
DoS Resilience in Ad Hoc Networks

I. Aad, J.-P. Hubaux and E. Knightly

MobiCom 2004, Sept. 29th 2004,

Philadelphia - PA, USA

1

Outline

Introduction and system model

DoS attacks:
“Protocol-compliant” attacks: JellyFish
BlackHole

The cost of counter-measures

Network performance under DoS attacks

Conclusion

2

Introduction

Significant work has been made in:

Key Establ.

General

Authenticatio
n

Group / M
ultic

ast

Arm
s ra

ce

Localisatio
n

Cooperatio
n

Routin
g

Intru
sion detectio

n

Reputatio
n

32
P

er
ce

n
ta

g
e

26

12

7 6
5 4 3

2 2

3

Introduction

Significant work has been made in:

Key Establ.

General

Authenticatio
n

Group / M
ultic

ast

Arm
s ra

ce

Localisatio
n

Cooperatio
n

Routin
g

Intru
sion detectio

n

Reputatio
n

32
P

er
ce

n
ta

g
e

We are here

0

DoS assessment

26

12

7 6
5 4 3

2 2

Our goal: quantify the damage of a DoS attack on an
ad-hoc network

3

Introduction

Significant work has been made in:

Key Establ.

General

Authenticatio
n

Group / M
ultic

ast

Arm
s ra

ce

Localisatio
n

Cooperatio
n

Routin
g

Intru
sion detectio

n

Reputatio
n

32
P

er
ce

n
ta

g
e

We are here

0

DoS assessment

26

12

7 6
5 4 3

2 2

Design (and study) a new class of “protocol-compliant”
attacks

3

System model

Ad-hoc multi-hop network, Mobile nodes, Secure routing,

Node Authentication, 1 ID/node, Packet Authentication and

Encryption...
4

System model

JF

JF: JellyFish
BH: BlackHole

BH

JF

The dual role of hosts as routers introduces a critical
vulnerability!

4

Outline

Introduction and system model

DoS attacks:

“Protocol-compliant” attacks: JellyFish
BlackHole

The cost of counter-measures

Network performance under DoS attacks

Conclusion

5

What is a "protocol-compliant" attack?

Just like any IP service, it can:

Drop packets

Reorder packets

Delay / jitter packets

6

What is a "protocol-compliant" attack?

Just like any IP service, it can:

Drop packets

Reorder packets

Delay / jitter packets

BUT!
in a MALICIOUS way...

6

What is a "protocol-compliant" attack?

Just like any IP service, it can:

Drop packets

Reorder packets

Delay / jitter packets

Why use "protocol-compliant" attacks ?
Detection and diagnosis are time consuming!

6

Example: the JellyFish

� �� �� �� �� �
��

��
�

� �� �� �� �� �
��

��
�

� �� �� �� �� �
��

��
�

Buffer size

JF−reordering node

Pkt Recv

Src
JF

Dst

Random select

Pkt Send

� �� �� �� �� �
��

��
�

7

Example: the JellyFish

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 1 1.5 2 2.5 3 3.5 4 4.5 5

G
oo

dp
ut

 (
M

b/
s)

Reordering buffer size

2 hops
3 hops
4 hops
5 hops

Reordering >3 packets reduces TCP throughput to ≈zero!
7

The JellyFish

For closed-loop traffic:
TCP, TFRC-like...

Passive

Hard to detect...
... until after the "sting"

End-to-end control protocols infer network status from
feedback measurements.

JF interferes with these measurements...

... to attenuate the traffic flows.
8

The JellyFish

For closed-loop traffic:
TCP, TFRC-like...

Passive

Hard to detect...
... until after the "sting"

Species:

JF-Reorder → “multipath”

JF-drop → “congestion, buffer overflow...”

