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System model

Ad-hoc multi-hop network, Mobile nodes, Secure routing,

Node Authentication, 1 ID/node, Packet Authentication and

Encryption...
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System model

JF

JF: JellyFish
BH: BlackHole

BH

JF

The dual role of hosts as routers introduces a critical
vulnerability!
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What is a "protocol-compliant" attack?

Just like any IP service, it can:

Drop packets

Reorder packets

Delay / jitter packets
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What is a "protocol-compliant" attack?

Just like any IP service, it can:

Drop packets
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BUT!
in a MALICIOUS way...
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What is a "protocol-compliant" attack?

Just like any IP service, it can:

Drop packets

Reorder packets

Delay / jitter packets

Why use "protocol-compliant" attacks ?
Detection and diagnosis are time consuming!
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Example: the JellyFish
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Example: the JellyFish
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Reordering >3 packets reduces TCP throughput to ≈zero!
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The JellyFish

For closed-loop traffic:
TCP, TFRC-like...

Passive

Hard to detect...
... until after the "sting"

End-to-end control protocols infer network status from
feedback measurements.

JF interferes with these measurements...

... to attenuate the traffic flows.
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The JellyFish

For closed-loop traffic:
TCP, TFRC-like...

Passive

Hard to detect...
... until after the "sting"

Species:

JF-Reorder → “multipath”

JF-drop → “congestion, buffer overflow...”

JF-Jitter (variable RTT) → “variable loads” 8



JF-drop

For wired networks: the Shrew [Kuzmanovic & Knightly]

Dropping 5% of the packets periodically (@T = 1sec)

T

Time

Src
JF

Dst

T x d%
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JF-drop

Dropping 5% of the packets periodically (@T = 1sec)
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JF-drop
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JF-jitter
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JF-jitter

TCP infers network/congestion status using RTT...
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JF interferes with RTT to attenuate the TCP flow!
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The BlackHole

For non-responsive / open-loop traffic...

Passive

Forwards routing packets

"Absorbs" all data packets

Hard to detect...
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The BlackHole

MAC/PHY

Upstream
BH

DstMAC/PHY

IP IP

Data

MAC−ACK

Drop!

of MAC layer
failure

Detection

neighbor

MAC ACK avoids immediate diagnosing
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The BlackHole

MAC/PHY

Upstream
BH

DstMAC/PHY

IP IP

Data

MAC−ACK

Drop!

of MAC layer
failure

Detection

neighbor

(zero throughput)
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Passive ACK (PACK) [DSR]

A is sending a packet to C via B

A B C
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Passive ACK (PACK) [DSR]

A overhears B’s transmission/forward to C

A B C
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Passive ACK (PACK) [DSR]

PACK can be fooled by low-power transmissions...

A B C
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Passive ACK (PACK) [DSR]

... Or by using directional antennas!

A B C
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Non-goal: escalating the “arms race”

Diagnosis are inevitable
Locally ?
End-to-end ?

Our goal: how do they perform ?
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The cost of counter-measures

Counter-measure parameters:

Diagnosis time → E(T n
diag)

(re)Route request → E(T n
RR)

Routing protocol limitations:

Rate limiter → E(T n
RL)

Let:

Flow lifetime → E(TL)

Proportion of JF → p

Path length (for recvd. pkts.) → h
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The cost of counter-measures

Goodput = E(TL)

E(TL)+(E(T n
diag

)+E(T n
RL

)+E(T n
RR

))(1−p)−h
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Diagnosis and rerouting times get magnified by (1 − p)−h.

(h: average hop-count, p: proportion of JF)
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The cost of counter-measures

Goodput = E(TL)

E(TL)+(E(T n
diag

)+E(T n
RL

)+E(T n
RR

))(1−p)−h

Mobility

Network size

“PACK++”

Watchdog, path-rater [Marti et al.]

Identifying “Byzantine nodes” [Awerbuch et al.]

Reputation systems [Buchegger et al., Michiardi et al.]

Rushing attack [Hu et al.]
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Rushing attack [Hu et al.]
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Rushing attack [Hu et al.]

JF

The malicious node increases its transmission range

16



Rushing attack [Hu et al.]

JF

... to "attract" more flows, therefore increasing p!
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Rushing attack [Hu et al.]

Goodput = E(TL)

E(TL)+(E(T n
diag

)+E(T n
RL

)+E(T n
RR

))(1−p)−h
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The rushing attack makes things even worse,
exponentiating the effect with hop length!

(h: average hop-count, p: proportion of JF) 16



Rushing attack [Hu et al.]

Goodput = E(TL)

E(TL)+(E(T n
diag

)+E(T n
RL

)+E(T n
RR

))(1−p)−h
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The goodput collapses under 10% of attackers!
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What about the network resistance?

Simulation setup:

2000m × 2000m topology

200 mobile nodes

Velocity: 0 to 10m/s

Average pause time: 10s

50 UDP flows: 500B packets / 5s, (800b/s)

Clear non-fading channel

Simulation: 100s warmup + 500s simulation

(50 simulations, 18 topologies) / point, 95% conf.
intervals

18



What about the network resistance?

System-wide total throughput = sum of E-2-E throughputs:
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again ?

DoS increases the capacity of ad-hoc networks!
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Path length for received packets
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Path length for received packets

− End−to−End throughput = channel capacity
− Less interference
− More channel reuse

After DoS: → Long paths are extinguished...

→ Short paths will survive...
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Path length for received packets

− End−to−End throughput = channel capacity
− Less interference
− More channel reuse

− E2E throughput = ch. capacity / 3
− More interference
− Less channel reuse

System throughput maximizer

After DoS: → Long paths are extinguished...

→ Short paths will survive...
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Path length for received packets

− End−to−End throughput = channel capacity
− Less interference
− More channel reuse

− E2E throughput = ch. capacity / 3
− More interference
− Less channel reuse

System throughput maximizer

and this is what JF and BlackHoles are doing!
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System throughput
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System throughput often increases after DoS!
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BUT!
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After DoS...

Network gets severely partitioned

Short flows survive

Long flows are attenuated

Aggregated system throughput may increase!
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More in the paper...

We analyze the performance of the system when varying
the:

Offered load

Network size

Node density

Node mobility

JF placement strategy
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Conclusion

TCP collapses with malicious:
Dropping, reordering, jitter ...

More generally, all closed-loop mechanisms are
vulnerable to malicious tampering

“Protocol-compliance” makes defense more
problematic

First paper to quantify DoS effects on ad-hoc networks:
DoS increases capacity! BUT!
Network gets partitioned
Fairness decreases
→ System throughput, alone, is not enough to
measure DoS impacts
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Simulation results: Number of hops
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