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Our goal: guantify the damage of a DoS attack on an
ad-hoc network
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Design (and study) a new class of “protocol-compliant”
attacks



System model
-

Ad-hoc multi-hop network, Mobile nodes, Secure routing,
Node Authentication, 1 ID/node, Packet Authentication and

Encryption...



System model
-

w SO
JF: JellyFish O C)L

BH: BlackHole

The dual role of hosts as routers introduces a critical
vulnerability!
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What is a "protocol-compliant™ attack?
-
Just like any IP service, it can:
& Drop packets
& Reorder packets

& Delay / jitter packets



What is a "protocol-compliant™ attack?
-
Just like any IP service, it can:
6 Drop packets
& Reorder packets

& Delay / jitter packets

BUT!
In a MALICIOUS way...



What is a "protocol-compliant™ attack?
-
Just like any IP service, it can:
6 Drop packets
& Reorder packets

& Delay / jitter packets

Why use "protocol-compliant” attacks ?
Detection and diagnosis are time consuming!



Example: the JellyFish
-

JF-reordering node

I |
| Buffer size I
I |
I |
Pkt Recv | Pkt Send
e | | | '
I |
I |
| |
| Random select |
Dst
\\/ - //// %
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Example: the JellyFish
-

2 ho'ps ——

0.7
0.6
05|
04t
0.3

3 hops ——

5hops —— .

Goodput (Mb/s)

0.2 ;

0.1 ¢

1.5

2 25 3 35 4 45 5
Reordering buffer size

Reordering >3 packets reduces TCP throughput to ~zero!
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The JellyFish

& For closed-loop traffic:
TCP, TFRC-like...

& Passive

6 Hard to detect...
... until after the "sting"

End-to-end control protocols infer network status from
feedback measurements.

JF Interferes with these measurements...

... to attenuate the traffic flows.



The JellyFish

& For closed-loop traffic:
TCP, TFRC-like...

& Passive

6 Hard to detect...
... until after the "sting"

Species:
6 JF-Reorder — “multipath”
e JF-drop — “congestion, buffer overflow...”

6 JF-Jitter (variable RTT) — “variable loads” 8



JF-drop
~
For wired networks: the Shrew [Kuzmanovic & Knightly]
Dropping 5% of the packets periodically (@T = 1sec)

—————————————————————————————————————————————————



JF-drop
-

Dropping 5% of the packets periodically (@T = 1sec)

Goodput (Mb/s)

0.8

0.7

0.6

0.5 |
0.4

0.3

0.2 §

0.1

... reduces TCP throughput to zero!
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2'hops ——
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X' JF Outage: ~RTT
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X' JF Outage: ~RTT
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X' JF Outage: ~RTT
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JF-drop

X' JF Outage: ~RTT
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JF-drop

X' JF Outage: ~RTT
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JF-jitter—-delay node

Server with vacations
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JF-jitter
-
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JF-jitter
-

TCP infers network/congestion status using RTT...

0.8

0.7
0.6

Goodput (Mb/s)

0.2
0.1r¢

0

0.5 F
04
0.3

' JF-jitter' —

0

2 3
|dle period (s)

JF interferes with RTT to attenuate the TCP flow!
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The BlackHole

For non-responsive / open-loop traffic...

Passive
Forwards routing packets

"Absorbs" all data packets

Hard to detect...

11



The BlackHole
-

Detection — .
of MAC layer : |
failure : |
. Drop!
- : :
| P |
MAC-ACK (_______ | _ {

" MAC/PHY | Dst

. > Data ‘-7 Q

\\ /// \\/ _ // /4
: 7/

BH Tt
Upstream

neighbor

MAC ACK avoids immediate diagnosing

11



The BlackHole
-

Detection — .
of MAC layer : |
failure : |
. Drop!
- : :
| IP |
MAC-ACK (_______ | _ |
" MAC/PHY | Dst
.  Data ‘- Q
\\ \\/ - 7 /4
- 7/

BH T
Upstream

neighbor

(zero throughput)
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Passive ACK (PACK) [DSR]
-

A Is sending a packet to C via B

12



Passive ACK (PACK) [DSR]
-

A overhears B’s transmission/forward to C

12



Passive ACK (PACK) [DSR]
-

PACK can be fooled by low-power transmissions...