JF-Jitter (variable RTT) → “variable loads” 8

JF-drop

For wired networks: the Shrew [Kuzmanovic & Knightly]

Dropping 5% of the packets periodically (@T = 1sec)

T

Time

Src
JF

Dst

T x d%

9

JF-drop

Dropping 5% of the packets periodically (@T = 1sec)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 0.5 1 1.5 2 2.5 3

G
oo

dp
ut

 (
M

b/
s)

Time period (s)

2 hops
3 hops
4 hops
5 hops

... reduces TCP throughput to zero!
9

JF-drop

T
C

P
 c

o
n

g
es

t.
 w

in
d

o
w

Time

JF Outage: ~RTT

9

JF-drop

T
C

P
 c

o
n

g
es

t.
 w

in
d

o
w

minRTO

Time

JF Outage: ~RTT

9

JF-drop

T
C

P
 c

o
n

g
es

t.
 w

in
d

o
w

minRTO n x minRTO

Time

JF Outage: ~RTT

9

JF-drop

T
C

P
 c

o
n

g
es

t.
 w

in
d

o
w

1 sec n x 1 sec

Time

RFC 2988

JF Outage: ~RTT

9

JF-drop

T
C

P
 c

o
n

g
es

t.
 w

in
d

o
w

1 sec n x 1 sec

Time

RFC 2988

JF Outage: ~RTT

9

JF-jitter

������ �� �� �� �� �� �� �� ��� �����

JF−jitter−delay node

time

IDLE

Server with vacations

JF
Dst

Src

10

JF-jitter

TCP infers network/congestion status using RTT...

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 1 2 3 4 5

G
oo

dp
ut

 (
M

b/
s)

Idle period (s)

JF-jitter

JF interferes with RTT to attenuate the TCP flow!
10

The BlackHole

For non-responsive / open-loop traffic...

Passive

Forwards routing packets

"Absorbs" all data packets

Hard to detect...
11

The BlackHole

MAC/PHY

Upstream
BH

DstMAC/PHY

IP IP

Data

MAC−ACK

Drop!

of MAC layer
failure

Detection

neighbor

MAC ACK avoids immediate diagnosing

11

The BlackHole

MAC/PHY

Upstream
BH

DstMAC/PHY

IP IP

Data

MAC−ACK

Drop!

of MAC layer
failure

Detection

neighbor

(zero throughput)

11

Passive ACK (PACK) [DSR]

A is sending a packet to C via B

A B C

12

Passive ACK (PACK) [DSR]

A overhears B’s transmission/forward to C

A B C

12

Passive ACK (PACK) [DSR]

PACK can be fooled by low-power transmissions...

A B C

12

Passive ACK (PACK) [DSR]

... Or by using directional antennas!

A B C

12

Outline

Introduction and system model

DoS attacks:
“Protocol-compliant” attacks: JellyFish
BlackHole

The cost of counter-measures

Network performance under DoS attacks

Conclusion

13

Non-goal: escalating the “arms race”

Diagnosis are inevitable
Locally ?
End-to-end ?

Our goal: how do they perform ?
14

The cost of counter-measures

Counter-measure parameters:

Diagnosis time → E(T n
diag)

(re)Route request → E(T n
RR)

Routing protocol limitations:

Rate limiter → E(T n
RL)

Let:

Flow lifetime → E(TL)

Proportion of JF → p

Path length (for recvd. pkts.) → h

15

The cost of counter-measures

Goodput = E(TL)

E(TL)+(E(T n
diag

)+E(T n
RL

)+E(T n
RR

))(1−p)−h

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6

G
oo

dp
ut

Fraction of JellyFish Nodes

3 relay nodes
6 relay nodes
9 relay nodes

Diagnosis and rerouting times get magnified by (1 − p)−h.

(h: average hop-count, p: proportion of JF)
15

The cost of counter-measures

Goodput = E(TL)

E(TL)+(E(T n
diag

)+E(T n
RL

)+E(T n
RR

))(1−p)−h

Mobility

Network size

“PACK++”

Watchdog, path-rater [Marti et al.]

Identifying “Byzantine nodes” [Awerbuch et al.]

Reputation systems [Buchegger et al., Michiardi et al.]

Rushing attack [Hu et al.]

15

Rushing attack [Hu et al.]

16

Rushing attack [Hu et al.]

JF

The malicious node increases its transmission range

16

Rushing attack [Hu et al.]

JF

... to "attract" more flows, therefore increasing p!

