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D-BIND: An Accurate Tra�c Model for Providing

QoS Guarantees to VBR Tra�c

Edward W. Knightly and Hui Zhang

Abstract|Variable bit rate tra�c that requires a bounded-

delay network service is one of the most important types of

tra�c in future integrated services networks. In this paper,

we introduce a new deterministic tra�c model called De-

terministic Bounding INterval-length Dependent (D-BIND)

to capture the important multiplexing properties of bursty

streams. With the D-BIND model, clients specify their traf-

�c to the network via multiple rate-interval pairs, (R

k

; I

k

),

where a rate R

k

is a bounding or worst-case rate over ev-

ery interval of length I

k

. The model captures the intuitive

property that over longer interval lengths, a source may be

bounded by a rate lower than its peak rate and closer to its

long-term average rate. We analyze the new model in the

context of a deterministic service, and we quantify its per-

formance bene�ts using a set of experiments with traces of

MPEG-compressed video. We show that D-BIND's more

accurate characterization of tra�c streams leads to sub-

stantial improvements in network utilization as compared

to previous tra�c models.

1 Introduction

Future integrated services networks will have to support

applications with both diverse tra�c characteristics and

diverse performance requirements. Of the many tra�c

classes in integrated services networks, delay-sensitive Vari-

able Bit Rate (VBR) tra�c poses a unique challenge. Since

the required service is delay-sensitive, the network must re-

serve network resources for each connection. The resources

are reserved based on both a source's tra�c characteristics

that are speci�ed via a parameterized tra�c model and the

source's Quality of Service (QoS) requirements in terms

of end-to-end delay bounds, delay-jitter bounds, and the

maximum loss rate. However, it is unclear how large the

reserved resources must be for VBR tra�c sources due to

their burstiness. In the literature, most tra�c models are

based on stochastic processes such as Markov-modulated

[1] or Self-similar models [10]. In general, most stochas-

tic models for characterizing bursty VBR tra�c sources

such as compressed video are either not powerful enough

to capture the important burstiness and time correlations

of realistic sources, or they are too complex for practical

implementation for Connection Admission Control (CAC)

[23]. In addition, while it is important for the network to

verify and enforce, usually via a policing mechanism, that

a source sends data according to its tra�c speci�cation, it

is very di�cult to verify whether a tra�c stream satis�es
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a speci�ed stochastic characterization. Furthermore, with

stochastic tra�c models, it is often impossible to provide

clients with end-to-end performance guarantees in networks

with general topologies due to analytical di�culties in ex-

tending single-node results to networking environments.

A number of deterministic models have also been pro-

posed to characterize tra�c in integrated services networks:

for example, the (Xmin;Xave; I; Smax) model [7], the

leaky bucket or (�; �) model [4], [26], and the (peak-rate,

burst length, average rate) model [8]. However, none of

these models can accurately capture the burstiness of re-

alistic sources such as compressed video. As we will show,

a less accurate tra�c model will result in an unnecessary

over-allocation of resources, and hence, in lower average

utilization of the network.

To overcome such limitations, we propose a new pa-

rameterized tra�c model called D-BIND, or Determinis-

tic Bounding INterval-length Dependent. The D-BIND

model characterizes sources via multiple rate-interval pairs,

(R

k

; I

k

), where a rate R

k

is a bounding or worst-case rate

over every interval of length I

k

. There are two key com-

ponents to the D-BIND model. First, it bounds sources

rather than attempting to �t their exact arrival distribu-

tions. These bounds are crucial for allowing the network

to police sources, i.e., to verify that sources transmit traf-

�c within their speci�ed limits. Moreover, upper bounds

on tra�c allow the network to provide deterministic per-

formance guarantees, which is not possible with typical

stochastic models. Second, D-BIND parameterizes sources

with bounding rates over multiple interval lengths to cap-

ture the most important multiplexing properties of sources.

We will motivate this latter point via fundamental proper-

ties of queues and show that the new model captures the

key properties of sources that cause the worst-case scenario

to occur.

As an example of the D-BIND characterization, consider

an MPEG-compressed video stream that alternates among

transmission of I , P , and B frames. A source is sending

at its peak rate when it is transmitting its largest-sized I

frame. However, even in the worst case, the large I frame

is immediately followed by a typically smaller B frame so

that the micro-level burst does not persist for more than

one frame time. The D-BIND model captures such bursti-

ness characteristics with its family of rate-interval pairs.

The model captures the intuitive property that over longer

intervals, a source may be bounded by a rate lower than

its peak rate and closer to its long-term average rate.



By taking advantage of the more accurate tra�c char-

acterization o�ered by the D-BIND model, the CAC al-

gorithm can allocate resources more e�ciently and thus

achieve a higher network utilization for a given QoS. We

quantify the utilization improvements achieved with D-

BIND as compared to previous tra�c models by perform-

ing a set of experiments with several long traces of MPEG-

compressed video. We focus on a deterministic service or a

service without losses or delay-bound violations and show

that signi�cantly higher utilization can be achieved with

the D-BIND model than with previous tra�c models. Since

sources may be multiplexed beyond a peak-rate-allocation

scheme even while providing deterministic loss and delay-

bound guarantees, we de�ne the Deterministic Multiplex-

ing Gain (DMG) as the gain in utilization above a peak-

rate-allocation scheme that is achieved. The DMG is used

to further quantify the improvements of the new model.

The accuracy of the D-BIND model can also be employed

for network services other than a deterministic service. For

example, a statistical service provides probabilistic guar-

antees on packet loss and delay-bound violation, exploit-

ing statistical properties of multiplexed streams to obtain

higher utilization than is possible for a deterministic ser-

vice. In [16], statistical properties of streams are extracted

from their deterministic constraints in order to deliver a

statistical service. By basing a statistical service on D-

BIND's accurate deterministic model, a substantial statis-

tical multiplexing gain can be achieved, even while retain-

ing the enforceability of the tra�c speci�cation. Although

the focus here is on a deterministic service, D-BIND's rela-

tionship to other services, including a renegotiated service

as in [30], is discussed in Section 4.4.

Lastly, we note that shaping tra�c streams before their

transmission into the network or re-shaping them at each

network hop can impact the amount of resources that need

to be reserved for each stream. For example, [11, 12] and

[18] show how tra�c shaping at appropriate points in the

network can be used to improve end-to-end delay bounds or

average network utilization in certain cases. In this paper,

our focus is to characterize a given tra�c stream, shaped

or not, as accurately as possible in order to enable e�cient

resource allocation by a network element (switch or router)

for each of the services the network o�ers. The joint e�ect

of proper reshaping and accurate tra�c characterization is

beyond the scope of this paper.

The remainder of this paper is organized as follows. In

Section 2, we describe the underlying requirements of de-

terministic tra�c models and show how such models can

be mapped to constraint functions. We then show, in

Section 3, how bounds on individual streams can be ap-

plied to CAC to provide a deterministic service. In Sec-

tion 4, we de�ne the D-BIND model with motivations from

both application traces as well as fundamental properties

of queues. The performance of the new model is then com-

pared to that of previous models using parameters derived

from actual MPEG traces in Section 5. Finally, in Section

6, we discuss practical implementation issues for the model

including policing and parameter speci�cation.

