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Abstract. Supporting Quality of Service (QoS) is an important objective for future mobile systems, and requires resource reservation
and admission control to achieve. In this paper, we introduce an admission control scheme termed Virtual Bottleneck Cell, an approach
designed to scale to many users and handoffs, while simultaneously controlling “hot spots”. The key technique is to hierarchically control
an aggregated virtual system, ensuring QoS objectives are satisfied in the underlying system without per-user resource management such as
advanced reservations of bandwidth in a user’s predicted future locations. We develop a simple analytical model to study the system and
illustrate several key components of the approach, such as balancing the conflicting design objectives of high utilization, scalability, and
ensured QoS. We formulate the problem of clustering cells into virtual system as an optimization problem and propose a heuristic adaptive
clustering algorithm as a practical solution. Finally, we evaluate the scheme by developing a simple analytical model, devising an optimal
off-line algorithm, and performing simulations of a two-dimensional network.
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1. Introduction

Next generation wireless and mobile devices will support
applications ranging from traditional cellular voice to web
browsing and interactive multimedia applications. Concur-
rently, packet networks are evolving from the best effort
model of the past to networks which support multiple ser-
vice classes [26]. An important challenge is to incorporate
user mobility into future network service models and resource
management algorithms [24].

To satisfy the performance demands of such future mobile
users, the network must limit the severity, frequency, and du-
ration of overload due to handoffs and user mobility. While
special-purpose scheduling algorithms can mitigate the ef-
fects of error prone wireless links [7,20,21], admission con-
trol and resource reservation must ultimately be employed to
pro-actively ensure that mobile users’ Quality-of-Service re-
quirements can be satisfied.

In cellular voice systems, guard channels provide a simple
but effective mechanism for controlling QoS by statistically
allocating capacity in each cell exclusively for users handing
off [23]. In contrast, the expected diversity of future applica-
tions, traffic types, QoS requirements, and mobility patterns
has prompted a significant research effort for alternate solu-
tions [1,5,6,8,12,14,18,22,24,25]. For example, capacity can
be reserved for a particular user at future times in nearby cells
as dictated by the mobile unit’s current location and velocity,
past mobility behavior, and/or other model-based prediction
techniques.

While such reservation schemes have demonstrated sig-
nificant performance advantages over even well-engineered
guard channels, they incur two limitations when applied to
future networks. First, per-user prediction and dynamic
resource reservation place computation and communication
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burdens on the network’s infrastructure which increase poly-
nomially with the number of users and handoffs [10]. Hence,
the scalability and applicability of such solutions to future
micro- and pico-cellular networks is not well established.
Second, as illustrated in figure 1, Quality of Service is assured
only with the proper mechanisms at all time scales, ranging
from channel access at the “bit” time scale, to admission con-
trol at the session time scale. A key difficulty encountered
with location prediction is that it must bridge two fundamen-
tally different time scales, and extend location estimations at
the handoff time scale to session QoS measures at the ses-
sion time scale. Unfortunately, this gap can widen in pico-
cellular environments in which cell residence times decrease
while session lifetimes do not. Finally, we have experimen-
tally found that advance reservation schemes require accurate
prediction of both location and time, namely even if a user’s
future locations are precisely known a priori, admission con-
trol can still be conservative if the handoff times correspond-
ing with those locations are not also known.

In this paper, we develop a new admission control algo-
rithm which achieves scalable QoS control of mobile users.
Our key technique is to aggregate users and a cluster of cells
into a Virtual Bottleneck Cell (VBC) in such a way that by
controlling parameters of the virtual cells we ensure that QoS
is satisfied in the underlying system. We develop an approach
to characterize and control system QoS via two parameters.
The first, which we refer to simply as “overload”, is the mean
fraction of capacity that is over-booked: it reflects the extent
to which bandwidth demand exceeds available capacity, and

Figure 1. Time scales of system control.
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consequently, the severity and frequency that users must adapt
to lower bandwidths. The second parameter is the “outage
time scale”: when a cell is overloaded, this refers to the mean
time until the cell returns to a non-overloaded state.

Our approach is motivated by two key design objectives.
First, by managing resources in an aggregated virtual sys-
tem, we control system QoS without requiring accurate pre-
dictions of the times and locations of each user’s future hand-
offs. In this way, we ensure that our solution is scalable to
a large number of users and handoffs, such as in micro- and
pico-cellular environments with a potentially large number of
handoffs per user. Second, we ensure that when parameters
of the aggregated VBC are properly controlled, QoS levels in
cells of the actual systems are also guaranteed to be satisfied,
even in environments with heterogeneous spatial demands. In
other words, our approach manages “hot spots” and system
bottlenecks to simultaneously achieve scalability and efficient
and accurate resource control.

As VBC is an aggregate QoS scheme, an important is-
sue is the mechanism for aggregation and deaggregation of
cells, i.e., the cell clustering policy. To address this issue,
we formulate the clustering policy as a constrained optimiza-
tion which seeks to maximize system utilization subject to a
limit on inter-cluster handoffs. This formulation has the ef-
fect of achieving a balance of scalability, strong QoS assur-
ance, and efficient resource utilization. We show that a closed
form solution for the optimal clustering policy cannot be ob-
tained without strong assumptions on user mobility patterns,
namely, a detailed and accurate stochastic model of user mo-
bility. As such models are not available, we propose a heuris-
tic adaptive clustering algorithm, with the goal of accurately
approximating the ideal solution while responsively adapting
to changes in user mobility behavior and system conditions.
The algorithm’s key technique is to discover the correlations
among occupancies of neighboring cells, and form clusters
based on these correlations only as resources become over-
loaded.

To analyze the performance of the VBC algorithm and il-
lustrate several important design issues, we analyze the sys-
tem in three ways: theoretical analysis, comparison with op-
timal off-line benchmarks, and simulation.

First, we develop a simple analytical model to study this
system. We illustrate our approach’s ability to control system
bottlenecks, and explore the implications of heterogeneous
user demands on system performance.