12



Passive ACK (PACK) [DSR]
-

... Or by using directional antennas!

12
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Non-goal: escalating the “arms race”
-

& Diagnosis are inevitable
» Locally ?
» End-to-end ?

& Our goal: how do they perform ?

14



The cost of counter-measures

Counter-measure parameters:
6 Diagnosis time — E(T%, )

6 (re)Route request — E(T%)

Routing protocol limitations:

6 Rate limiter — E(T%;)

Let:
6 Flow lifetime — E(T7})

& Proportion of JF — p

@ Path length (for recvd. pkts.) — A

15



The cost of counter-measures
-
E(Tr)

Goodput = G BTy BTy, BT ) (=)

1

3relay nodes ——

0.8 O relay nodes ——

0.6

Goodput

04

0.2

O —
0 0.1 0.2 0.3 04 0.5 0.6

Fraction of JellyFish Nodes
Diagnosis and rerouting times get magnified by (1 — p)~".

(h: average hop-count, p: proportion of JF)
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The cost of counter-measures
-

Goodput = B{L)

E(TL)+(E(T}, )+ E(TE)+E(TRg) ) (1—p) "

6 Mobility

6 Network size
6 “PACK++"
6 Watchdog, path-rater [Marti et al.]

6 l|dentifying “Byzantine nodes” [Awerbuch et al.]
6 Reputation systems [Buchegger et al., Michiardi et al.]

6 Rushing attack [Hu et al.]

15



Rushing attack [Hu et al.]

16
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Rushing attack [Hu et al.]
-

16



Rushing attack [Hu et al.]
-

E(TL)
Goodput =
PO = B+ (BT, )BT+ E(TE,)) 1—p)
1
no rushing attack ———
0.8 4x rushing
5 06
i)
S
A 0.4
0.2

0 _1
0 0.1 0.2 0.3 0.4 0.5 0.6
Fraction of JellyFish Nodes

The rushing attack makes things even worse,
exponentiating the effect with hop length!
(h: average hop-count, p: proportion of JF) 16



Rushing attack [Hu et al.]
-

E(TL)
Goodput =
PO = B+ (BT, )BT+ E(TE,)) 1—p)
1
no rushing attack ———
0.8 4x rushing
5 06
i)
S
A 0.4
0.2

0 _1
0 0.1 0.2 0.3 0.4 0.5 0.6
Fraction of JellyFish Nodes

The goodput collapses under 10% of attackers!

16
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What about the network resistance?
-

Simulation setup:

6

6
6

2000m x 2000m topology

200 mobile nodes
Velocity: 0 to 10m/s

Average pause time: 10s

50 UDP flows: 500B packets / 5s, (800b/s)
Clear non-fading channel

Simulation: 100s warmup + 500s simulation

(50 simulations, 18 topologies) / point, 95% conf.
Intervals

18



What about the network resistance?
-
System-wide total throughput = sum of E-2-E throughputs:

~
—

System Thrpt.

Percentage of JF

~
/

%
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What about the network resistance?
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System-wide total throughput = sum of E-2-E throughputs:
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again ?

DoS increases the capacity of ad-hoc networks!

19



0.35

0.3 f

0.25 |

Probability

0.1 ¢

0.05 f

Path length for received packets

0.2

0.15 f

0 JE/ 200 nodes ——

25 JF, Grid. plac. / 200 nodes —»— |
49 JF, Grid. plac. / 200 nodes —=—

5 10 15 20
Number of hops

After DoS: — Long paths are extinguished...

— Short paths will survive...

20



Path length for received packets
-

— End-to-End throughput = channel capacity
— Less interference
Q\ : — More channel reuse

After DoS: — Long paths are extinguished...

— Short paths will survive...

20



Path length for received packets
-

— End-to-End throughput = channel capacity
, \ — Less interference
| Q\ ,‘ — More channel reuse

@ \} /f\ — E2E throughput = ch. capacity / 3
TN L Q * — More interference

() e
\\ ‘ N/ -Lesschannel reuse

After DoS: — Long paths are extinguished...