2 Deterministic Tra�c Models

A deterministic tra�c model is one that parametrically de-

scribes the worst-case behavior of a tra�c stream. Such a

tra�c characterization has the advantage that it can be

policed by the network. For example, if a source promises

that its minimum packet inter-arrival time is Xmin, this

may be easily veri�ed and enforced by the network. Al-

ternatively, statistical models of the source are inherently

much more di�cult to enforce.

In the (Xmin;Xave; I; Smax) model of [7] (we will refer

to this as the Xmin model), a source is constrained so that

its minimum packet spacing is Xmin, its maximum packet

size is Smax, and that, in every interval of length I , it

may send no more than I=Xave packets. The (peak rate,

burst length, average rate) model proposed by the ATM

Forum [8] is similar to the Xmin model, with Smax �xed

to 53 bytes. In [4], a source is said to satisfy a (�; �) leaky-

bucket model if, during any interval of length t, the number

of bits that the source transmits is less than � + �t. The

(�; �) model can also be viewed in terms of its policing

mechanism. In this policing mechanism, a source must

have a \token" or \credit" to transmit a packet to the

network. With (�; �), a source obtains credits at rate �

and can collect up to � credits. Hence, a source can send

a burst of size � bits or packets into the network, but, over

the long term, there is an upper-average rate constraint �,

similar to the Smax=Xave rate constraint of the Xmin

model.

As required, all of the above tra�c models provide a

deterministic upper bound on each source's arrivals and

allow a worst-case analysis that upper bounds delay and

throughput. Speci�cally, a deterministic tra�c model de-

�nes a deterministic tra�c constraint function. A mono-

tonic increasing function b

j

(�) is called a deterministic traf-

�c constraint function of connection j if during any interval

of length t, the number of bits arriving on j during the in-

terval is no greater than b

j

(t). Formally, let A

j

[t

1

; t

2

] be

the total number of bits arrived on connection j in the

interval [t

1

; t

2

]; b

j

(�) is a tra�c constraint function of con-

nection j if A

j

[s; s+ t] � b

j

(t);8s; t > 0. Notice that b

j

(�)

is a time-invariant deterministic bound since it constrains

the tra�c stream over every interval of length t.

For a given tra�c stream, there are an in�nite num-

ber of possible tra�c constraint functions that can bound

the source, out of which a deterministic tra�c model de-

�nes a parameterized family. Since all deterministic models

have an associated constraint function that is de�ned via

the model's parameters, we can compare the accuracy or

tightness of di�erent models by comparing their constraint

functions.

An important observation about the tra�c constraint

function is that for a given arrival process A[0; t], the tight-

est time invariant deterministic bound on arrivals in any

interval of length t is by de�nition

E(t) = sup

s�0

A[s; s+ t]: (1)

E(t) is called the empirical envelope in [27], and the min-



imum envelope process in [3]. In other words, E(t) is the

tightest or most accurate deterministic time-invariant char-

acterization of an arrival sequence A[0; t]. Thus, in order

for a tra�c model's constraint function b(t) to be a time-

invariant upper bound on the arrivals A[s; s + t], it must

upper bound E(t), viz., b(t) � E(t) for all t. Since the

CAC algorithm reserves resources for the connection based

on b(t), the more tightly b(t) bounds the actual tra�c, the

more e�ciently resources can be allocated. A desirable

property of a tra�c model is therefore that it parameter-

izes a constraint function that can closely bound E(t) for

a wide variety of sources. The linkage of the tra�c model

and the CAC algorithm, as well as the importance of the

time-invariance property, will be further explored in the

next section.

The Xmin model's constraint function is given by:

b(t) = (min(d

t mod I

Xmin

e; d

I

Xave

e) + d

t

I

ed

I

Xave

e) Smax

(2)

and the (�; �) model's is given by b(t) = � + �t.

Conceptually, both the Xmin and (�; �) models allow a

limited-size burst and have an additional longer-term rate

constraint. Experiments with constraint functions can be

found in Section 5.2.

Before de�ning the D-BIND model, we further motivate

it by describing the analysis techniques used to derive CAC

algorithms for deterministic guarantees.

3 Deterministic CAC

A deterministic service ensures that no packets are dropped

or delayed beyond their guaranteed delay bound. For the

network to deliver such a service, it must reserve resources

according to a worst-case scenario, so that in essence, re-

sources cannot be \over booked". Thus, connection admis-

sion control for a deterministic service requires a worst-case

bound on individual sources, and must also be able to de-

termine how a collection of sources will interact when mul-

tiplexed inside the network, again considering the worst-

case scenario.

For a deterministic service, the advantage of policing is

extended to the network clients: a client can easily check

that it has not had any packets dropped or delayed beyond

its guaranteed bound. Alternatively, a client will have dif-

�culty verifying a statistical guarantee that is de�ned over

an in�nite time horizon.

Deterministic admission control conditions rely on the

worst-case delay analysis techniques such as in [3, 4, 19,

28]. Conceptually, an upper bound on delay can be derived

beginning with an expression for the queue length at time

� expressed in terms of the actual arrivals A

j

of each tra�c

stream and the link speed l. For example, for FCFS, such

an expression is given by:

q(�) = max

s��

f

N

X

j=1

A

j

[s; � ]� l(� � s)g; (3)

which is a direct consequence of the Lindley recursion [20].

By using the fact that A[s; s + t] � b(t) together with

other manipulations, it follows that for FCFS, delay is up-

per bounded by:

d =

1

l

max

t�0

f

N

X

j=1

b

j

(t)� lt+ sg: (4)

Delay bounds for other policies such as Hierarchical-

Round-Robin, Static Priority, Earliest-Due-Date-First, and

Packetized Generalized Processor Sharing, can also be ex-

pressed as functions of tra�c constraint functions [2, 4, 19,

24, 29]. For example, the following theorem is given and

proven in [29] to derive delay bounds in a Static Priority

scheduler.

Theorem 1 Assume a Static Priority scheduler has n pri-

ority levels. Let C

q

be the set of connections at level q, and

the j

th

connection in C

q

satis�es the tra�c constraint func-

tion b

q;j

(�). With a link speed l, and maximum packet size

of s, the maximum delay of any packet at priority level k

is bounded above by d

k

, where

d

k

= maxft � 0 j b

0

k

(t) � ltg (5)

and b

0

k

(�) is de�ned for all � by

b

0

k

(�) = max

��0

fs+

X

j2C

k

b

k;j

(�) +

k�1

X

q=1

X

j2C

q

b

q;j

(�+ �)� l�g:

(6)

Equations (4) and (5) can be used as CAC tests for FCFS

and SP schedulers in that they can test whether or not a

set of connections can be multiplexed so that each packet of

each connection can be delivered within the delay bound

that is guaranteed to the network client. For CAC, the

theorems may be used to test if a new connection can be

admitted so that all connections, including the new one,

obtain their respective delay guarantees. Hence, Equations

(4) and (6) can also be viewed in terms of the maximum

number of admissible connections for a given QoS. For ex-

ample, for FCFS, Equation (4) can be rewritten to express

the maximum number of admissible connections as a func-

tion of the delay bound:

N(d) = maxfn j

1

l

max

t�0

f

n

X

j=1

b

j

(t)� ltg � dg (7)

Two things should be noticed about the above admis-

sion control condition. First, in both Equations (4) and

(5), delay bound calculations are reduced to a problem of

maximizing a linear combination of tra�c constraint func-

tions. If the tra�c constraint function is piece-wise linear,

as the case for Xmin, (�; �), and the D-BIND model de-

�ned in Section 4, this computation can be very e�cient

and fast. In addition, the algorithms work equally well

for both homogeneous and heterogeneous sources. In con-

trast, accommodating heterogeneous sources with stochas-

tic tra�c characterizations often severely complicates the

admission control analysis.