16

Rushing attack [Hu et al.]

Goodput = E(TL)

E(TL)+(E(T n
diag

)+E(T n
RL

)+E(T n
RR

))(1−p)−h

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6

G
oo

dp
ut

Fraction of JellyFish Nodes

no rushing attack
2x rushing
4x rushing

The rushing attack makes things even worse,
exponentiating the effect with hop length!

(h: average hop-count, p: proportion of JF) 16

Rushing attack [Hu et al.]

Goodput = E(TL)

E(TL)+(E(T n
diag

)+E(T n
RL

)+E(T n
RR

))(1−p)−h

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6

G
oo

dp
ut

Fraction of JellyFish Nodes

no rushing attack
2x rushing
4x rushing

The goodput collapses under 10% of attackers!

16

Outline

Introduction and system model

DoS attacks:
“Protocol-compliant” attacks: JellyFish
BlackHole

The cost of counter-measures

Network performance under DoS attacks

Conclusion

17

What about the network resistance?

Simulation setup:

2000m × 2000m topology

200 mobile nodes

Velocity: 0 to 10m/s

Average pause time: 10s

50 UDP flows: 500B packets / 5s, (800b/s)

Clear non-fading channel

Simulation: 100s warmup + 500s simulation

(50 simulations, 18 topologies) / point, 95% conf.
intervals

18

What about the network resistance?

System-wide total throughput = sum of E-2-E throughputs:

%

S
ys

te
m

 T
h

rp
t.

Percentage of JF

18

What about the network resistance?

System-wide total throughput = sum of E-2-E throughputs:

100%

S
ys

te
m

 T
h

rp
t.

Percentage of JF

18

What about the network resistance?

System-wide total throughput = sum of E-2-E throughputs:

100%

S
ys

te
m

 T
h

rp
t.

Percentage of JF

18

What about the network resistance?

System-wide total throughput = sum of E-2-E throughputs:

100%

S
ys

te
m

 T
h

rp
t.

Percentage of JF

18

again ?

DoS increases the capacity of ad-hoc networks!

19

Path length for received packets

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0 5 10 15 20

P
ro

ba
bi

lit
y

Number of hops

0 JF / 200 nodes
16 JF, Grid. plac. / 200 nodes
25 JF, Grid. plac. / 200 nodes
49 JF, Grid. plac. / 200 nodes

After DoS: → Long paths are extinguished...

→ Short paths will survive...
20

Path length for received packets

− End−to−End throughput = channel capacity
− Less interference
− More channel reuse

After DoS: → Long paths are extinguished...

→ Short paths will survive...
20

Path length for received packets

− End−to−End throughput = channel capacity
− Less interference
− More channel reuse

− E2E throughput = ch. capacity / 3
− More interference
− Less channel reuse

After DoS: → Long paths are extinguished...

→ Short paths will survive...
20

Path length for received packets

− End−to−End throughput = channel capacity
− Less interference
− More channel reuse

− E2E throughput = ch. capacity / 3
− More interference
− Less channel reuse

System throughput maximizer

After DoS: → Long paths are extinguished...

→ Short paths will survive...
20

Path length for received packets

− End−to−End throughput = channel capacity
− Less interference
− More channel reuse

− E2E throughput = ch. capacity / 3
− More interference
− Less channel reuse

System throughput maximizer

and this is what JF and BlackHoles are doing!
20

System throughput

 0

 0.5

 1

 1.5

 2

 2.5

 0 5 10 15 20 25

N
or

m
al

iz
ed

 s
ys

te
m

 th
ro

ug
hp

ut

Percentage of JFs

50 1Mb/s CBR flows
250 1Mb/s CBR flows

5 TCP flows

System throughput often increases after DoS!
21

BUT!

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25

Ja
in

’s
 in

de
x

of
 fa

irn
es

s

Percentage of JF

50 1Mb/s CBR flows
250 1Mb/s CBR flows

5 TCP
50 TCP

System becomes unfair, in favor of short paths.
22

After DoS...

Network gets severely partitioned

Short flows survive

Long flows are attenuated

Aggregated system throughput may increase!

