DoS Resilience in Ad Hoc Networks

l. Aad, J.-P. Hubaux and E. Knightly

(g

RICE

MobiCom 2004, Sept. 29" 2004,
Philadelphia - PA, USA

6

6

Introduction and system model

DoS attacks:
» “Protocol-compliant” attacks: JellyFish
» BlackHole

The cost of counter-measures

Network performance under DoS attacks

Conclusion

Outline
-

Introduction
-

Significant work has been made in:

|32

Percentage

IIII.I--.
e“a‘ .

A\ . o\ O A\ O
6\6\0 \)\\(\Q e C 'b\'\o eo\\ \ \C‘a 6\\0 : (30 0\‘\0 " 6\\0
©) XN A% N O AN\2 e
@° o NS W Q & R Q
s % <o°
W\ (©)
\\)

Introduction
-

Significant work has been made in:

32
| We are here
1B : =
B =

Percentage

‘0 Q '& g 0(\ 6 O(\ G . 0(\ 0(\ (\\.
¥ 0‘)\\(\ Ge(\e‘ ac?® \ec’\\ 0\"\& \6\\ @° @ Cal o 59((\6
N e '\ \ W e P\\ o o® 22
= R O R & 0 O 2®
s (\\\‘)6 © o0
\

Our goal: guantify the damage of a DoS attack on an
ad-hoc network

Introduction
-

Significant work has been made in:

32
| We are here
1B : =
B =

Percentage

‘0 Q '& g 0(\ 6 O(\ G . 0(\ 0(\ (\\.
¥ 0‘)\\(\ Ge(\e‘ ac?® \ec\\ 0\‘\& \6\\ @° @ Cal o 59«\6
N e '\ \ W e P\\ o o® 22
= R O R & 0 O 2®
s (\\\‘)6 © o0
\

Design (and study) a new class of “protocol-compliant”
attacks

System model
-

Ad-hoc multi-hop network, Mobile nodes, Secure routing,
Node Authentication, 1 ID/node, Packet Authentication and

Encryption...

System model
-

w SO
JF: JellyFish O C)L

BH: BlackHole

The dual role of hosts as routers introduces a critical
vulnerability!

6

6

6

Introduction and system model

DoS attacks:

» “Protocol-compliant” attacks: JellyFish
» BlackHole

The cost of counter-measures

Network performance under DoS attacks

Conclusion

Outline
-

What is a "protocol-compliant™ attack?
-
Just like any IP service, it can:
& Drop packets
& Reorder packets

& Delay / jitter packets

What is a "protocol-compliant™ attack?
-
Just like any IP service, it can:
6 Drop packets
& Reorder packets

& Delay / jitter packets

BUT!
In a MALICIOUS way...

What is a "protocol-compliant™ attack?
-
Just like any IP service, it can:
6 Drop packets
& Reorder packets

& Delay / jitter packets

Why use "protocol-compliant” attacks ?
Detection and diagnosis are time consuming!

Example: the JellyFish
-

JF-reordering node

I |
| Buffer size I
I |
I |
Pkt Recv | Pkt Send
e | | | '
I |
I |
| |
| Random select |
Dst
\\/ - //// %

0.8

Example: the JellyFish
-

2 ho'ps ——

0.7
0.6
05|
04t
0.3

3 hops ——

5hops —— .

Goodput (Mb/s)

0.2 ;

0.1 ¢

1.5

2 25 3 35 4 45 5
Reordering buffer size

Reordering >3 packets reduces TCP throughput to ~zero!

7

The JellyFish

& For closed-loop traffic:
TCP, TFRC-like...

& Passive

6 Hard to detect...
... until after the "sting"

End-to-end control protocols infer network status from
feedback measurements.

JF Interferes with these measurements...

... to attenuate the traffic flows.

The JellyFish

& For closed-loop traffic:
TCP, TFRC-like...

& Passive

6 Hard to detect...
... until after the "sting"

Species:
6 JF-Reorder — “multipath”
e JF-drop — “congestion, buffer overflow...”

