are required in order to aelta&sonable statistical multiplexing gain and
a statistical QoS guarantee. (5) Admission control tests that work dgrably well with exponential on-off sources can
suffer from considerable inaccuracies when applied to multiple time scateessuch as compressed VBR video.

We found that a number of admission control tests from the litergteiri®rm quite well experimentally for both on-off
sources and compressed video sources, including algorithms by thesguiB,ot8] and others [38, 42, 43].
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