Second, we develop a technique based on [4,10], which
we term Perfect Knowledge Algorithm (PKA). PKA serves as
a benchmark for evaluating algorithms which manage mobile
QoS. We show that it is the optimal off-line admission con-
trol algorithm in that it obtains the maximal admissible region
subject to the empirical QoS constraints and system rules. In
particular, PKA considers a set of users’ admission requests
in which each user has an associated bandwidth demand and
mobility pattern (i.e., times and locations of handoffs over the
duration of the session), and the goal is to select the optimal
subset of users for admission which maximizes the system’s
utilization while satisfying the required QoS. We show that

the general problem can be formulated as a non-linear con-
strained optimization problem. Moreover, for the special case
of zero probability of handoff drop, we show that the solution
can be expressed as a linear constrained optimization prob-
lem, and computed efficiently using standard tools.

Finally, we perform an extensive set of simulations and ad-
mission control experiments using a two-dimensional 64-cell
network. We first study the performance and characteristics
of the adaptive clustering algorithm. Then we utilize PKA
to assess the performance of our approach in more realistic
scenarios. We find that the VBC algorithm with the adap-
tive clustering policy is able to control the admissible region
within a narrow region.

The remainder of this paper is organized as follows. In
section 2 we describe the system model and role of admission
control. In section 3 we develop the VBC approach and in
section 4, we define the clustering problem and propose an
adaptive clustering algorithm. To analyze the system, in sec-
tion 5, we introduce an analytical model to study the problem.
In section 6 we describe an optimal off-line benchmark which
we apply to simulation experiments in section 7. Finally, in
section 8, we conclude.

2. System model

The system model that we consider is depicted in figure 2. It
consists of a collection of base stations connected to routers
or switches which are in turn inter-connected over a backbone
network. Multiple service classes are provided over the back-
bone network via a mechanism such as [3] and extended to
the wireless network via a wireless/mobile QoS architecture
(e.g., [16,24]). We focus on traffic classes requiring higher

Figure 2. System model.



ARCHITECTURE AND ALGORITHMS FOR SCALABLE MOBILE QOS 9

priority than “best-effort” service, including not only users
of interactive multimedia applications, but also users of tra-
ditional applications such as web browsing that wish to sub-
scribe to a premium service with bounded outage times.

In such a mobile-QoS network, admission control is em-
ployed to ensure that each traffic class is allocated suffi-
cient system resources to meet its quality of service demands.
Moreover, for efficient resource utilization, such reservations
and hence all QoS measures are statistical in nature; conse-
quently, demanded bandwidth will at times exceed the avail-
able capacity due to overbooking of system resources. The
goal of the admission control algorithm is to limit the fre-
quency, severity, and durations of such overload periods to
within prespecified limits defined by the service. Indeed, the
extent to which demand overloads the system capacity and the
time scales of the overload will be the key Quality of Service
metrics that we consider. Below, we formally define these
QoS metrics and develop an approach to provision resources
to meet these objectives in a coarse-grained manner.

Finally, we note that during the overload periods, some es-
tablished sessions will obtain a reduced service, and be forced
to temporarily adapt to a lower bandwidth. Mechanisms and
policies for adapting to such overload situations are devel-
oped in [9,15,19], for example, and are beyond the scope of
this paper.

Throughout, we focus on a single QoS-controlled class,
and denote the available capacity or bandwidth of cell j to the
users in the QoS class by Cj , and the demanded bandwidth or
occupancy at time t of this same group of users by �j(t).

3. Virtual Bottleneck Cell (VBC)

In this section, we first overview our design goals for scalable
system control. We then introduce Virtual Bottleneck Cell
(VBC) as our approach towards achieving these design goals
and sketch a particular algorithm as an example of controlling
QoS in the VBC, and hence in the system itself. We describe
the key QoS metrics that we use to manage a cluster of cells
and show how they can be empirically measured for an on-
line admission control algorithm.

3.1. Scalable control

To control QoS in mobile networks in a scalable way, we pro-
pose a novel approach termed Virtual Bottleneck Cell. With
VBC, a network of virtual cells is managed to aggregate not
only the behavior of individual users within the cells, but
also of individual cells within a cluster. We will show that
system-wide QoS can be effectively controlled by managing
resources in the virtual system, rather than by allocating ca-
pacity on a per-user or per-cell basis.

As illustrated in figure 3, we aggregate the state of clusters
of cells into VBCs with the following objectives:

• Scalable, low overhead QoS control. For many mo-
bile users with a potentially large number of handoffs in
micro/pico-cellular environments, our approach manages

Figure 3. VBC illustration.

QoS by controlling aggregated system parameters rather
than tracking individual users through the system. We pro-
vide a concise representation of the virtual system to sig-
nificantly reduce communication and computational over-
heads.

• QoS assurance in “hot spots” and system bottlenecks. We
ensure that by controlling parameters in the virtual sys-
tem, we guarantee certain QoS levels in cells of the actual
systems, even in environments with heterogeneous spatial
demands.

3.2. Sketch VBC algorithm

Here, we outline a particular algorithm towards achieving the
objectives above. We consider two Quality of Service mea-
sures: overload, and the time scale of overload.

Consider a set of cells C which form a cluster, and a group
of K clusters C1, . . . , CK , for which QoS is to be provisioned.
We construct a Virtual Bottleneck Cell for each cluster and
characterize the overload of cluster Ck by

γk
�= max

j∈Ck

E(�j − Cj)+

Cj

, (1)

where (x)+ denotes max(x, 0). This measure reflects the
frequency and severity of overflow, i.e., how often overload
occurs, and the extent to which the system is overloaded.
Throughout this paper, we will refer to γ as simply “over-
load”.

Second, we define the overflow time scale of VBC k by

Tk
�= max

j∈Ck

{
Eτj : �j(u) > Cj for u = [s, s + τ ]}, (2)

which denotes the maximum mean duration of overflow of
any cell in the VBC. (See also [2] for a related measure of a
user’s “degradation period ratio”.)

Notice that aggregation of the cells’ behavior into the vir-
tual cells via the “max” in equations (1) and (2) ensures that
by controlling parameters of the VBC, the QoS condition is
also satisfied in each constituent cell of the cluster.

Thus, γk describes the severity of VBC k’s overload,
whereas Tk describes the durations over which demand ex-
ceeds capacity. We provision resources according to these
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QoS measures rather than the more traditional probability of
handoff drop in order to generalize our solution to systems
in which users adapt to overflow situations rather than hav-
ing their session dropped all together. For example, rather
than dropping sessions upon overflow, users may prefer to
temporarily renegotiate to lower reserved bandwidths or even
incur temporary service outages.