6 JF-Jitter (variable RTT) — “variable loads” 8

JF-drop
~
For wired networks: the Shrew [Kuzmanovic & Knightly]
Dropping 5% of the packets periodically (@T = 1sec)

———

JF-drop
-

Dropping 5% of the packets periodically (@T = 1sec)

Goodput (Mb/s)

0.8

0.7

0.6

0.5 |
0.4

0.3

0.2 §

0.1

... reduces TCP throughput to zero!

//f

2'hops ——
3 hops —— |

5hops —— |

i 1.5
Time period (s)

2

2.5

X' JF Outage: ~RTT

SO ¥ 00U OU U OO OO OU OO OO OU OO OO SUU OO
= /
(@]
@)
=
=
7
()]
(@))]
[
(@]
(®]
o
@)
|_
Time

X' JF Outage: ~RTT

SO ¥ 00U OU U OO OO OU OO OO OU OO OO SUU OO
= /
(@]
@)
<
=
7
()]
(@)
c
(@]
(®]
o
O minRTO

Time

X' JF Outage: ~RTT

/\X -- D
= /
(@]
@)
<
=
1%
()]
(@)
c
(@]
(@)
o
O minRTO j n X MinRTO

Time

JF-drop

X' JF Outage: ~RTT

Mo B e
2 /
@)
©
=
=
7
)
(@)
c
S RFC 2988
o
O 1 sec . nx 1sec
B _
Time

JF-drop

X' JF Outage: ~RTT

Mo B e
= / /
(@]
@)
<
=
7
()]
(@)
[
S RFC 2988
o
O 1 sec | nx1sec

Time

JF-jitter—-delay node

Server with vacations

~ '
~ '
~
~ 7
~ 7
~
~ 7
II \:

JF-jitter
-

10

JF-jitter
-

TCP infers network/congestion status using RTT...

0.8

0.7
0.6

Goodput (Mb/s)

0.2
0.1r¢

0

0.5 F
04
0.3

' JF-jitter' —

0

2 3
|dle period (s)

JF interferes with RTT to attenuate the TCP flow!

10

6

The BlackHole

For non-responsive / open-loop traffic...

Passive
Forwards routing packets

"Absorbs" all data packets

Hard to detect...

11

The BlackHole
-

Detection — .
of MAC layer : |
failure : |
. Drop!
- : :
| P |
MAC-ACK (_______ | _ {

" MAC/PHY | Dst

. > Data ‘-7 Q

\\ /// \\/ _ // /4
: 7/

BH Tt
Upstream

neighbor

MAC ACK avoids immediate diagnosing

11

The BlackHole
-

Detection — .
of MAC layer : |
failure : |
. Drop!
- : :
| IP |
MAC-ACK (_______ | _ |
" MAC/PHY | Dst
. Data ‘- Q
\\ \\/ - 7 /4
- 7/

BH T
Upstream

neighbor

(zero throughput)

11

Passive ACK (PACK) [DSR]
-

A Is sending a packet to C via B

12

Passive ACK (PACK) [DSR]
-

A overhears B’s transmission/forward to C

12

Passive ACK (PACK) [DSR]
-

PACK can be fooled by low-power transmissions...

12

Passive ACK (PACK) [DSR]
-

... Or by using directional antennas!

12

6

6

6

Introduction and system model

DoS attacks:
» “Protocol-compliant” attacks: JellyFish

» BlackHole

The cost of counter-measures

Network performance under DoS attacks

Conclusion

Outline
-

13

Non-goal: escalating the “arms race”
-

& Diagnosis are inevitable
» Locally ?
» End-to-end ?

& Our goal: how do they perform ?

14

The cost of counter-measures

Counter-measure parameters:
6 Diagnosis time — E(T%,)

6 (re)Route request — E(T%)

Routing protocol limitations:

6 Rate limiter — E(T%;)

Let:
6 Flow lifetime — E(T7})

& Proportion of JF — p

@ Path length (for recvd. pkts.) — A

15

The cost of counter-measures
-
E(Tr)

Goodput = G BTy BTy, BT) (=)

1

3relay nodes ——

0.8 O relay nodes ——

0.6

Goodput

04

0.2

O —
0 0.1 0.2 0.3 04 0.5 0.6

Fraction of JellyFish Nodes
Diagnosis and rerouting times get magnified by (1 — p)~".