23

More in the paper...

We analyze the performance of the system when varying
the:

Offered load

Network size

Node density

Node mobility

JF placement strategy

24

Outline

Introduction and system model

DoS attacks:
“Protocol-compliant” attacks: JellyFish
BlackHole

The cost of counter-measures

Network performance under DoS attacks

Conclusion

25

Conclusion

TCP collapses with malicious:
Dropping, reordering, jitter ...

More generally, all closed-loop mechanisms are
vulnerable to malicious tampering

“Protocol-compliance” makes defense more
problematic

First paper to quantify DoS effects on ad-hoc networks:
DoS increases capacity! BUT!
Network gets partitioned
Fairness decreases
→ System throughput, alone, is not enough to
measure DoS impacts

26

PACK

PACK power

i
 j
 k
 i
 j
 k

27

PACK

PACK fool

i
 j
 k
 i
 j
 k

27

PACK

PACK directional antenna

i
 j
 k
 i
 j
 k

27

Reminder on TCP

TimersCong. Window

Pkt Recv
(ACK recv)

Sender Receiver

Data Pkt

ACK

8x

8x

9x

Sender Receiver

Slow Start (SS)

Congest. Avoid. (CA)
(cwnd > ssthresh)

b |SRTT−RTT|

SRTT = (1−a) SRTT + a RTT

RTTVAR = (1−b) RTTVAR +

SRTT+ max(G, 4 RTTVAR))

Timers

cwnd += 1/cwnd (CA)

ssthresh

RTO = max(minRTO ,

Cong. Window

Pkt Recv
(ACK recv)

cwnd += 1 (SS)

1 RTT

28

Reminder on TCP

TimersCong. Window

Pkt Recv
(ACK recv)

Data Pkt

Sender Receiver

28

Reminder on TCP

b |SRTT−RTT|

SRTT = (1−a) SRTT + a RTT

RTTVAR = (1−b) RTTVAR +

SRTT+ max(G, 4 RTTVAR))

Timers

ssthresh

RTO = max(minRTO ,

Cong. Window

Pkt Recv
(ACK recv)

cwnd += 1 (SS)

1 RTT

Data Pkt

ACK

Sender Receiver

28

Reminder on TCP

b |SRTT−RTT|

SRTT = (1−a) SRTT + a RTT

RTTVAR = (1−b) RTTVAR +

SRTT+ max(G, 4 RTTVAR))

Timers

ssthresh

RTO = max(minRTO ,

Cong. Window

Pkt Recv
(ACK recv)

cwnd += 1 (SS)

1 RTT

Data Pkt

ACK

Sender Receiver

28

Reminder on TCP

b |SRTT−RTT|

SRTT = (1−a) SRTT + a RTT

RTTVAR = (1−b) RTTVAR +

SRTT+ max(G, 4 RTTVAR))

Timers

ssthresh

RTO = max(minRTO ,

Cong. Window

Pkt Recv
(ACK recv)

cwnd += 1 (SS)

1 RTT

Data Pkt

ACK

Sender Receiver

28

Reminder on TCP

b |SRTT−RTT|

SRTT = (1−a) SRTT + a RTT

RTTVAR = (1−b) RTTVAR +

SRTT+ max(G, 4 RTTVAR))

Timers

ssthresh

RTO = max(minRTO ,

Cong. Window

Pkt Recv
(ACK recv)

cwnd += 1 (SS)

1 RTT

Data Pkt

ACK

Sender Receiver

Slow Start (SS)

28

Reminder on TCP

b |SRTT−RTT|

SRTT = (1−a) SRTT + a RTT

RTTVAR = (1−b) RTTVAR +

SRTT+ max(G, 4 RTTVAR))

Timers

ssthresh

RTO = max(minRTO ,

Cong. Window

Pkt Recv
(ACK recv)

cwnd += 1 (SS)
cwnd += 1/cwnd (CA)

1 RTT

Data Pkt

ACK

8x

8x

Sender Receiver

Slow Start (SS)