To maintain Quality of Service to within prespecified lev-
els set by the class requirements, we employ admission con-
trol and resource reservation as follows. First, a new user is
assigned a bandwidth �new according to its traffic character-
istics and the underlying medium access scheme (see [13], for
example). Next, the router managing the cluster for which the
new user is requesting access (see figure 2) only admits the
user to the requested class if the predictions of the two afore-
mentioned QoS measures are within the class’ requirements.
Hence, for a particular cluster k, the empirical overload of
the VBC, after incorporating the impact of the new user, is
adaptively computed using measurements at the base stations
constituting the cluster as

γ̂k = 1

W
max
j∈Ck

1

Cj

t∑
s=t−W

max
(
�̂j (s) + �new − Cj , 0

)
, (3)

where W denotes the measurement window and �̂j (s) de-
notes the measured occupancy of cell j at time s.

Similarly, denote

Oj(s) = 1
(
�̂j (s) + �new > Cj

)
as an indicator function of overload in cell j at time s, includ-
ing resources that would be demanded by the new user if it
visits cell j . Then the VBC’s mean outage time scale is given
by

T̂k = max
j∈Ck

∑t
s=t−W Oj(s)∑t

s=t−W 1(Oj (s) > Oj(s − 1))
. (4)

Thus, when a new user requests a QoS-controlled session
in a particular cell, the network admits the session at the re-
quested QoS level only if the predicted service levels as given
by equations (3) and (4) are satisfied in the corresponding vir-
tual cell. Consequently, the user will have limited durations
and severity of outages while moving within the boundaries
of the cluster.

Notice that the admission test ensures that if the new user
had been active for the past W slots, the empirical QoS mea-
sures would have been satisfied in every cell of the VBC for
that duration. If in the future, users move in such a way that
the empirical QoS measures go above their target values, fu-
ture sessions will be blocked based on the updated measure-
ments of the network conditions. Similarly, as users exit the
system, the measured parameters of equations (3) and (4) de-
crease over time allowing new users to be admitted to the sys-
tem. This adaptiveness of the admission control algorithm
reveals the importance of the measurement window: proper
setting of W is required for any measurement-based algo-
rithm, as it must strike a balance between system responsive-
ness and stability. In this case, it should be set to be larger

than the mean cell residence time but smaller than the mean
session lifetime. Specifically, setting it smaller than the res-
idence time will not incorporate the key system feature that
is being controlled, viz., outages due to handoffs; moreover,
setting W larger than the session lifetime will skew the QoS
predictions by including the effects of sessions that no longer
exist.

4. VBC cell clustering

In the previous sections we showed that for a given cluster
configuration, VBC admission control provisions resources
based on aggregated information of users’ and cells’ empiri-
cal characteristics.

Here, we address the algorithm by which cells are clus-
tered into virtual cells. An efficient clustering policy must
achieve a balance in cluster size: networks divided into
smaller clusters will have aggregated VBCs that accurately
represent the conditions throughout the cluster. However,
smaller clusters also increase the number of inter-cluster
handoffs, which are undesirable since no resources are re-
served outside of a user’s initial cluster.1 On the other hand,
larger clusters will reduce the number of inter-cluster hand-
offs, yet will also reduce the correlation among loads in a
cluster’s cells. In particular, users will not be admitted if there
is overload anywhere in the VBC. Thus, if the VBC is too
large (consists of too many cells), users will be unnecessarily
rejected.

4.1. Optimal static clustering

Standard clustering techniques seek to find similarities in a
set of objects and group them such that objects within a clus-
ter are similar to one another, and dissimilar from objects in
other clusters. For example, a distance measure among ob-
jects can be defined so that objects are grouped in different
clusters to minimize the total distance between objects in each
cluster [17].

In contrast, the cell clustering problem must not only clus-
ter cells with similar workloads, but must also account for
user mobility among cells, i.e., the extent to which neighbor-
ing cells impact each other’s overload behavior. More im-
portantly, the ideal clustering policy is clearly dependent on
the system inputs (user mobility behavior and demand), and
hence, clustering must be dynamic in practice. Thus, we first
devise the optimal static clustering policy, and then develop a
heuristic adaptive algorithm to approximate this behavior.

We formulate the clustering problem as follows. Given
a subnetwork of M cells along with their empirical over-
load and outage time scale measures, find the combination
of groups of cells (clusters) such that first, each cluster is
connected, i.e., it consists of neighboring cells, and second,
applying the VBC admission control in the network (which
ensures overload and time scale measures requirements are

1 We therefore consider the probability of inter-cluster handoff as a general
measure of system QoS.
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satisfied), minimizes the probability of inter-cluster handoff
(which as defined below is a measure of the service certainty)
and at the same time maximizes the network utilization.

Let K denote any possible clustering policy of a system of
size M during the observation period of T time units. Then K
can be written as a T by M matrix, where row t , t � T , is the
cluster configuration of the M cells at time t . Consider a set
of users S requesting admission to the network. For each user
x ∈ S, let its mobility pattern be defined by the matrix Ax of
indicator functions [10], such that

Ax
j,t = 1

(
L(x, t) = j

)
, (5)

where L(x, t) is the number of the cell in which user x is
located at time t . Moreover, let FK(x, t) denote the cluster
number, L(x, t) belongs to at time t . Also Cj , j = 1, . . . , M ,
and �A(j, t) respectively denote the capacity of cell j , and
the occupancy of cell j at time t for a set of admitted users
A ∈ S.

For the observation period T , given a clustering policy K
and a set of admitted users A the system utilization can be
expressed as

U
K,A
T =

∑M
j=1

∑T
t=1 �A(j, t)

T
∑M

j=1 Cj

(6)

with the empirical probability of inter-cluster handoff given
by

P̂
K,A
HO (T ) =

∑
x∈A

∑
s�T 1(FK(x, s) �= FK(x, s − 1)]∑

x∈A
∑

s�T 1(L(x, s) �= L(x, s − 1))

(7)
which is the ratio of inter-cluster handoffs to the total handoff
attempts.

Let PK(HO) denote the probability of inter-cluster handoff
for clustering policy K, optimized in sense of minimizing the
probability of inter-cluster handoff in the network. An exam-
ple of K for a stationary off-line clustering is having all cells
in the subnetwork in one cluster. Note that even in that case,
the probability of inter-cluster handoff is greater than zero,
since users can still leave the subnetwork. We also denote the
probability of inter-cluster handoff for any given clustering
algorithm K, by PK(HO).