Second, the equations indicate that even better bounds

are possible with a new tra�c model. That is, if a given

tra�c source can be more tightly bounded by a di�erent

constraint function than those of previous tra�c models,

the resulting maximum delay bound of Equation (4) will

be lower. Thus, a goal of the D-BIND model is a more

accurate source characterization that results in a tighter

(lower) tra�c constraint function b(t). The e�ect is thus a

higher network utilization and a higher DMG for a given

deterministic delay and throughput constraint.

4 D-BIND Model De�nition

In this section, we de�ne the D-BIND tra�c model. We

present it with motivations based on two scenarios. First,

we investigate a 10-minute trace of MPEG compressed

video and show how the D-BIND model captures the bursti-

ness properties of such a stream. Second, we revisit the

CAC problem and show how the D-BIND model captures

the properties of sources that are important to admission

control and hence to achieving the highest possible network

utilization.

4.1 D-BIND and Burstiness Properties of

Streams
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Figure 1: Segment of Lecture Trace

Figure 1 shows a 10-second segment of a lecture se-

quence. The lecture is digitized to 160x120 pels and com-

pressed at 30 frames per second using the MPEG com-

pression algorithm [9]. The Group of Pictures pattern is

IBBPBB such that M is 3 and N is 6, and the quantizer

scales are 8 (I), 10 (P), and 25 (B). The sequence was dig-

itized in hardware and compressed in software with the

Berkeley MPEG-1 encoder [25]. The �gure shows time on

the horizontal axis and rate on the vertical axis. The bit

rate is calculated as the frame size multiplied by the frame

rate of 30 frames per second.

The general shape of the traces may be explained in

terms of the mechanisms used in the MPEG standard. The

coder generates three types of frames: I frames, which use

only intraframe compression, and P and B frames, which

are transmitted between I frames and use interframe com-

pression. While P frames or Predicted frames are coded

based on only past frames, B frames or Bidirectional frames

are coded based on both past and a future frame. With P

and B frames, higher compression ratios can be achieved

since the interframe coding makes use of motion compen-

sation techniques. In Figure 1, which frames are which is

apparent since the I frames tend to be the largest, B the

smallest, and P in between.

This tra�c source is bursty in that its transmission rate

varies substantially over time. The important observation

about this stream for the purpose of designing a tra�c

model is that the source transmits at di�erent rates for

di�erent interval lengths. For example, while transmission

of large I frames can cause bursts of high rate, these bursts

will only last for the duration of one frame time, even in

the worst case. That is, larger I frames are always followed

by smaller B frames. Hence, the key questions about the

source that we are trying to answer with the model are

\what are the rates of the bursts and how long do they

last?" Moreover, since we wish to provide deterministic

service, these characteristics must be captured with a de-

terministic tra�c model. Thus, the question we turn to

now, is how to capture such burstiness properties of sources

with a worst-case model.

The tra�c model that we propose is called Determinis-

tic Bounding INterval-length Dependent, or D-BIND. With

the D-BIND model, sources characterize their tra�c with

P rate-interval pairs, f(R

k

; I

k

)jk = 1; � � � ; Pg, which are

speci�ed to to the network at connection-setup time. The

network then performs CAC tests based on both the D-

BIND tra�c parameters and the requested QoS parame-

ters. The \Deterministic Bounding" part of D-BIND pro-

vides the worst-case bound on sources that is required

to provide a deterministic service. The \INterval-length

Dependent" part of D-BIND captures sources' di�erent

burstiness properties over di�erent interval lengths, the

property noted in the trace of Figure 1.
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Figure 2: D-BIND Rate-Interval Pairs for Lecture

Figure 2 shows a plot of the D-BIND rate-interval pairs

for the 10-minute trace of the lecture. The horizontal axis

shows interval length I

k

in seconds, and the vertical axis

shows the bounding rate R

k

in Mbps, over intervals of

length I

k

. For example, for an interval of length I

1

= 1=30

seconds, the bounding rate is determined by the largest

sized frame of the entire sequence, which is the largest sized

I frame. For this lecture trace, the largest sized I frame is

50.3 kbits, for a peak rate of R

1

= 1.51 Mbps.

As is evident from Figure 1, even in the worst case, the

large intra-coded I frames are followed by smaller inter-



coded B frames. Hence, the burst at rate 1.51 Mbps lasts

for only 1=30 seconds, and the worst case rate over 2=30

seconds or two frame times is considerably lower. In this

case, the bounding rate over any interval of length 2=30

seconds is 840 kbps. Equivalently, the largest size of any

two consecutive frames is 840 kbps times 2=30 seconds or

56 kbits. Hence, the D-BIND model captures the source's

burstiness over multiple interval lengths. For small interval

lengths, R

k

approaches the source's peak rate, 1.51 Mbps.

For longer interval lengths, R

k

approaches the long term

average rate of 337 kbps, which is total number of bits in

the MPEG sequence divided by the length of the sequence.

From the initial peak rate R

1

, the bounding rate tends to

decrease over longer interval lengths. It does not decrease

monotonically though because of the quasi-periodic nature

of the MPEG stream in which sources alternates between

large and small frames over time. Regardless, the general

trend of the curves is that the bounding rate decreases

with increasing interval length, decreasing from the peak

rate to the long-term-average rate. By explicitly charac-

terizing the source's di�erent bounding rates over di�erent

interval-lengths, we will show analytically and demonstrate

empirically that higher network utilizations are achievable.

From all possible D-BIND pairs as shown in Figure 2,

P rate-interval pairs are speci�ed to the network as the

source's tra�c speci�cation for admission control. Typi-

cally, we view P as being small, on the order of four. Dis-

cussion of the impact of P and of other implementation

issues is found in Section 6.

Lastly, we note that we do not require the special fram-

ing structure found in MPEG video in order to use the

D-BIND model. Indeed, as we describe in the next sec-

tion, the D-BIND model uses multiple rate-interval pairs

to accurately describe a general source's worst-case behav-

ior for more e�cient resource allocation. D-BIND charac-

terizations and the resulting performance for applications

other than MPEG-compressed video can be found in [17].

4.2 D-BIND and CAC

In Section 2, we showed that the tightest possible con-

straint function for an arrival sequence A is de�ned as the

empirical envelope E(t) = sup

s

A[s; s + t]. Hence, every

tra�c model parameterizes a constraint function that up-

per bounds E(t), or b(t) � E(t) 8t and for all deterministic

tra�c models. To relate this property to CAC, we note

that for the FCFS and SP delay bounds derived above,

the minimum delay bound that can be provided to a set

of connections which are bounded by their respective con-

straint functions b

j

(t) is achieved when b

j

(t) = E

j

(t) for

all t and for all connections j. Equivalently, characterizing

all tra�c streams according to their empirical envelopes

will result in the maximum number of admissible connec-

tions for any deterministic tra�c model. This means that

the empirical envelope is optimal in the sense that of all

deterministic time-invariant bounds on tra�c streams, the

empirical envelope is the most accurate and results in the

most admissible connections for a given delay bound (see

[27] for further discussion of the empirical envelope).