28

Reminder on TCP

b |SRTT−RTT|

SRTT = (1−a) SRTT + a RTT

RTTVAR = (1−b) RTTVAR +

SRTT+ max(G, 4 RTTVAR))

Timers

ssthresh

RTO = max(minRTO ,

Cong. Window

Pkt Recv
(ACK recv)

cwnd += 1 (SS)
cwnd += 1/cwnd (CA)

1 RTT

Data Pkt

ACK

8x

8x

9x

Sender Receiver

Slow Start (SS)

28

Reminder on TCP

28

Reminder on TCP

1 RTT

Data Pkt

ACK

Sender Receiver

Slow Start (SS)

b |SRTT−RTT|

SRTT = (1−a) SRTT + a RTT

RTTVAR = (1−b) RTTVAR +

SRTT+ max(G, 4 RTTVAR))

Timers

cwnd += 1/cwnd (CA)
cwnd += 1 (SS)

ssthresh

RTO = max(minRTO ,

Cong. Window

Pkt loss

Pkt Recv

 T.O.)

(dup. ACKs,

(ACK recv)

Duplicate ACK

28

Reminder on TCP

1 RTT

Data Pkt

ACK

Sender Receiver

Slow Start (SS)

b |SRTT−RTT|

SRTT = (1−a) SRTT + a RTT

RTTVAR = (1−b) RTTVAR +

SRTT+ max(G, 4 RTTVAR))

Timers

cwnd += 1/cwnd (CA)
cwnd += 1 (SS)

ssthresh

RTO = max(minRTO ,

Cong. Window

Pkt loss

Pkt Recv

 T.O.)

(dup. ACKs,

(ACK recv)

Duplicate ACK

28

Reminder on TCP

1 RTT

Data Pkt

ACK

Sender Receiver

Slow Start (SS)

b |SRTT−RTT|

SRTT = (1−a) SRTT + a RTT

RTTVAR = (1−b) RTTVAR +

SRTT+ max(G, 4 RTTVAR))

Timers

cwnd += 1/cwnd (CA)
cwnd += 1 (SS)

ssthresh

RTO = max(minRTO ,

Cong. Window

Pkt loss

Pkt Recv

 T.O.)

(dup. ACKs,

(ACK recv)

Duplicate ACK

28

Reminder on TCP

1 RTT

Data Pkt

ACK

Sender Receiver

Slow Start (SS)

b |SRTT−RTT|

SRTT = (1−a) SRTT + a RTT

cwnd = 1

RTTVAR = (1−b) RTTVAR +

SRTT+ max(G, 4 RTTVAR))

ssthresh = cwnd / 2

Timers

RTO = RTO x 2

cwnd += 1/cwnd (CA)
cwnd += 1 (SS)

ssthresh

RTO = max(minRTO ,

Cong. Window

Pkt loss

Pkt Recv

 T.O.)

(dup. ACKs,

(ACK recv)

Duplicate ACK

28

Reminder on TCP

1 RTT

Data Pkt

ACK

Sender Receiver

Slow Start (SS)

b |SRTT−RTT|

SRTT = (1−a) SRTT + a RTT

cwnd = 1

RTTVAR = (1−b) RTTVAR +

SRTT+ max(G, 4 RTTVAR))

ssthresh = cwnd / 2

Timers

RTO = RTO x 2

cwnd += 1/cwnd (CA)
cwnd += 1 (SS)

ssthresh

RTO = max(minRTO ,

Cong. Window

Pkt loss

Pkt Recv

 T.O.)

(dup. ACKs,

(ACK recv)

Duplicate ACK

/ T.O. ?

28

Reminder on TCP

1 RTT

Data Pkt

ACK

Sender Receiver

Slow Start (SS)

b |SRTT−RTT|

SRTT = (1−a) SRTT + a RTT

cwnd = 1

RTTVAR = (1−b) RTTVAR +

SRTT+ max(G, 4 RTTVAR))

ssthresh = cwnd / 2

Timers

RTO = RTO x 2

cwnd += 1/cwnd (CA)
cwnd += 1 (SS)

ssthresh

RTO = max(minRTO ,

Cong. Window

Pkt loss

Pkt Recv

 T.O.)