(h: average hop-count, p: proportion of JF)

15

The cost of counter-measures
-

Goodput = B{L)

E(TL)+(E(T},)+ E(TE)+E(TRg)) (1—p) "

6 Mobility

6 Network size
6 “PACK++"
6 Watchdog, path-rater [Marti et al.]

6 l|dentifying “Byzantine nodes” [Awerbuch et al.]
6 Reputation systems [Buchegger et al., Michiardi et al.]

6 Rushing attack [Hu et al.]

15

Rushing attack [Hu et al.]

16

\
\ \ \
- - - \
\

Rushing attack [Hu et al.]
-

\\
N
N
N
\ N
\ \
\
\ \
\
\
\
\
\
\
| 4
\ /

16

Rushing attack [Hu et al.]
-

16

Rushing attack [Hu et al.]
-

E(TL)
Goodput =
PO = B+ (BT,)BT+ E(TE,)) 1—p)
1
no rushing attack ———
0.8 4x rushing
5 06
i)
S
A 0.4
0.2

0 _1
0 0.1 0.2 0.3 0.4 0.5 0.6
Fraction of JellyFish Nodes

The rushing attack makes things even worse,
exponentiating the effect with hop length!
(h: average hop-count, p: proportion of JF) 16

Rushing attack [Hu et al.]
-

E(TL)
Goodput =
PO = B+ (BT,)BT+ E(TE,)) 1—p)
1
no rushing attack ———
0.8 4x rushing
5 06
i)
S
A 0.4
0.2

0 _1
0 0.1 0.2 0.3 0.4 0.5 0.6
Fraction of JellyFish Nodes

The goodput collapses under 10% of attackers!

16

6

6

Introduction and system model

DoS attacks:
» “Protocol-compliant” attacks: JellyFish
» BlackHole

The cost of counter-measures

Network performance under DoS attacks

Conclusion

Outline
-

17

What about the network resistance?
-

Simulation setup:

6

6
6

2000m x 2000m topology

200 mobile nodes
Velocity: 0 to 10m/s

Average pause time: 10s

50 UDP flows: 500B packets / 5s, (800b/s)
Clear non-fading channel

Simulation: 100s warmup + 500s simulation

(50 simulations, 18 topologies) / point, 95% conf.
Intervals

18

What about the network resistance?
-
System-wide total throughput = sum of E-2-E throughputs:

~
—

System Thrpt.

Percentage of JF

~
/

%

18

What about the network resistance?
-
System-wide total throughput = sum of E-2-E throughputs:

~

\

System Thrpt.

Percentage of JF

~
/

100%

18

What about the network resistance?
-
System-wide total throughput = sum of E-2-E throughputs:

~

\

System Thrpt.

Percentage of JF

~
/

100%

18

What about the network resistance?
-
System-wide total throughput = sum of E-2-E throughputs:

~

\

System Thrpt.

Percentage of JF

~
/

100%

18

again ?

DoS increases the capacity of ad-hoc networks!

19

0.35

0.3 f

0.25 |

Probability

0.1 ¢

0.05 f

Path length for received packets

0.2

0.15 f

0 JE/ 200 nodes ——

25 JF, Grid. plac. / 200 nodes —»— |
49 JF, Grid. plac. / 200 nodes —=—

5 10 15 20
Number of hops

After DoS: — Long paths are extinguished...

— Short paths will survive...

20

Path length for received packets
-

— End-to-End throughput = channel capacity
— Less interference
Q\ : — More channel reuse

After DoS: — Long paths are extinguished...

— Short paths will survive...

20

Path length for received packets
-

— End-to-End throughput = channel capacity
, \ — Less interference
| Q\ ,‘ — More channel reuse

@ \} /f\ — E2E throughput = ch. capacity / 3
TN L Q * — More interference

() e
\\ ‘ N/ -Lesschannel reuse

After DoS: — Long paths are extinguished...

— Short paths will survive...

20

Path length for received packets

— E2E throughput = ch. capacity / 3
— More interference
— Less channel reuse

After DoS: — Long paths are extinguished...

— Short paths will survive...

20

Path length for received packets

— E2E throughput = ch. capacity / 3
— More interference
— Less channel reuse

and this is what JF and BlackHoles are doing!