Unfortunately, the empirical envelope lacks practical prop-

erties for use in CAC. In particular, sources cannot e�-

ciently specify the function E(t) to the network, and the

network cannot e�ciently police or enforce a general en-

velope E(t) without any constraints on its shape. Thus,

the goal of the D-BIND model is to provide a parameter-

ized tra�c model that is suitable for CAC, that can be

policed by the network, and that characterizes the tra�c

as tightly or accurately as possible, in order to achieve the

highest possible utilization for a deterministic service. We

can therefore de�ne the D-BIND model as it relates to the

empirical envelope.
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Figure 3: Tra�c Constraint Function for D-BIND Model

Figure 3 shows an example of an empirical envelope. The

horizontal axis represents interval length, and the vertical

axis represents the maximum number of bits the source

transmits over the interval length. The lower curve repre-

sents the tightest bound on the number of arrivals in any in-

terval of length t, E(t) = sup

s

A[s; s+ t] (Equation (1)). As

described above, all tra�c models de�ne constraint func-

tions b(t) that upper bound E(t). The constraint function

de�ned by the D-BIND model provides a piece-wise linear

upper approximation to this tightest bound E(t). For ex-

ample, in the �gure the source is constrained over every in-

terval of length t tightly by the lower curve, sup

s�0

A[s; s+

t], and approximately by the D-BIND model's constraint

function with several rate-interval pairs (b

k

=t

k

; t

k

), and

with linear interpolation between the points on the D-

BIND curve.

Thus, given P rate-interval pairs, i.e., (R

k

; I

k

), k =

1; 2; � � � ; P , we de�ne the D-BIND constraint function as

b(t) =

R

k

I

k

�R

k�1

I

k�1

I

k

� I

k�1

(t� I

k

) +R

k

I

k

; I

k�1

� t � I

k

(8)

with b(0) = 0 and b(�) repeating for t > I

P

, such that

b(t) = b(t� bt=I

P

ct) for t > I

P

.

The purpose of de�ning the D-BIND model's constraint

function as a piece-wise linear upper-bound on E(t) is multi-

fold.

� Parameterization: In order to integrate a tra�c model

with a signaling protocol for connection-establishment,

it must be speci�able with a small number of parame-

ters. The D-BIND model's rate-interval pairs provide

such an interface for network clients.

� Policing: The network must be able to protect the

network and other network clients from malicious or

misbehaving users that violate their promised tra�c



speci�cations. The D-BIND characterization can be

policed or enforced by the network using mechanisms

described in Section 6.3.

� Utilization - Equation (3) shows that queues build up

from more arrivals over intervals than can be serviced.

These arrivals over intervals are rates, and the D-

BIND model captures these rates with multiple rate-

interval pairs.

Equations (4), (3), and (5) indicate that queue lengths

are determined by arrivals over intervals, and deterministic

connection admission control tests rely on upper bounds on

arrivals over intervals, or constraint functions b(t). Equa-

tion (7) shows that the key to achieving high utilization (or

admitting as many connections as possible) is to use a con-

straint function b(t) that more accurately describes arrivals

over intervals. The D-BIND model directly characterizes

these arrivals over intervals via rates in the most accurate

manner possible subject to the practical constraints above.

Thus, the D-BIND model is bounding for CAC and policing,

and interval-dependent to characterize the sources' di�er-

ent worst-case rates over di�erent interval lengths.

4.3 D-BIND's Relationship to Other Traf-

�c Models

We note that other deterministic tra�c models may be ex-

pressed in terms of the D-BIND model. For example, a

tra�c model based on multiple (�; �) pairs f(�

k

; �

k

); k =

1; 2 � � � ; Pg, or (~�; ~�), such as analyzed in [27], is a special

case of the D-BIND model in which the constraint function

is piece-wise linear concave. That is, the (~�; ~�) model has

a constraint curve b(t) = min

k

f�

k

+ �

k

tg which is neces-

sarily concave. Implications of concavity are discussed in

Section 6. As well, the Xmin model can be expressed in

terms of the D-BIND model by using a di�erent interpola-

tion function.

4.4 D-BIND's Relationship to Other Net-

work Services

The main issues that we are addressing in this work are

the parameterized tra�c model and the resource allocation

scheme or CAC algorithm. The resource allocation scheme

in turn determines the type of service that is o�ered. Here,

we introduced the D-BIND tra�c model, used a worst-

case resource allocation scheme, and provided a scheme for

delivering a deterministic service. As summarized in Table

1, other combinations of tra�c models, resource allocation

schemes, and services are possible.

In the �rst two rows, we have examples of schemes for

providing a deterministic service, in which connections are

guaranteed a service that avoids loss or delay-bound vio-

lations. Both [7] and this work utilize worst-case resource

allocation schemes in order to provide this service, but they

use di�erent tra�c models (and also use di�erent service

disciplines, tra�c streams, etc.).

The second two rows of Table 1 list two recent exam-

ples of schemes for providing statistical service, which can

Tra�c Model Resource Allocation Service

D-BIND Worst Case Deterministic

(Xmin;Xave) Worst Case [7] No Loss

D-BIND H-BIND [16] Statistical

(~�; ~�) Large Deviations [22] ProbfLossg

D-BIND RED-VBR [30] Renegotiated

Peak-Rate R-CBR [14] ProbfBlockg

Table 1: Example Combinations of Tra�c Model, Resource

Allocation, and Service

achieve higher resource utilizations by exploiting statisti-

cal properties of the sources. Most previous algorithms of

providing statistical services require applications to spec-

ify the statistical properties of the sources explicitly via a

stochastic tra�c model such as a Markov Modulated Fluid

Source as in [1]. While stochastic tra�c models provide

the statistical properties of a source needed for the CAC

algorithm, they introduce great di�culties for the policing

algorithm as it is often impossible to verify whether a traf-

�c source satis�es a speci�ed stochastic characterization.

In [16, 22], techniques are developed to extract statistical

properties of tra�c streams from their deterministic char-

acterizations. With these techniques, statistical services

can be provided with only deterministic tra�c models. By

basing a statistical service on a deterministic model, a sta-

tistical multiplexing gain can be achieved, even while re-

taining the enforceability of the tra�c speci�cation. With

the more accurate D-BIND model, the derived statistical

properties are also more accurate, which means that an

even higher utilization can be achieved for the statistical

service.

The last two rows of Table 1 depict two proposed schemes

for providing renegotiated services, RED-VBR (Renegoti-

ated Deterministic VBR) [30] and R-CBR (Renegotiated

CBR) [14]. In both of these works, services are proposed

in which network clients can renegotiate their tra�c pa-

rameters and performance requirements with the network

in order to adapt to long-time-scale dynamics of the clients'

tra�c characteristics.

For example, consider a movie that is digitized, com-

pressed, and transmitted over a network. Roughly speak-

ing, if this movie alternates between high-action, high-

bandwidth scenes and low-action, lower-bandwidth scenes,

a renegotiated service allows a network client to release

network resources back to the network during low-action

scenes by signaling its new tra�c speci�cation at the begin-

ning of such scenes. When the client re-enters a high-action

scene, it signals its request to the network to renegotiate

for its new higher bandwidth requirements.