— Short paths will survive...
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Path length for received packets

— E2E throughput = ch. capacity / 3
— More interference
— Less channel reuse

After DoS: — Long paths are extinguished...

— Short paths will survive...
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Path length for received packets

— E2E throughput = ch. capacity / 3
— More interference
— Less channel reuse

and this is what JF and BlackHoles are doing!

20



System throughput
-

2.5 ' : .
_ 50 1Mb/s CBR flows ——
= 250 1Mb/s CBR flows ——
c 5 | 5TCP flows —=—
(@)
-
o
<
= 15 F
(D)
45
7)
5 1
(«D)
N
S
g 05 B \ 7
> T
0

0 5 10 15 20 25
Percentage of JFs

System throughput often increases after DoS!
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50 1Mb/s CBR flows ——

250 1Mb/s CBR flows ——
0.8 \ 50 TCP —— |

2]
%9
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c
: 0-6 B \-
o
X
(D] / n
S 041 .
-(n |
A=
S 02¢
O 1 1 1 1 B
0 5 10 15 20 25

Percentage of JF

System becomes unfair, in favor of short paths.

BUT!
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6

After DoS...

Network gets severely partitioned

Short flows survive

Long flows are attenuated

Aggregated system throughput may increase!

23



More In the paper...
-

We analyze the performance of the system when varying

the:
6

6
6

Offered load
Network size
Node density

Node mobility

JF placement strategy

24
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6

Conclusion
~
TCP collapses with malicious:
» Dropping, reordering, jitter ...

More generally, all closed-loop mechanisms are
vulnerable to malicious tampering

“Protocol-compliance” makes defense more
problematic

First paper to quantify DoS effects on ad-hoc networks:
» Do0S increases capacity! BUT!
» Network gets partitioned

» Fairness decreases

» — System throughput, alone, is not enough to
measure DoS impacts

26



PACK power

PACK
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PACK fool

=0
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PACK directional antenna

¢ = (o9

PACK
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Receiver

Receiver

Cong. Window

Reminder on TCP
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Pkt Recv
(ACK recv)

28



Sender Receiver

\

— Data Pkt

Cong. Window

Reminder on TCP
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Pkt Recv
(ACK recv)
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Sender

Reminder on TCP

Receiver
—® Data Pkt
—® ACK
1RTT
Cong. Window Timers
O ssthresh RTTVAR = (1-b) RTTVAR +
b |[SRTT-RTT]|
Pkt Recv cwnd +=1 (SS) SRTT = (1-a) SRTT + aRTT
(ACK recv) RTO = max(minRTO ,
SRTT+ max(G, 4 RTTVAR))
Y

28



Sender

Reminder on TCP

Receiver
—® Data Pkt
—® ACK
1RTT
Cong. Window Timers
O ssthresh RTTVAR = (1-b) RTTVAR +
b |[SRTT-RTT]|
Pkt Recv cwnd +=1 (SS) SRTT = (1-a) SRTT + aRTT
(ACK recv) RTO = max(minRTO ,
SRTT+ max(G, 4 RTTVAR))
Y

28



Reminder on TCP

Sender Receiver
—® Data Pkt
—® ACK
1RTT
\ Cong. Window Timers
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Sender Receiver

Slow Start (SS)
7777777777777 = —® Data Pkt

‘ —® ACK

1IRTT

Cong. Window

Reminder on TCP

Timers

O ssthresh

Pkt Recv cwnd +=1 (SS)
(ACK recv)

RTTVAR = (1-b) RTTVAR +
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SRTT =(1-a) SRTT+aRTT
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SRTT+ max(G, 4 RTTVAR))
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Reminder on TCP

Sender Receiver

Slow Start (SS)
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Sender Receiver

Slow Start (SS)

Reminder on TCP
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Reminder on TCP
-
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Sender Receiver

Slow Start (SS)
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Slow Start (SS)
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Average number of hops

Simulation results: Number of hops
-

Baseline: 50 1Mb/s CBR flows E—=

0 8 12.5 25 50
Percentage of JF
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