20

System throughput
-

2.5 ' : .
_ 50 1Mb/s CBR flows ——
= 250 1Mb/s CBR flows ——
c 5 | 5TCP flows —=—
(@)
-
o
<
= 15 F
(D)
45
7)
5 1
(«D)
N
S
g 05 B \ 7
> T
0

0 5 10 15 20 25
Percentage of JFs

System throughput often increases after DoS!

21

50 1Mb/s CBR flows ——

250 1Mb/s CBR flows ——
0.8 \ 50 TCP —— |

2]
%9
&)
c
: 0-6 B \-
o
X
(D] / n
S 041 .
-(n |
A=
S 02¢
O 1 1 1 1 B
0 5 10 15 20 25

Percentage of JF

System becomes unfair, in favor of short paths.

BUT!

22

6

6

6

After DoS...

Network gets severely partitioned

Short flows survive

Long flows are attenuated

Aggregated system throughput may increase!

23

More In the paper...
-

We analyze the performance of the system when varying

the:
6

6
6

Offered load
Network size
Node density

Node mobility

JF placement strategy

24

6

6

Introduction and system model

DoS attacks:
» “Protocol-compliant” attacks: JellyFish
» BlackHole

The cost of counter-measures

Network performance under DoS attacks

Conclusion

Outline
-

25

6

Conclusion
~
TCP collapses with malicious:
» Dropping, reordering, jitter ...

More generally, all closed-loop mechanisms are
vulnerable to malicious tampering

“Protocol-compliance” makes defense more
problematic

First paper to quantify DoS effects on ad-hoc networks:
» Do0S increases capacity! BUT!
» Network gets partitioned

» Fairness decreases

» — System throughput, alone, is not enough to
measure DoS impacts

26

PACK power

PACK

27

PACK fool

=0

27

PACK directional antenna

¢ = (o9

PACK

27

Sender

Slow Start (SS)

Receiver

Receiver

Cong. Window

Reminder on TCP

Timers

O

Pkt Recv
(ACK recv)

28

Sender Receiver

\

— Data Pkt

Cong. Window

Reminder on TCP

Timers

O

Pkt Recv
(ACK recv)

28

Sender

Reminder on TCP

Receiver
—® Data Pkt
—® ACK
1RTT
Cong. Window Timers
O ssthresh RTTVAR = (1-b) RTTVAR +
b |[SRTT-RTT]|
Pkt Recv cwnd +=1 (SS) SRTT = (1-a) SRTT + aRTT
(ACK recv) RTO = max(minRTO ,
SRTT+ max(G, 4 RTTVAR))
Y

28

Sender

Reminder on TCP

Receiver
—® Data Pkt
—® ACK
1RTT
Cong. Window Timers
O ssthresh RTTVAR = (1-b) RTTVAR +
b |[SRTT-RTT]|
Pkt Recv cwnd +=1 (SS) SRTT = (1-a) SRTT + aRTT
(ACK recv) RTO = max(minRTO ,
SRTT+ max(G, 4 RTTVAR))
Y

28

Reminder on TCP

Sender Receiver
—® Data Pkt
—® ACK
1RTT
\ Cong. Window Timers
O ssthresh RTTVAR = (1-b) RTTVAR +
b |[SRTT-RTT]|
Pkt Recv cwnd +=1 (SS) SRTT = (1-a) SRTT + aRTT
(ACK recv) RTO = max(minRTO ,
SRTT+ max(G, 4 RTTVAR))
Y \

28

Sender Receiver

Slow Start (SS)
7777777777777 = —® Data Pkt

‘ —® ACK

1IRTT

Cong. Window

Reminder on TCP

Timers

O ssthresh

Pkt Recv cwnd +=1 (SS)
(ACK recv)

RTTVAR = (1-b) RTTVAR +
b |SRTT-RTT|

SRTT =(1-a) SRTT+aRTT

RTO = max(minRTO ,
SRTT+ max(G, 4 RTTVAR))

28

Reminder on TCP

Sender Receiver

Slow Start (SS)
7777777777777 = —® Data Pkt

| — ACK
1RTT
|
|
|
|
|
\ \
|
\ : Cong. Window Timers
¥ O ssthresh RTTVAR = (1-b) RTTVAR +
E b [ISRTT-RTT|
\ Pkt Recv cwnd +=1 (SS) SRTT = (1-a) SRTT +aRTT
8x