Compared to a deterministic service, a renegotiated ser-

vice achieves higher utilization of network resources. Specif-

ically, when one network client releases some of its re-

sources back to the network, other network clients can uti-

lize these resources. Once again however, this utilization

improvement is not for free in that a renegotiated service

has a profound di�erence as compared to a determinis-



tic service: when a renegotiating client enters a higher-

bandwidth scene, its request for more bandwidth may be

denied or blocked by the network, in which case the client

will have to make do with the previously reserved band-

width. Hence, in order to be useful, such services must

provide this blocking probability ProbfBlockg to network

clients as a performance or QoS parameter.

For the purposes of the discussion here, the schemes of

[30] and [14] di�er in that RED-VBR builds the renego-

tiation service on top of a deterministic variable bit rate

service with the D-BIND tra�c model (as proposed in this

paper), while R-CBR builds the renegotiation service on

top of a constant bit rate service. By using a more accurate

characterization of tra�c streams, the RED-VBR scheme

can potentially allocate resources more e�ciently than R-

CBR, i.e., require fewer renegotiations for the same level

of resource utilization. On the other hand, a CBR service

is easier to implement than a D-VBR service.

Di�erent network services such as renegotiated service

and statistical service can be viewed as complimentary to

the D-BIND model and deterministic guarantees that we

are describing in this paper. The reason for this is that the

D-BIND model provides a foundation for delivering di�er-

ent network services: D-BIND is a tra�c model that up-

per bounds the tra�c, and the resource allocation scheme

determines which network service is o�ered. Di�erent re-

source allocation schemes can be used with D-BIND to

provide di�erent services [16, 30].

5 Empirical Investigations

In this section, we evaluate the e�ectiveness of the D-

BIND model by analyzing the link or multiplexer utiliza-

tion achieved with the new model and comparing the re-

sults to utilizations obtained with the Xmin and the (�; �)

models. Because deterministic tra�c models may be viewed

in terms of the constraint function b(t), they are compara-

ble via the admission control condition in Section 3. For

comparison, utilizations obtained with peak-rate reserva-

tion are also investigated. By peak-rate reservation, we

mean an admission control scheme in which the sum of the

source's peak rates are constrained to be less than the link

speed, or

P

j

R

1;j

< l.

Two ten-minute traces of MPEG compressed video are

analyzed as tra�c sources. The �rst video trace is the

lecture sequence described in Section 4.1 and the second

video trace consists of a sequence of advertisements for

graphics products. The advertisement sequence has the

same MPEG parameters as the lecture sequence, but quite

di�erent content: the advertisement video is fast moving

and has a wide variety of scenes with varying complexity.

Alternatively, the lecture video does not have much action

other than the speaker's movements and changes of scene

from the speaker to the transparencies and back. The na-

ture of these two video streams will be shown to have a

remarkable e�ect on the achievable network utilization.

For the experiments, we assume that each video frame is

transmitted per frame-time as opposed to introducing ad-

ditional delay by smoothing over several frames: e�ects of

such smoothing can be found in [18]. Additionally, we as-

sume that each frame is segmented into 48 byte ATM cells

with the cells being transmitted at equally spaced intervals

over the frame-time.

5.1 D-BIND Tra�c Characterization

Figure 4 shows the possible D-BIND rate-interval pairs

curves for the advertisement and lecture sequences. The

vertical axis depicts R

k

=R

1

or the bounding rate R

k

nor-

malized to the peak rate R

1

for the respective traces. The

rate R

k

is the worst-case rate over intervals of length I

k

,

where I

k

is on the horizontal axis. The long-term average

rates of the streams are shown with the arrows: for the

lecture sequence, the average rate is .224 times the peak

rate R

1

, and for the advertisements, it is .185 times the

peak rate.
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Figure 4: D-BIND Rate-Interval Pairs

Of most importance for the admission control experi-

ments below, is how quickly R

k

approaches the long-term-

average rate (shown with the arrows) as I

k

increases. For

example, the rate-interval curve for the lecture video shows

a rapid decrease of the bounding rate, whereas the curve for

the advertisement video decreases much more slowly. In-

tuitively, a slowly decreasing rate-interval curve indicates

that bursts of high rate persist over relatively long inter-

vals, which in turn implies that it will be extremely di�-

cult to achieve a high multiplexing gain and simultaneously

provide good QoS. This is because high-rate bursts of long

duration cannot be e�ectively absorbed by network bu�ers.

Without network bu�ers, peak-rate reservation is required

to provide a deterministic QoS guarantee.

5.2 Constraint Functions

Figure 5 shows the tra�c constraint function of the lec-

ture sequence for the D-BIND model with four rate-interval

pairs and compares it to the constraint functions for the

Xmin and (�; �) models. As in Figure 3, the horizontal

axis is interval length and the vertical axis is the maxi-

mum number of bits that deterministically constrain the

source. The lower this curve is, the more tightly or accu-

rately the model characterizes the source, and the fewer the

resources that the network must reserve for the connection.



As shown, the D-BIND model most tightly characterizes

this tra�c stream.
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Figure 5: Tra�c Constraint Function

Moreover, the temporal properties of the MPEG stream

are evident only in the D-BIND model's constraint func-

tion: both the D-BIND and Xmin constraint curves be-

gin with an initial slope which represents the source send-

ing at its peak rate, i.e., transmitting its largest I frame.

At 33 msec (1 frame-time) the slope of the D-BIND con-

straint function sharply decreases indicating that, even in

the worst case, a large I frame is followed by a smaller B

frame. At 100 msec, after sending two B frames, the D-

BIND constraint function breaks up again indicating the

transmission of a P frame. In essence, the D-BIND model

is capturing the temporal nature of the MPEG source. Fi-

nally, note that this constraint curve is not concave. The

lack of concavity is an inherent property of the MPEG

stream and is due to its quasi-periodic nature, where the

coder alternates between I, B, and P frames. Section 6 ad-

dresses the implications of this observation regarding polic-

ing.

5.3 Link Utilizations and DMG

A key issue for evaluation of the D-BIND model is the

achievable network utilization compared to other determin-

istic tra�c models. As described in Section 1, the deter-

ministic approach uses upper bounds on sources to provide

service without packet losses or delay-bound violations.

In the experiments below, we calculate the maximum

number of homogeneous connections that can be multi-

plexed at a link so that all connections receive a determin-

istic guarantee on delay and throughput. Heterogeneous

cases are explored in Sections 5.5 and 6.3. In this case,

the maximum number of connections with constraint func-

tion b(t) that may be given a deterministic delay bound of

d

k

at an RCSP scheduler served at link speed l is given by

Equation (7), with b(t) as given by Equation (8) and shown

in Figure 5 for the lecture sequence. Within this context,

for a deterministic delay bound d

k

, the average utilization

for deterministic tra�c is given by N(d

k

) � R

1

=l where

R

1

is the stream's long-term-average rate. Since sources

may be multiplexed beyond a peak-rate-allocation scheme

even while providing deterministic delay and loss and de-

lay guarantees, we de�ne the Deterministic Multiplexing

Gain as the gain in utilization above a peak-rate-allocation

scheme that is achieved with the new model. Thus, the

DMG is the sum of the peak rates of all admissible con-

nections with deterministic guarantees divided by the link

speed,

DMG

4

=

N

X

j=1

R

1;j

l

(9)

which is N(d

k

) � R

1

=l in the homogeneous case. Thus, a

peak-rate-allocation scheme has a DMG of at most 1.
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Figure 6: Utilization and DMG for Lecture

For the two traces, Figures 6 and 7 show the number of

admissible connections, the corresponding average utiliza-

tion, and the DMG, all as a function of the deterministic

delay bound d

k

. The link speed is T3 or 45 Mbps and video

frames are fragmented into ATM cells and transmitted as

described previously. In other words, for the delay bound

d

k

reported on the horizontal axis, the vertical axis shows

the maximum number of admissible video connections so

that all connections obtain a worst-case delay bound d

k

.