We then define the Cluster Isolation Factor (CIF) as

CIF = 1 − PK(HO)

1 − PK(HO)
, (8)

so that with no clustering (i.e., when each cell forms a clus-
ter by itself) the probability of inter-cluster handoff in the
network is 1, and hence, CIF equals 0; on the other hand,
having the cluster configuration which minimizes the inter-
cluster handoffs in the network, we have the maximum possi-
ble isolation among the clusters and CIF equals 1.

An optimal clustering policy K∗ is the one that applied to
the network along with the VBC admission control algorithm,
maximizes utilization U , defined in equation (6), subject to
the empirical QoS requirement P̂HO, or equivalently, ĈIF.

An analytical solution to this optimization problem would re-
quire a model of the cell occupancies as in equation (6), which
is a function of behavior of all users’ mobility characteristics
as in equation (5). However, due to the complex nature of a
group of users’ natural behavior, there is currently no suitable
model available for the users’ mobility pattern and, hence,
the cell occupancies. Moreover, even in the simple case of
static clustering with fixed sized clusters, the complexity of
the problem for a one-dimensional array of M cells is 2M−1.
In general, the clusters can have different sizes and shapes
varying with time and the only constraint on the shape of the
clusters is connectivity, i.e., starting from any cell in the clus-
ter, one should be able to go to all the other cells of the cluster
without leaving the cluster, thus further increasing the com-
plexity of the solution.

4.2. Adaptive clustering algorithm

Motivated by the intractability and dynamic nature of an ideal
clustering algorithm, we now develop a heuristic adaptive
clustering algorithm as an approximation to the above opti-
mization problem. In designing this algorithm, we exploit the
mobility patterns of users’ movements in order to form the
clusters.

Figure 4 illustrates the design objectives by depicting the
neighboring cells of a congested cell A. In order to make an
accurate decision regarding admission of new calls in this
group of cells, we measure the aggregated amount of hand-
offs between cell A and each of its neighbors. If for exam-
ple, there are excessive handoffs from cell B to cell A, then
admission of new users in cell B affects the QoS metrics in
cell A, since the users of cell B handoff to cell A with high
probability. Hence, these two cells must be annexed to form a
cluster. On the other hand, if cell F is annexed with A to form
a cluster, and the aggregated amount of handoffs from cell F
to cell A is too low, then in making decision on admission
of any user in cell F we are considering the load of cell A.
But, given that cell A is overloaded and there are not many
handoffs from cell F to cell A, it results in unnecessary rejec-
tion of admission requests in cell F, which reduces the system
utilization.

Figure 4. Clustering in neighborhood of a hot spot.
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Adaptive Clustering Algorithm

1. Initial Clustering: M Clusters of Size 1;
2. for (j = 1, . . . , M; t = 0, . . . , T ) {
3. if (�(j, t) � βCj ) {
4. for (all-neighbors-of-cell j ) {
5. if ([∑W BWin � αhCj ]∩[neighbor-not-in-cluster])
6. Add-Cluster-of-Neighbor-to-Cluster-of-Cell j ;
7. }
8. }
8. else if (�(j, t) < βCj ) {
9. for (all-neighbors-of-cell j ) {

10. if ([neighbor-in-cluster] ∩ [separation-condition (cell j ,
neighbor) ]) {

11. if (neighbor-not-connected-to-any-other-cell-in-cluster)
12. Separate-Neighbor-of-Cluster-of-Cell j ;
13. else if (neighbor-connected-to-cluster) {
14. separation-var = 1;
15. for (all-cells-in-Cluster-connected-to-Neighbor) {
16. separation-var = separation-var ∩ separation-condition

(Cell, Neighbor);
17. }
18. if (separation-var = 1)
19. Separate-Neighbor-of-Cluster-of-Cell j ;
20. }
21. else
22. return;
23. }
24. }
25. }
26. }

27. separation-condition (cell i, cell k) {
28. if ([�(i, t) < βCi ] ∩ [∑W BWin < αlCi ]){
29. if ([�(k, t) < βCk] ∩ [∑W BWin < αlCk]) {
30. return 1;
31. }
32. }
33. return 0;
34. }

Figure 5. Adaptive clustering algorithm.

More formally, the adaptive clustering algorithm is pre-
sented in pseudocode in figure 5 and described as follows.

Initial state. The algorithm starts from the initial state where
each individual cell in the subnetwork forms a cluster of size
one.

Clusters annexation. Consider cell j in figure 6(a) which
belongs to cluster B. Whenever the occupancy of cell j ex-
ceeds some multiple of the capacity of cell βCj , β � 0, the
handed-in bandwidth from the neighboring cells of cell j ,
cells i and k in figure 6(a), during the past W time slots is
measured, where W is a prespecified fixed window size. As
soon as the measured value of handed-in bandwidth for any of
the neighbors of cell j , cell i in our example, exceeds αhCj ,
αh > 0, the original cluster of the neighboring cell will join
the cluster of cell j to form a new cluster.

Cell separation. If the occupancy of cell j in figure 6(b)
becomes lower than βCj , then the handed-in bandwidth of

(a)

(b)

Figure 6. Process of (a) clusters annexation and (b) cell separation.

those neighbors of cell j which are in the same cluster with
cell j , cells i and k in figure 6(b), will be measured for the past
W time slots. If this value is less than αlCj , 0 � αl � αh, and
the neighboring cell is neither connected to any other cells of
the cluster nor overloaded, it will separate from the cluster to
form a cluster by itself. In the case that the neighboring cell
is connected to some other cell in the cluster, it will remain
a part of the cluster until the condition for separation holds
for all its neighboring cells which belong to the same cluster.
In figure 6(b) we see that in state (2), considering only cell i,
cell j can leave the cluster, but since cell k is in overload
status, it does not let any of its neighboring cells separate from
the cluster. In state (3), cell k is no more overloaded, and
hence, cell j can leave the cluster and form a cluster by itself
(state (4)).
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(a)

(b)

Figure 7. An example of adaptive clustering. (a) t = 25. (b) t = 100.

If when one cell leaves its original cluster, it results in sep-
aration of two or more parts of the original cluster, each sepa-
rated part will form a new cluster as well as the separated cell
itself.