SRTT+ max(G, 4 RTTVAR))

28

Sender Receiver

Slow Start (SS)

Reminder on TCP

‘ — Data Pkt

‘ —® ACK
1RTT
I
I
I
I
I
I
I
: Cong. Window Timers
O ssthresh RTTVAR = (1-b) RTTVAR +
b |[SRTT-RTT]|
Pkt Recv cwnd +=1 (SS) SRTT = (1-a) SRTT + a RTT
(ACK recv) cwnd += 1/cwnd (CA) RTO = max(minRTO

SRTT+ max(G, 4 RTTVAR))

28

Reminder on TCP
-

28

Sender Receiver

Slow Start (SS)

1IRTT

Reminder on TCP

e = —® Data Pkt
| _>
— — B Duplicate ACK

ACK

Cong. Window

Timers

Pkt Recv
(ACK recv)

ssthresh

cwnd +=1 (SS)
cwnd += 1l/cwnd (CA)

RTTVAR = (1-b) RTTVAR +
b |SRTT-RTT|

SRTT =(1-a) SRTT+aRTT

RTO = max(minRTO ,
SRTT+ max(G, 4 RTTVAR))

X
Pkt loss

T.0)

(dup. ACKs,

28

Slow Start (SS)

Receiver

Reminder on TCP

—® Data Pkt

— ACK
— — B Duplicate ACK
1RTT
Cong. Window Timers
O ssthresh RTTVAR = (1-b) RTTVAR +
b |SRTT-RTT]|
Pkt Recv cwnd +=1 (SS) SRTT = (1-a) SRTT + aRTT
(ACK recv) cwnd += 1/cwnd (CA) RTO = max(minRTO
SRTT+ max(G, 4 RTTVAR))
X
Pkt loss
(dup. ACKs,
T.0.)

28

Sender Receiver

Slow Start (SS)

Reminder on TCP

7777777777777 - —® Data Pkt

1IRTT

| _>
— — B Duplicate ACK

ACK

Cong. Window

Timers

Pkt Recv
(ACK recv)

ssthresh

cwnd +=1 (SS)
cwnd += 1l/cwnd (CA)

RTTVAR = (1-b) RTTVAR +
b |SRTT-RTT|

SRTT =(1-a) SRTT+aRTT

RTO = max(minRTO ,
SRTT+ max(G, 4 RTTVAR))

Pkt loss

T.0)

(dup. ACKs,

\ X
/ \

28

Reminder on TCP
-

Sender Receiver
Slow Start (SS)
e - —® Data Pkt
‘ — ACK
— — B Duplicate ACK
1RTT
I
I
I
I
I
I
I
: Cong. Window Timers
O ssthresh RTTVAR = (1-b) RTTVAR +
b |SRTT-RTT]|
Pkt Recv cwnd +=1 (SS) SRTT = (1-a) SRTT + aRTT
(ACK recv) cwnd += 1/cwnd (CA) RTO = max(minRTO
SRTT+ max(G, 4 RTTVAR))
X ssthresh = cwnd / 2
Pkt loss cwnd =1 RTO=RTOXx 2
(dup. ACKs,
T.0)
\ \

28

Reminder on TCP
-

Sender Receiver
Slow Start (SS)
e - —® Data Pkt
‘ — ACK
— — B Duplicate ACK
1RTT
I
I
I
I
I
I
I
: Cong. Window Timers
O ssthresh RTTVAR = (1-b) RTTVAR +
b |SRTT-RTT]|
Pkt Recv cwnd +=1 (SS) SRTT = (1-a) SRTT + aRTT
(ACK recv) cwnd += 1/cwnd (CA) RTO = max(minRTO
SRTT+ max(G, 4 RTTVAR))
X ssthresh = cwnd / 2
Pkt loss cwnd =1 RTO=RTOXx 2
(dup. ACKs,
T.0)
\ \

28

Slow Start (SS)

Receiver

Reminder on TCP

—® Data Pkt

— ACK
— — B Duplicate ACK
1RTT
Cong. Window Timers
O ssthresh RTTVAR = (1-b) RTTVAR +
b |SRTT-RTT]|
Pkt Recv cwnd +=1 (SS) SRTT = (1-a) SRTT + aRTT
(ACK recv) cwnd += 1/cwnd (CA) RTO = max(minRTO
SRTT+ max(G, 4 RTTVAR))