Figure 6 shows the data for the lecture sequence, while Fig-

ure 7 is for the advertisements. As indicated by Equation

(7), the average utilization increases with increasing delay

bound. By \utilization", we are referring to that achieved

only by deterministically guaranteed real-time tra�c. The

remaining network resources may be used by statistical or

best-e�ort tra�c.

There are several noteworthy points about Figures 6 and

7. First, it is immediately apparent that the D-BIND

model performs better than the Xmin and (�; �) models,

i.e., that it achieves higher utilization for the same QoS

guarantee via a more accurate tra�c characterization. For

example, for the lecture sequence of Figure 6 and a guar-

anteed delay bound of 40 msec, the D-BIND model is able

to utilize the network up to 50%, whereas the Xmin model

results in a utilization of 36% and the (�; �) model results

in a 43% utilization. Thus, in this case, the D-BIND model

results in 39% and 16% improvement in network utilization

over the respective Xmin and (�; �) models.

An alternative metric for the improvement may be ob-

tained by comparisons with a peak-rate allocation scheme.

Figure 6 shows that the D-BIND model performs signi�-

cantly better than the 23% utilization achieved with peak-

rate reservation. With the accurate D-BIND model to-

gether with the analysis techniques of [3, 4, 28], even for

small delay bounds, DMG's signi�cantly greater than 1 are

achievable. For example, for a delay bound of 9 msec, 38
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connections may be multiplexed for a DMG of 1.3. For a

40 msec delay bound, the DMG is 2.2, and for a 48 msec

delay bound it is 2.7.

Finally, note that the improvements shown in Figure 7

are not as pronounced. This is due to the di�erent shape

of the (R

k

; I

k

) rate-interval curve for the advertisements as

shown in Figure 4. Although the curve does conform to the

interval-dependent property that sources may be bounded

by lower rates over longer interval lengths, this property is

obeyed in a lethargic manner. That is, compared to the

lecture's rate-interval curve, the advertisement sequence's

rate-interval curve decreases more slowly to its long-term-

average rate. Hence, when multiplexing the advertisement

sequence, for a delay bound of 69 msec, the improvement is

from an average network utilization of 18% for a peak-rate-

allocation scheme to 25% for the D-BIND model. The rea-

son for the limited utilization improvement is that bursts of

high rate and high duration cannot be e�ectively absorbed

by network bu�ers. The fact that the compressed adver-

tisement sequence has bursts with rates near the peak rate

that last for longer intervals is captured by the D-BIND

rate-interval pairs.

5.4 Heterogeneous Node Loads

With the Xmin and (�; �) models, a source has a range of

bounding parameters that it can choose from. That is, a

source can choose Smax=Xave or � anywhere between the

peak rate and the average rate. The choice of this rate will

in turn a�ect the respective values of I and �. The e�ects

of this choice on the utilization curves are shown in Figure

8.

The �gure demonstrates that for a given Smax=Xave or

� there may be a small range of delays such that the Xmin

or (�; �) model performs nearly as well as the D-BIND

model. However, the D-BIND model still has a signi�cant

advantage with respect to practical issues of establishment

of real-time connections in a network: for instance, if the

required end-to-end delay of a connection is 200 msec and

the connection traverses several switches, these switches

will have di�erent loads. Depending on the load, each

switch may wish to allocate a di�erent local delay bound to

the connection. Thus, it may easily happen that the local

delay bounds are 120, 20, and 60 msec at the respective

three nodes. Therefore, regardless of how cleverly the user

chooses Smax=Xave or �, some of the nodes will be forced

to allocate resources ine�ciently since choosing one value

tends to be e�cient for some delay bounds and ine�cient

for others. Since D-BIND captures the streams burstiness

properties over multiple interval lengths, it does not have

this problem.
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5.5 Heterogeneous Tra�c and QoS

In providing statistical guarantees with use of traditional

stochastic models such as those mentioned in the introduc-

tion, two di�culties in addition to those mentioned in Sec-

tion 1 are often encountered. First, accommodating sources

with heterogeneous tra�c characterizations severely com-

plicates the admission control analysis. Second, it is often

di�cult or impossible to provide a service in which hetero-

geneous users can receive heterogeneous services from the

network. With the approach presented here, heterogene-

ity in the tra�c speci�cation and QoS are easily accom-

modated. It is not even required that all sources use the

D-BIND model. The reason for this is that, as shown in

Equation (5), admission control calculations are performed

via the tra�c constraint function b(t). Thus, sources can

choose any parameter values for whatever tra�c model is

provided to the user. This is then converted to a constraint

function and used in the admission control test. Of course,

there will be a utilization penalty for network clients that

use less accurate tra�c models.
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Figure 9 shows the admission control results of multi-

plexing di�erent combinations of lecture and advertisement

sequences by depicting a schedulable region in the manner



of [15]. For the lower curve representing a 30 msec delay

bound, a point on the curve represents the maximum num-

ber of respective lecture and advertisement sequences that

can be multiplexed so that all packets of all connections

obtain a delay bound of 30 msec and are not dropped due

to bu�er over
ows. Thus, any point below the curve is also

schedulable for that same QoS. Similarly, the upper curve

depicts the schedulable region for a 60 msec delay bound.

Finally, we note that, unlike [15], since we provide a general

service in which tra�c sources are not restricted to classes,

these CAC calculations would be made with Equation (5)

rather than by table lookup.

While heterogeneity in sources is easily accommodated

with D-BIND, the richness of the services that can be pro-

vided by the network is a function of the service disciplines

at the switching nodes. For example, if FCFS is used, only

a single local delay bound can be provided to all connec-

tions at each node. With Earliest Deadline First (EDF)

scheduling [7], a continuum of delay bounds can be pro-

vided.

The choice of the service discipline also impacts the mul-

tiplexer's utilization, its implementation complexity, and,

of particular relevance here, its ability to exploit D-BIND's

more accurate tra�c speci�cation. For example, as shown

in [31], the Stop-and-Go service discipline [13], must use a

busy-period bound to guarantee delay because of Stop-and-

Go's framing structure. Consequentially, its delay bounds

are looser than those presented in Section 3 and D-BIND's

richer tra�c characterization cannot be exploited. The

GPS service discipline [24] is able to exploit the D-BIND

characterization, but because of its isolated treatment of

streams, only to the point of a smoothing scheme, which is

not always as e�cient as a network's deterministic service

[18]. Alternatively, service disciplines such as EDF and

Static Priority are able to use exact CAC conditions [19]

and obtain all of the possible deterministic multiplexing

gain. The impact of the service discipline on deterministic

service is further discussed in [27] and [29].