By applying this algorithm to the network, the clusters will
be formed around the hot spots and bottleneck cells in the net-
work, and as the time passes and the congested areas change
(e.g., from downtown in the morning to the suburb in the af-
ternoon) then the clusters will also change the location and
follow the area of congestion.

The clustering algorithm has several parameters. The first,
β, controls the level of sensitivity to overload. The smaller β

is, the sooner the clusters form. Hence, in average there will
be larger clusters in the network, reducing utilization but in-
creasing CIF. The remaining parameters, αh and αl , control
the adaptivity of the algorithm. Larger values of αh increase
the time for two clusters to annex and smaller values of αl

increase the time for a cell to separate from a cluster. Thus,
when αh and αl are larger, clusters are smaller in size so that
utilization is higher and CIF is lower.

4.3. Example

Figure 7 depicts an example of the adaptive clustering algo-
rithm. Considering the subnetwork of 64 cells as shown in
the picture, the system starts at time t = 0, from the initial
state where each cell forms a cluster by itself. The users are
introduced to the network with Downtown Mobility Model
as discussed in section 7.1, therefore, the four cells 0, 7, 56,
and 63 are with high probability the destination of the users,
assigned to each user upon origination of the call.

Figure 7(a) shows the configuration of the clusters in the
network at time t = 25. The cells with white color are clusters
of size one, where the ones with the same shade which are
connected to each other, form clusters of higher sizes. For
example, the cells 6 and 7 form a cluster and cells 13, 14, and
15 form another cluster.

As shown, the formation of clusters is concentrated around
the hot spots (cells 0, 7, 56, and 63) of the system. The adap-
tive clustering algorithm implies that those two neighboring
cells join each other to form a cluster, that the moving av-
erage of the amount of handed bandwidth between them ex-
ceeds a prespecified value. As time passes and the users’ mo-
bility patterns change, the moving average of the handed-off
bandwidth between cells also varies. The adaptive clustering
algorithm follows these variations and reforms the clusters.
Comparing figures 7(a) and (b), we see the changes in clus-
ters at time t = 100 compared to time t = 25. The changes in
clustering configuration is due to the existing randomness in
the movements of the users. For example consider cell num-
ber 49; the occupancy of this cell both at t = 25 and t = 100
is less than 80% of its capacity, which is the threshold for
starting clustering process in this example. But at t = 25 it
forms a cluster by itself, whereas at t = 100 it has annexed
to its neighbors to form a bigger cluster. The reason is that
the aggregated handed-in bandwidth from cell 49 to cell 48
(which is a congested cell), measured during the past 10 time
slots, exceeds the threshold of 30% of the capacity of cell 48
(for this example). The figures show that although the clus-
ters adaptively change in shape and size, their concentration is
around those cells that are highly occupied and are considered
the bottlenecks of the system. Hence, the adaptive clustering
algorithm is successful in finding such cells and forming clus-
ters around them.

Finally, we note that in practice, the underlying physical
architecture of the network is another factor that affects the
efficiency of the clustering policy. Having cells which are
connected to different subnetworks or routers in one cluster
increases communication overhead and may not be desirable.
We have focused on the clustering problem within the set of
cells connected to the same router.

5. Analytical and numerical investigation

In this section, we introduce a simple analytical model to
study several aspects of admission control using virtual bot-
tleneck cells. Our model consists of a one-dimensional cel-
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Figure 8. Network model.

lular array similar to one which might be used in modeling
highways.

As shown in figure 8, the array consists of N cells with the
same length L, and cell j having capacity Cj , 1 � j � N .
The arrival of users and their speed of movement is determin-
istic. We consider time to be slotted and denote the rate of
new call arrivals by λ. Further, let ρr be the fraction of users
that move to the right and ρl be the fraction of users that move
to the left such that ρr + ρl = 1. Upon establishing a new
session, a user immediately begins moving with constant ve-
locity v. Thus, each cell can be viewed as being divided into
R = L/v regions. Moreover, new users arrive in a cell so that
the number of new arrivals in any time slot is the same in all
regions of the cell. Finally, we assume that the duration of a
session’s lifetime is exponentially distributed with mean 1/µ,
so that µ is the rate at which users depart from the system.

5.1. Overload

To calculate the overload γ defined in equation (1), we first
compute the severity of the overload in each cell j by calculat-
ing the expected value of the amount of resources demanded
beyond the available capacity as

E(�j − Cj )+ =
∞∑

i=1

i Pr(�j = i + Cj ). (9)

Note that since Pr(�j = i +Cj) is the fraction of time that
i + Cj users are active, E(�j − Cj )+ is the sum of occupan-
cies beyond the available capacity weighted by the fraction of
time spent in that occupancy. Thus, to calculate γ , we first
compute the probability that a cell is overloaded (i.e., its de-
manded capacity exceeds Cj ) as

Pr(�j > Cj ) = Pr(nhj + ngj > Cj )

=
max(Cj ,nmax

gj )∑
i=0

Pr(ngj = i) Pr(nhj > Cj − i),

(10)

where nhj denotes the total number of hand-in calls, and ngj

denotes the number of calls that originated in cell j . Note that
there exists an nmax

gj which is the maximum possible number
of calls originated in cell j , and is obtained when all sessions
that originated in cell j have a call holding time long enough
to leave the cell before being terminated. We observe that
only the calls that originated in the last (R−1) time units may

still be in the same cell (due to the users’ constant velocity),
and that in each time unit, λ/R users leave the cell, so that

nmax
gj = R + 1

2
λ.

Let Th denote the call holding time for a specific session
so that its distribution is given by

F(τ) = Pr(Th � τ ) = 1 − eµτ .