X ssthresh = cwnd / 2
Pkt loss cwnd =1 RTO=RTOXx 2
(dup. ACKs,

T.0)

28

1s

JF-drop
-

Cong. Window Timers
(@)
Pkt Recv
%
Retx
Timer Pkt loss
X

Time

29

JF-drop

Cong. Window Timers
(o)
Pkt Recv

Retx " - TOSS cwnd =1 RTO=RTO x 2

Timer -
1 S N
1s-RTT

X
1s Time

29

JF-drop
-

Cong. Window Timers
(@) _ RTO = max(minRTO,
Pkt Recv cwnd +=1 (SS) SRTT+ max(G, 4 RTTVAR))
—
—
o x
$i?;[1)ér 29 Pkt loss

28 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, e
25-RTT| N
Is Ko """
Is-RTTING | TP

% O
1s Time

29

2s

1s

JF-drop

Cong. Window Timers
(@) _ RTO = max(minRTO,
— Pkt Recv cwnd +=1 (SS) SRTT+ max(G, 4 RTTVAR))

—

C

T x
Retx
Timer 334 Pkt loss

25 NN

1S—RTTF N s TS TSP PP S PE P R S PP PRSP PSPPI P S PPN

1s

Time

29

JF-drop
-

Cong. Window Timers
(@) _ RTO = max(minRTO,
— Pkt Recv cwnd +=1 (SS) SRTT+ max(G, 4 RTTVAR))
|_
= o
T x
Retx
Timer Loe Pkt loss
S A
I | s NN

1s
1s-RTT

1s Time

29

JF-drop
-

Cong. Window Timers
(@) _ RTO = max(minRTO,
— Pkt Recv cwnd +=1 (SS) SRTT+ max(G, 4 RTTVAR))
|_
= o
T x
Retx
Timer Loe Pkt loss
S A
I | s NN

1s
1s-RTT

1s Time

29

|_
=
|_

xS

Retx nob

Timer —
S S
2S—RTT} o \I\ rrrrrrrrrrr

1s
1s-RTT

JF-drop

Cong. Window Timers
(@)
Pkt Recv
% cwnd =1 RTO=RTO x 2
Pkt loss

1s

¢
N
t

Time

29

|_
=
|_
xS
Retx " f,f, ;
Timer A
2s
2s—-RTT
1s
1s-RTT

JF-drop

Cong. Window Timers
(@)
Pkt Recv
% cwnd =1 RTO=RTO x 2
Pkt loss

1s

¢
N
t

t,*2S Time

29

JF-drop

Cong. Window Timers
(@) _ RTO = max(minRTO,
- Pkt Recv cwnd +=1 (SS) SRTT+ max(G, 4 RTTVAR))
ol
=
Retx 95 ¢ x cwnd =1 RTO=RTO X 2
Timer 334 Pkt loss
2s
2s—-RTT
1s
1s-RTT

t,*2S Time

1s

29

Retx 0
Timer —

- 1s+RTT
- 1s+2RTT

2S |

28 gl N

JF-drop

Cong. Window Timers
o _ RTO = max(minRTO,
Pkt Recv cwnd +=1 (SS) SRTT+ max(G, 4 RTTVAR))
x cwnd =1 RTO=RTO x 2
Pkt loss

%

ty+ls 1,25 Time

29

Average number of hops

Simulation results: Number of hops
-

Baseline: 50 1Mb/s CBR flows E—=

0 8 12.5 25 50
Percentage of JF

30

	Outline
	Introduction
	System model
	Outline
	What is a "protocol-compliant" attack?
	Example: the JellyFish
	The JellyFish
	JF-drop
	JF-jitter
	The BlackHole
	Passive ACK (PACK)
[DSR]
	Outline
	Non-goal: escalating the ``arms race''
	The cost of counter-measures
	Rushing attack [Hu et al.]
	Outline
	What about the network resistance?
	again ?
	Path length for received packets
	System throughput
	BUT!
	After DoS...
	More in the paper...
	Outline
	Conclusion
	PACK
	Reminder on TCP
	JF-drop
	Simulation results: Number of hops