(dup. ACKs,

(ACK recv)

Duplicate ACK

/ T.O. ?

28

JF-drop

Timer
Retx

1s

Time

TimersCong. Window

Pkt Recv

Pkt loss

29

JF-drop

Timer
Retx

1s−RTT
1s

Time1s

1s

TimersCong. Window

Pkt Recv

Pkt loss
cwnd = 1 RTO = RTO x 2

29

JF-drop

Timer
Retx

2s−RTT

1s−RTT
1s

2s

Time1s

1s 1s
+R

T
T

Timers

Pkt loss

Pkt Recv

Cong. Window

SRTT+ max(G, 4 RTTVAR))

RTO = max(minRTO,
cwnd +=1 (SS)

29

JF-drop

Timer
Retx

2s−RTT

1s−RTT
1s

2s

Time1s

1s 1s
+2

R
T

T
1s

+R
T

T

Timers

SRTT+ max(G, 4 RTTVAR))
cwnd +=1 (SS)

RTO = max(minRTO,

Pkt Recv

Pkt loss

Cong. Window

29

JF-drop

Timer
Retx

2s−RTT

1s−RTT
1s

2s

Time1s

1s 1s
+2

R
T

T
1s

+R
T

T

Timers

SRTT+ max(G, 4 RTTVAR))
cwnd +=1 (SS)

RTO = max(minRTO,

Cong. Window

Pkt Recv

Pkt loss

29

JF-drop

Timer
Retx

2s−RTT

1s−RTT
1s

2s

Time1s

1s 1s
+2

R
T

T
1s

+R
T

T

Timers

SRTT+ max(G, 4 RTTVAR))

RTO = max(minRTO,
cwnd +=1 (SS)

Pkt Recv

Pkt loss

Cong. Window

29

JF-drop

Timer
Retx

2s−RTT

1s−RTT
1s

2s

Time1s

1s 1s
+2

R
T

T
1s

+R
T

T

t 0

Timers

cwnd = 1 RTO = RTO x 2
Pkt loss

Pkt Recv

Cong. Window

29

JF-drop

Timer
Retx

2s−RTT

1s−RTT
1s

2s

Time1s

1s 1s
+2

R
T

T
1s

+R
T

T

t t +2s
0

Timers

cwnd = 1 RTO = RTO x 2

0

Pkt loss

Pkt Recv

Cong. Window

29

JF-drop

Timer
Retx

SRTT+ max(G, 4 RTTVAR))

RTO = max(minRTO,
cwnd +=1 (SS)

2s−RTT

1s−RTT
1s

2s

Time1s

1s 1s
+2

R
T

T
1s

+R
T

T

t t +2s
0

Timers

RTO = RTO x 2

0

cwnd = 1

Pkt Recv

Pkt loss

Cong. Window

29

JF-drop

Timer
Retx

SRTT+ max(G, 4 RTTVAR))

RTO = max(minRTO,
cwnd +=1 (SS)

2s−RTT

1s−RTT
1s

2s

Time1s

1s 1s
+2

R
T

T
1s

+R
T

T

t t +2s
0

Timers

RTO = RTO x 2

0

cwnd = 1

Pkt Recv

Pkt loss

Cong. Window

t +1s0

29

Simulation results: Number of hops

 0

 1

 2

 3

 4

 5

 6

 7

502512.580

A
ve

ra
ge

 n
um

be
r

of
 h

op
s

Percentage of JF

Baseline: 50 1Mb/s CBR flows

30

	Outline
	Introduction
	System model
	Outline
	What is a "protocol-compliant" attack?
	Example: the JellyFish
	The JellyFish
	JF-drop
	JF-jitter
	The BlackHole
	Passive ACK (PACK)
[DSR]
	Outline
	Non-goal: escalating the ``arms race''
	The cost of counter-measures
	Rushing attack [Hu et al.]
	Outline
	What about the network resistance?
	again ?
	Path length for received packets
	System throughput
	BUT!
	After DoS...
	More in the paper...
	Outline
	Conclusion
	PACK
	Reminder on TCP
	JF-drop
	Simulation results: Number of hops