Then, to compute equation (10), we define the function

,(x, y, τ ) =
(

x

y

)(
1 − F(τ)

)y
F (τ)x−y,

and the vectors

.j(n, l) = [nj0, . . . , njl],
and

/j = [δj0, . . . , δj (R−1)],
where

δjl = min

(
i −

l−1∑
q=1

njq,
λ

R
(R − l)

)
,

and each element of .j(n, R − 1), njl , represents the num-
ber of active users in region l of cell j . The probability that
(nj0, . . . , nj (R−1)) sessions are still active in the R regions
of cell j is calculated by multiplying the individual prob-
abilities of njl users being active in region l of cell j , for
l = 0, . . . , R − 1. The different combinations of the number
of users in various regions such that the total number of users
is less than or equal to i must then be considered. The sum-
mation over these different combinations yields Pr(ngj � i),
which is the probability that the number of users originally
admitted in cell j is less than or equal to i, and is given by

Pr(ngj � i) =
/j∑

.j (n,R−1)=0

R∏
r=1

,

(
λ(R − r)

R
, nj (r−1), r

)
,

0 � i � λ(R + 1)

2
. (11)

Similarly, nhj is the sum of all active users that initiated
their calls in cell i, j < i � N , in the last R(N − j) time
units and are moving to the left, and also those that initiated
their calls in the last R(j − 1) time units in cell k, 1 � k < j ,
and are moving to the right. Therefore, defining the vectors

2j = [φj0, . . . , φj ((j−1)R)]
with elements

φjl = min

(
j −

l−1∑
q=1

njq,
λ

R
ρr

)
,

and

4j = [φj0, . . . , φj ((j−1)R)]



ARCHITECTURE AND ALGORITHMS FOR SCALABLE MOBILE QOS 15

with elements

ψjl = min

(
j −

l−1∑
q=1

mjq −
(j−1)R∑

q=1

njq ,
λ

R
ρl

)
,

we can then express Pr(nhj � i) as

Pr(nhj � i) =
2j∑

.j (n,(j−1)R)=0

4j∑
.j (m,(N−j)R)=0

XjYj , (12)

where Xj and Yj are expressed as functions of , as

Xj =
(j−1)R∏

r=1

,

(
λ

R
ρr, njr , r

)
,

Yj =
(N−j)R∏

v=1

,

(
λ

R
ρl, njv, v

)
.

Thus, combining equations (9)–(12), we have an expres-
sion for γk, cluster k’s overload measure.

5.2. Overflow timescale

We next turn to the overflow time scale of the virtual bottle-
neck cell defined in equation (2). We begin by computing the
distribution of the overflow time in a constituent cell under
the same assumptions of the model above.

Let h denote the call handoff rate. The probability that the
overflow time in cell j with capacity Cj is greater than s time
units, Pr(τj > s), is the probability that more than Cj users
remain in cell j for at least s time units given that the cell is
overloaded. Hence,

Pr(τj > s) =
∞∑

m=1

Pr(�j = Cj + m)

m∑
n=1

Zjs ,

where Zjs is defined as

Zjs =
(

Cj + m

Cj + n

)(
e−s(µ+h)

)Cj +n(1 − e−s(µ+h)
)(m−n)

.

Thus, the overflow time scale of the VBC can be easily com-
puted as the maximum Eτj of all cells in the cluster.

5.3. Numerical examples

We now perform numerical investigations applying the analy-
sis above. In figure 9, we show the results for N = 5, R = 1,
ρr = 2/3, ρl = 1/3, λ = 9, and Cj = 10 for 1 � j � 5. The
figure depicts the measure of overload for each of the five
cells, i.e., E(�j − Cj )+/Cj for j = 1, . . . , 5, for different
call departure rates and, hence, different mean call holding
times. The plot indicates that as 1/µ increases, the overload
measure increases since users stay longer in the network, and
hence, hand off a larger number of times.

Since the number of users who move to the right is twice
the number of those who move to the left, we observe that

Figure 9. Overload measure versus call departure rate.

Figure 10. Mean overflow time versus utilization.

the overload measure and the probability of overload in var-
ious cells is different. Across a wide range of call departure
rates µ, cells 5, 4, and 3 have the highest overload measure,
whereas cell 1 has the lowest. It is clear that most of the users
that originate their session in cell 1 will eventually end up in
cells 3, 4 or 5, which form bottlenecks in this case. However,
observe that no single cell is the bottleneck in all cases, and
thus, performing admission control according to overload in
the VBC ensures that the underlying QoS requirement is sat-
isfied in all cells of the cluster even in the worst case.

In figure 10 we show the mean overflow time (in time
units) for the virtual bottleneck cell as well as all five cells
of the underlying system. This overflow time is plotted ver-
sus the utilization of the system with µ set to 0.8 in all cases.
We define the VBC’s mean overflow time as the maximum
mean overflow times of all underlying cells as given by equa-
tion (2), whereas utilization is the successfully utilized system
capacity averaged over all cells of the network.

We observe that as the utilization increases, the mean over-
flow time also increases, and hence, admission control must
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be employed to limit its value. The plot also shows that there
are not significant differences among the mean overflow times
of the five cells for a given utilization. In addition, the mean
overflow time of the VBC closely follows those of the un-
derlying cells in the network, staying less than 0.5 time units
above the mean overflow time of any cell. This illustrates
that an admission decision based on the behavior of the VBC
ensures that the QoS requirement is satisfied in all underlying
cells without resulting in a significant decrease in the system’s
utilization.

In summary, we presented an analysis of a simple sys-
tem in which user mobility patterns result in spatially hetero-
geneous resource demands. We showed that the Quality of
Service parameters in the virtual bottleneck cell closely en-
velop those in the underlying system, demonstrating VBC’s
potential to accurately control system bottlenecks in a coarse-
grained way, with little cost in system utilization.

6. Perfect knowledge algorithm

Admission control algorithms make a sequence of admis-
sion/rejection decisions in which resources are reserved for
each admitted user. The performance of a particular algo-
rithm can be assessed by evaluating the accuracy of its admis-
sion decisions, that is, whether the algorithm properly lim-
its the handoff dropping probability to below the target Pdrop,
(and more generally, whether it limits the overload and outage
time scale) and whether it does so while maximally utilizing
the system’s resources, admitting as many users as possible
subject to the QoS constraint.

In this section, we utilize the framework of [4,10] to de-
velop a benchmarking algorithm for evaluating admission
control schemes in mobile multi-service networks. We term
our approach Perfect Knowledge Algorithm (PKA) as it ex-
ploits knowledge of future handoff events to ensure that the
maximal admissible region is obtained while satisfying the
empirical Pdrop constraint. Consequently, PKA, while unre-
alizable in practice, serves its benchmarking purpose by en-
abling us to evaluate the performance and effectiveness of a
practical on-line admission control algorithm by comparing
utilization and QoS values obtained by a certain algorithm
with those obtained using the idealized PKA.