6 Implementation Issues

In proposing a new source model, there are several issues

regarding its practicality. For a deterministic model, these

issues include: (1) concise parameterization - can the model

be represented in a concise manner? (2) parameter speci�-

cation - how di�cult is it for a source to come up with its

characterization? (3) policing - can the model be e�ectively

and e�ciently enforced?

6.1 Concise Parameterization

In the example of Section 5, an (R

k

; I

k

) rate-interval pair

was used for each frame-time up to an interval length of

several seconds. In the following experiment, we use four

rate-interval pairs to characterize the tra�c and calculate

the maximum number of acceptable connections as in the

previous sections. Figure 10 shows the result. While the

homogeneous case does not explore all of the facets of us-

ing di�erent constraint functions, this experiment indicates

that a smaller number of D-BIND rate-interval pairs may

result in utilizations close to those achieved with a large

number of pairs.
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Figure 10: Utilization with Four Rate-Interval Pairs

For MPEG video sources, an alternative concise param-

eterization is to use knowledge of the frame pattern (in

this case, IBBPBB) along with a parameterization of the

largest sized I frame, B frame, and P frame. With this

alternative \worst-case" characterization, a pessimistic ap-

proximation to the D-BIND constraint function can be ob-

tained by constructing b(t) as a transmission of the largest

I frame, followed by 2 transmissions of the largest B frame

and so on. In essence, any b(t) that is a piece-wise linear

upper approximation to E(t) = sup

s�0

A[s; s + t] can be

used within the D-BIND framework.

There are certainly tradeo�s involved with the number

of parameters used to describe b(t). Our goal with D-BIND

was not to simply add more parameters to a determinis-

tic characterization, but rather to be sure that for a cer-

tain number of speci�ed parameters, the most important

information (for determining queue lengths and QoS) is be-

ing conveyed to the network's resource allocation system.

While additional parameters can improve resource utiliza-

tion, it also increases the complexity of the policing mech-

anism and requires more �elds in the signaling messages.

Further experiments on the achievable utilization improve-

ment for each additional parameter can be found in [27].

We note however, that a restriction to three parameters, as

is the case for the current ATM and IETF standards, may

overly restrict network utilizations, as seen in Section 5.

Alternatively, with three or four rate-interval pairs, which

could be expressed with �ve and seven parameters respec-

tively if the last interval extends inde�nitely, most of the

achievable gain for deterministic service is realized. More-

over, in the scheme of [16], these same rate-interval pairs

could be used for statistical performance guarantees, with

longer interval lengths used to capture longer time-scale

properties of streams that are important in obtaining a sta-

tistical multiplexing gain [16]. Alternatively, a (peak rate,

burst length, average rate) model is not accurate enough to

capture the streams' important burstiness properties over

the important time scales: characteristics that are essential

for obtaining a statistical multiplexing gain (see also [22]).



6.2 Parameter Speci�cation

Here we address the issue of how a source can determine

its parameters at the connection setup time. Determin-

ing a stream's tra�c model parameters can be divided into

two cases: o�-line and on-line. The o�-line case is for ap-

plications such as stored video where the stream's arrival

sequence is known in advance. The on-line case is for ap-

plications such as live video where little information about

a stream's characteristics is known in advance. In both

of these cases, determining D-BIND parameters does not

have more complexity than �nding, for example, (~�; ~�) pa-

rameters [27].

6.2.1 O�-line Parameter Speci�cation

For the o�-line case, the following example illustrates the

process of obtaining D-BIND parameters. Consider a video

sequence where the size of the i

th

frame is denoted by f

i

.

For P rate-interval pairs, we can set interval length I

k

to be

kT where T is the inter-frame time. For a trace consisting

of F frames, the bounding rates can be easily calculated as

R

k

=

max

k�i�F

P

k�1

j=0

f

i�j

I

k

: (10)

Each rate-interval pair can be determined with a single pass

through the trace so that the computational complexity of

determining P rate-interval pairs for a trace of length F is

FP . Equivalently, all rate-interval pairs can be determined

in a single pass through the trace using P counters.

This computational complexity of determining parame-

ters for the (~�; ~�) multi-level leaky bucket model with P

(�

k

; �

k

) pairs is the same as that of the D-BIND model

using an algorithm such as in [27].

6.2.2 On-line Parameter Speci�cation

For the on-line case, the arrival sequence is not known in

advance and hence, parameter values for any tra�c model

are more di�cult to obtain. We therefore address the prob-

lem of how a network client that knows little or nothing

about its tra�c speci�cation can best utilize a determinis-

tic service.

Note that this problem is inherent to any resource allo-

cation system. For example, a resource allocation system

such as [6] uses the notion of a contract in which the net-

work client speci�es its tra�c and promises not to send

more. If the connection is admitted, then the network

promises to deliver the client's requested QoS. If one half

of the contract cannot be speci�ed, particularly the tra�c

speci�cation, then the contract can only be honored when

the client sends within what it does specify.

Our general approach for approximating a deterministic

service in the on-line case is to use use a renegotiated ser-

vice with properly chosen parameters for the adaptation

algorithm. Speci�cally, the renegotiation scheme of [30]

has a tunable parameter that determines how aggressively

a user wishes to renegotiate. A larger value of this param-

eter results in less-frequent renegotiations and decreases

the probability of renegotiation failure. While we do need

to adapt the tra�c parameters for a source with unknown

tra�c bounds, the goal of the use of renegotiation here is

quite di�erent from that of a renegotiated service per se.

Indeed, a renegotiated service attempts to achieve a sta-

tistical multiplexing gain by exploiting long-time scale dy-

namics of streams. Consequentially, a renegotiated service

provides a type of statistical service by targeting a non-zero

probability of renegotiation failure. While there is a mea-

sure of uncertainty in providing a deterministic service to

a source with unknown parameters, we attempt to deliver

the closest possible service to a deterministic service by

adapting the values of the tra�c speci�cation. Hence, we

are trying to avoid renegotiation failures and are willing to

forfeit the statistical multiplexing gain in order to obtain

a better service, viz., a deterministic service.

6.2.3 Comparison to (�; �) and Xmin

Lastly, we compare the di�culty of obtaining parameters

for the (�; �) and (Xmin;Xave; I) models with that of

the D-BIND model. It may be ostensible that speci�ca-

tion of such two- or three-parameter models may be eas-

ier than specifying (say) four rate-interval pairs. However,

compared to the D-BIND model, there are some addi-

tional di�culties in parameter selection for the (�; �) and

(Xmin;Xave; I) models. Consider the (�; �) model: the

maximum burst size � should be viewed as a function of �,

with � being a rate between the source's peak and average

rate, and � being a bound on the burst size. Clearly, a

smaller � requires a larger � for a given arrival sequence.

As alluded to in Section 5.4, proper selection of � depends

on the network load, and may be di�cult or impossible

to choose appropriately in the case of multiple hops with

varying loads. Roughly, if the network is loaded such that

bandwidth is plentiful and bu�ers are scarce, the source

should choose a larger � and a smaller �, and vice versa;

further discussions of such bandwidth-bu�er tradeo�s can

be found in [21]. Unfortunately, such information about

the network's state is dynamic and may not even be avail-

able at connection setup time. Moreover, a poor choice of

� could cause the connection to be unnecessarily rejected.