6.1. General Pdrop

PKA considers a collection of call requests and target QoS
values and outputs the set of accept/reject decisions that re-
sults in the highest mean utilization of resources subject to
the required Pdrop. We first consider the general case of
0 � Pdrop � 1. In particular, consider a set of users S re-
questing admission to the network, and let user x ∈ S be
described by its required capacity cx , and let its mobility pat-
tern be defined by the matrix Ax of indicator functions such
that

Ax
h,j,t =

{
1 if L(x, t) = j after the hth handoff,
0 otherwise.

(13)

For a set of admitted users A ∈ S, the system utilization
can be expressed as

UA
T =

∑M
j=1

∑T
t=1 �A(j, t)

T
∑M

j=1 Cj

(14)

with the empirical dropping probability through time T given
by

P̂A
drop(T )

=
∑

x∈A
∑

s�T 1(L(x,s) �=L(x,s−1)∩�A(L(x,s),s)�CL(x,s))∑
x

∑
s�t 1(L(x,s) �=L(x,s−1))

,

(15)

which is the ratio of failed handoffs to handoff attempts,
with 1(·) denoting an indicator function.

Our goal is to find the set of users A∗ to admit which max-
imizes U subject to the empirical QoS requirement P̂drop. We
formulate the problem as a nonlinear constrained optimiza-
tion problem as follows.

We describe user x’s success in utilizing the system
via a vector defined as αx

0 = 1(x ∈ A) and αx
h =

1(handoff h is successful). For example, if user x hands off
to cell j at time t , αx

h = 1(�(j, t) + cx < Cj ). Further,
if user x is admitted and successfully hands off three times,
�αx = {111100000 . . .}.

PKA selects the optimum set A∗ by maximizing the uti-
lization, expressed (without normalizing) as

UA∗
T = max

α1
0 ,...,α1

H(1)
,...,

αN
0 ,...,αN

H(N)

∑
x∈S

T∑
t=1

M∑
j=1

H(x)∑
h=0

cxαx
0 · · ·αx

hAx
h,j,t , (16)

where H(x) denotes the number of handoffs made by user x.
Equation (16) must be maximized subject to both the system
constraints

∑
x∈S

H(x)∑
h=0

cxαx
0 · · · αx

hAx
h,j,t � Cj , (17)

for all 1 � t � T and all 1 � j � M , and satisfaction of the
empirical dropping probability

∑
x∈S

∑H(x)
h=1 αx

0 ···αx
h−1(1−αx

h)∑
x∈S

∑H(x)
h=1 αx

0 ···αx
h−1(αx

hαx
H(x)+h(1−αx

h)(1−αx
H(x)))

� Pdrop.

(18)

Thus, describing each user by a mobility matrix of indi-
cator functions and a vector of handoff indicator functions,
allows us to determine the optimal set of admissible users
A∗ = {α1

0, α2
0 , . . . , αN

0 } using standard methods for solving
non-linear constrained optimization problems such as multi-
start gradient-search. However, as the number of state vari-
ables is quite large (the total number of handoff attempts over
all time and all users), we now turn to the special case of
Pdrop = 0 which we show has a more manageable solution.
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6.2. Pdrop = 0

For the special case of Pdrop = 0, we can formulate the opti-
mal solution with a simpler mobility matrix and a per-user ad-
mittance indicator, rather than the above handoff vector. Con-
sequently, the optimal admissible region will be solvable via
a constrained linear optimization problem.

In particular, let user x ∈ S be described by its required
capacity cx , and let its mobility pattern be defined by the ma-
trix Ax of indicator functions such that

Ax
j,t = 1

(
L(x, t) = j

)
. (19)

Moreover, we reduce αx to a (scalar) indicator function of
admittance, i.e., αx = αx

0 . With this formulation, PKA for
Pdrop = 0 can be expressed as a linear constrained optimiza-
tion problem, maximizing utilization

max
α1,...,αN

∑
x∈S

T∑
t=1

M∑
j=1

cxαxAx
j,t ,

subject to the system and QoS rules, which are concisely de-
scribed as ∑

x∈S
cxαxAx

j,t � Cj

for all 1 � t � T and all 1 � j � M .
In practice, the optimal solution A∗ = {α1, α2, . . . , aN }

can be computed quite efficiently, due to the reduction in
the number of state variables, the linear nature of the prob-
lem, and the fact that matrices Ax are extremely sparse. We
show experimental results for our implementation of PKA
with Pdrop = 0 in section 7.

7. Experimental results

Here, we use an extensive set of simulation experiments to
investigate the performance of the VBC admission control al-
gorithm and the adaptive clustering policy and to study the
characteristics of different parameters involved.

7.1. Simulation environment

The simulation environment we use in our simulations is
identical to the one introduced in [11], consisting of a two-
dimensional 64 cell network as shown in figure 11. Handoffs
occur between each cell and its four neighbors which share
an edge with the cell. The network wraps around so that, for
example, any user leaving the bottom edge of cell number 63
will enter the upper edge of cell 7. The 64 cell area repre-
sents a set of cells connected to the same router; so a handoff
between cell 63 and cell 7 will be considered an inter-router
handoff.

Users follow the Downtown Mobility Model, and the four
cells 0, 7, 56, and 63 are considered as downtown areas; the
users are highly likely to choose one of these cells as their
destination as they are initiated. The movement is through a

Figure 11. Cellular topology.

random path toward the destination with a probability distri-
bution in favor of the shortest path.

The time is slotted to 1 min intervals and both the call hold-
ing time and the cell residence time have geometric distri-
bution with means 10 and 7, respectively, if not mentioned
otherwise. Simulation time for all the results presented is
6 hours; during which, a large number of users were intro-
duced to the network. The capacity of each cell is 10 Band-
width Units (BU) and each user requires 1 BU. The traces
of the users’ movements were produced using the simulator
of [10] with extensions for the adaptive clustering and VBC
admission control algorithms.

7.2. Design issues for clustering

Figure 12 depicts network utilization and CIF versus the ratio
of window size over average cell residence time for β = 0.8,
αh = 0.4 and αl = 0.1. The CIF reference clustering policy
K, for the simulation results shown in this section, has been
chosen to be the adaptive policy which minimizes the number
of inter-cluster handoffs, achieved by setting the three para-
meters β, αh, and αl equal to zero, since β = 0 means that the
network is continuously measuring the amount of transferred
bandwidth among cells for new clusters to form, αh = 0
forces two clusters to annex as soon as any handoff happens
between them, and αl = 0 indicates that no cell in the network
separates from any cluster.