Contrastly, the D-BIND model alleviates this problem with

its more expressive tra�c characterization.

6.3 Policing

Since the network must protect guaranteed-service clients

from malicious users, it needs to monitor the tra�c from

each source to ensure that it satis�es its tra�c speci�ca-

tion. Such an access control function at the network's edge

is called policing and is shown in Figure 11. The input

to the policer comes from the source, and the output goes

to the network. The function of the policer is to ensure

that the tra�c it outputs to the network satis�es the traf-

�c constraint function b(t) that is speci�ed by the source's

model parameters. To achieve this, the policer may need

to bu�er or drop packets when the input stream exceeds



the limit de�ned by b(t). If the input stream to the source

policer satis�es the tra�c constraint function, no bu�ering

or delay is incurred in the policer.

Model Policer
b(t)

Arrivals A[s,s+t] < b(t)

Figure 11: Policing of the Tra�c Constraint Function b(t)

As described in Section 4.2, a piece-wise linear func-

tion may be used to represent the D-BIND model's con-

straint function. Section 5 demonstrated that, because

of the temporal properties of MPEG sources, the sources

considered here had neither monotonically decreasing rate-

interval curves nor concave constraint functions. As ad-

dressed by the propositions below, a concave constraint

function has implications for policing.

Lemma 1 If b(t) is piece-wise linear concave, then R

k

is

strictly decreasing with increasing I

k

.

Proof: A function b(t) is concave if for any t

1

< t

2

and

0 � � � 1, �b(t

1

) + (1 � �)b(t

2

) � b(�t

1

+ (1 � �)t

2

).

Denoting by R(I) the bounding rate over the interval I ,

we need to show that, for any u

1

< u

2

, R(u

1

) � R(u

2

)

or

b(u

1

)

u

1

�

b(u

2

)

u

2

. Since b(0) = 0, in the inequality above,

let t

1

= 0, t

2

= u

2

, and � = 1 � u

1

=u

2

. Thus, we have

b(u

1

) � u

1

=u

2

� b(u

2

). 2

Lemma 2 If a piece-wise linear constraint function b(t)

with P linear segments is concave, then the source may be

fully policed, i.e., Equation (8) holds, with a cascade of P

leaky buckets.

The proof is given in Theorem 5.1 of [5]. Note that, as

shown in Figure 5, a source does not necessarily have a

concave constraint function b(t). In this case, a piece-

wise linear non-concave constraint function may be policed

with a cascade of leaky buckets with state-dependent token-

generation rates. That is, the leaky bucket's token rate

is a function of the number of cells transmitted over the

previous interval. Thus, for simplicity, one may opt to ap-

proximate a source's constraint curve by its concave hull

so that it may be policed with a cascade of one or more

leaky buckets.

However, considering the concave restriction of the D-

BIND model results in a less accurate constraint function

and potentially lower network utilization. An example of

the potential utilization di�erences is shown in Figure 13

for the sources shown in Figure 12. Figure 12 shows the D-

BIND constraint function for the lecture sequence as well

as the concave hull of this function. We will refer to this

as Source #1 and Source #1/Concave. Also shown is a

second source, Source #2, with a peak rate of 1.5 Mbps

and a bounding rate of 300 kbps over a 500 msec interval.

Figure 13 shows, in the manner of Figure 9, the max-

imum number of respective Source #1 (lecture) connec-

tions and Source #2 connections that can be multiplexed

so that all connections have a deterministic delay bound

of 60 msec. The �gure shows that restricting the D-BIND
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Figure 12: b(t) for Concavity Experiments

model to have a concave constraint function has a utiliza-

tion penalty. For example, if 25 Source#2 connections are

multiplexed, the number of admissible lecture connections

can be increased by 29% (from 38 to 49) by avoiding the

concavity restriction.
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Figure 13: Utilization Cost of Concave Approximation

Finally, Figure 13 indicates that the utilization advan-

tages of considering non-concave constraint functions are

only apparent in the heterogeneous cases. This is evident

from the �gure in that both of the curves join at the axes in-

tercepts showing that there is no utilization penalty when

considering homogeneous connections. This can also be

seen in terms of the constraint function as illustrated in

Figure 14. The �gure shows the calculation of the delay

bound as in the admission control test illustrated in Equa-

tion 4. For homogeneous sources, the sum of the constraint

curves may look like the upper curve of the �gure. When

calculating the maximum backlog for curves such as in Fig-

ure 14, the maximum backlog will be B

1

or B

3

depending

on the shape of the original constraint curve, but never

B

2

. Thus, the potential advantage of having non-concave

tra�c constraint functions can only be seen when there are

heterogeneous sources.
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7 Conclusion

In this paper, we introduced a new tra�c model for pro-

viding performance guarantees in integrated services net-

works. The model, termed D-BIND or Deterministic Bound-

ing INterval-length Dependent, consists of a number of

rate-interval pairs that are speci�ed to the network at con-

nection setup time. The model captures the key proper-

ties of streams needed for resource allocation, namely, the

streams' bounding or worst case rates, and the correspond-

ing durations or interval lengths of theses rates. The in-

creased accuracy of the new model as compared to previous

models allows for more e�cient allocation of network re-

sources, or equivalently, for higher network utilization for

a given QoS guarantee.

Focusing on a deterministic network service, we quan-

ti�ed the utilization that the new model can achieve by

performing a set of experiments with traces of MPEG-

compressed video. For a lecture sequence with bounding

rates that quickly decreased with increasing interval length,

we found that network utilizations of over 60% are achiev-

able. For burstier sources such as an advertisements se-

quence which has more slowly decreasing bounding rates,

network utilizations of approximately 25% are achievable.

We consider these utilizations to be considerably high given

that the provided QoS avoids any packet losses or delay-

bound violations. Moreover, these utilizations for D-BIND

are substantially above those for other deterministic tra�c

models.

In order to achieve higher utilizations than those re-

ported above, a statistical multiplexing gain must be ex-

ploited. Of course, such a utilization gain is not for free in

that with statistical sharing of network resources, clients

obtain a probabilistic guarantee on loss and delay-bound

rather than an absolute guarantee as in the deterministic

case. To provide a statistical service, the network needs to

know the stochastic properties of the tra�c streams. How-

ever, if sources specify a stochastic tra�c characterization

to the network, the network may not be able to enforce the

source's speci�cation. In [16], a solution to this problem is

o�ered that extracts statistical properties of streams from

the D-BIND model's worst-case characterization, retaining

the enforcibility of the tra�c speci�cation while simultane-

ously achieving a statistical multiplexing gain. The accu-

racy of the D-BIND model translates into accuracy of the

extracted statistics so that such an approach can achieve a

signi�cant statistical multiplexing gain.

With the D-BIND model, a full range of network services

can be provided to network clients, including the determin-

istic service investigated here, as well as a renegotiated ser-

vice [30] and a statistical service [16]. Which services are

used by future network clients will depend on both the per-

formance requirements of the client as well as the \cost" of

delivering the service. The role of the D-BIND model is to

create an e�cient foundation for building and integrating

these di�erent network services by accurately characteriz-

ing tra�c streams so that each of these services achieves a

high level of resource utilization for the provided QoS.
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