As shown in figure 12(a) for different values of aver-
age cell residence time, utilization decreases as window size
over mean residence time increases. Also illustrated in fig-
ure 12(b), CIF increases as window size increases. The reason
for this is that larger measurement windows tend to increase
cluster size, and as VBC ensures QoS over the entire cluster,
this correspondingly increases CIF and decreases utilization.
Thus, we conclude that an ideal value of the window size is 1
to 2 times larger than the average cell residence time, as larger
values decrease utilization and smaller window sizes than the
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(a)

(b)

Figure 12. Impact of measurement window size on system performance.
(a) Utilization. (b) Cluster Isolation Factor.

average cell residence time would not capture the true amount
of capacity transfered among the cells.

Figure 13 illustrates the impact of the clustering thresh-
old β on system performance for αl = 0 and αh = 0. The
figure indicates that choosing β to be less than 1 has the best
effect on the isolation of the clusters, as clusters will form
preemptively before overload occurs. As an example, with
β = 0.8, the system will have a utilization of approximately
60% where the clusters are 80% isolated compared to the ref-
erence clustering algorithm K.

Figure 14(a) shows the impact of the clustering annexation
threshold αh on utilization and CIF for β = 0.8, αl = 0.1, and
window size equal to the average cell residence time (7 time
units). Observe that CIF rapidly decreases for lower val-
ues of αh indicating that smaller values for αh (and lower-
load, or preemptive cluster annexation) are preferable. For
αl , which denotes the threshold for separating cells from clus-
ters, observe from figure 14(b) that changes of αl in the valid

Figure 13. Impact of β on system performance.

range of [0, αh] result in moderate changes in utilization and
CIF, with lower values (and lower-load cluster separation)
being slightly preferable. Thus, it is clear from the above
experiments that the parameters are best set so that clusters
form rapidly as the system approaches overload, and are not
quickly separated as the load reduces. While ideal parameters
are clearly dependent on the system workload, suggested ini-
tial settings based on our experiments are β = 0.8, αh = 0.4,
and αl = 0.1.

7.3. Performance of VBC admission control and adaptive
clustering

In figure 15 we present the results of the simulation experi-
ments showing the performance of the VBC admission con-
trol algorithm with adaptive clustering policy along with com-
parisons with two different benchmarks as well as perfor-
mance of the VBC admission control with a semi-optimal
clustering.

The first benchmark is PKA, the optimal off-line admis-
sion control algorithm described in section 6. The PKA curve
depicts the average system utilization achieved for the opti-
mal off-line admissible region for the case of no overload, i.e.
γ = 0 (hence, the curve is flat). As shown, PKA obtains a
utilization of approximately 91.54%.

As a second baseline case, we compare VBC admission
control to a “location specification” algorithm [10] in which
users prespecify the set of cells that they will visit during the
duration of their session, and resources are reserved in each of
the corresponding cells for the entire lifetime of the call. The
network admits a new user only if overload will not occur at
any time in any cell. Note that this algorithm is considerably
more conservative than PKA as the times are not prespeci-
fied: hence, the capacity in each cell is reserved for the entire
session duration.

The middle curve labeled VBC represents the admissible
region obtained by our implementation of the VBC algorithm
with the adaptive clustering policy. While no on-line algo-
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(a)

(b)

Figure 14. Impact of αh and αl on system performance. (a) Clusters annexa-
tion threshold. (b) Cell separation threshold.

rithm can obtain utilization greater than PKA while satisfying
the QoS constraints, we observe that the VBC algorithm per-
forms quite well. In particular, over the entire range of over-
load values, VBC admission control is able to outperform the
location specification approach. Moreover, despite our use
of scalable coarse-grained system control and assurance that
QoS is satisfied even in bottleneck cells, the VBC algorithm
along with adaptive clustering is able to efficiently utilize sys-
tem resources, obtaining average utilization in the range of
48% to 84% for the range of overload shown.

Finally we compare the performance of our adaptive clus-
tering algorithm with another method, which we call opti-
mal static clustering. For the particular simulation scenario
discussed in section 7.1, the optimal static clustering policy
would form fixed clusters around the hot spots (cells 1, 7, 56,
and 63). To obtain the utilization of the network, for a given
overload value, we found the optimal clustering size for the

Figure 15. Performance of the VBC admission control.

mentioned policy, which maximizes the utilized bandwidth
while satisfying the QoS requirements. As the figure shows,
the adaptive clustering outperforms the optimal static scheme
over a large range of overload and slightly underestimates the
admissible region in high overload.

Thus, these results indicate that the VBC admission con-
trol algorithm with adaptive clustering algorithm is a scalable
scheme for wireless networks that can effectively and accu-
rately control the system’s admissible region.

8. Conclusions

As mobile and wireless communication becomes increasingly
ubiquitous, techniques for Quality of Service provisioning
will encounter fundamental challenges in scaling to many
users and many handoffs, especially in future micro- and
pico-cellular systems. In this paper, we proposed new tech-
niques with the ability of performing scalable and coarse-
grained QoS control in future systems and introduced Vir-
tual Bottleneck Admission Control as a particular algorithm
based on this design philosophy. VBC provides a mechanism
to characterize and control an aggregate virtual system while
closely enveloping the behavior of the underlying cells, en-
abling efficient provisioning of system resources, even under
heterogeneous spatial demands and “hot spots”. A funda-
mental problem for spatial resource aggregation is cell clus-
tering. We formulated the clustering problem as an opti-
mization problem and designed a heuristic adaptive cluster-
ing algorithm as a practical approximate solution. To eval-
uate the performance of the scheme, we developed a simple
one-dimensional analytical model, an optimal off-line algo-
rithm for benchmarking, and performed extensive simulation
experiments. We showed that our clustering algorithm is suc-
cessful in adaptively capturing the variations in users’ mobil-
ity patterns in the network and in forming the clusters around
the network bottlenecks. Using the results of our analytical
studies we showed that the characteristics of the virtual sys-
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tem closely envelope the behavior of the underlying cells, en-
abling efficient provisioning of system resources. Through
our simulation experiments, we first studied the characteris-
tics of the parameters involved in adaptive clustering policy
and then, applying optimal off-line admission control algo-
rithm as a benchmark, found that the coarse-grained approach
can effectively control the system’s admissible region. Our
findings indicate that scalability needs not to be achieved at
the expense of efficient resource utilization and strong Qual-
ity of Service guarantees.
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