DoS Resilience in Ad Hoc Networks

I. Aad, J.-P. Hubaux and E. Knightly

MobiCom 2004, Sept. 29th 2004, Philadelphia - PA, USA

Outline

6 Introduction and system model

- o DoS attacks:
 - "Protocol-compliant" attacks: JellyFish
 - BlackHole
- 6 The cost of counter-measures
- 6 Network performance under DoS attacks
- 6 Conclusion

Introduction

Significant work has been made in:

Introduction

Significant work has been made in:

Our goal: quantify the damage of a DoS attack on an ad-hoc network

Introduction

Significant work has been made in:

Design (and study) a new class of "protocol-compliant" attacks

System model

Γ

Ad-hoc multi-hop network, Mobile nodes, Secure routing, Node Authentication, 1 ID/node, Packet Authentication and Encryption...

System model

The dual role of hosts as routers introduces a critical vulnerability!

Outline

- Introduction and system model
- **6** DoS attacks:
 - "Protocol-compliant" attacks: JellyFish
 - BlackHole
- 6 The cost of counter-measures
- 6 Network performance under DoS attacks
- 6 Conclusion

What is a "protocol-compliant" attack?

Just like any IP service, it can:

- 6 Drop packets
- 6 Reorder packets
- 6 Delay / jitter packets

What is a "protocol-compliant" attack?

Just like any IP service, it can:

- 6 Drop packets
- 6 Reorder packets
- 6 Delay / jitter packets

BUT! in a MALICIOUS way...

What is a "protocol-compliant" attack?

Just like any IP service, it can:

- o Drop packets
- 6 Reorder packets
- 6 Delay / jitter packets

Why use "protocol-compliant" attacks ? Detection and diagnosis are time consuming!

Example: the JellyFish

Example: the JellyFish

Reordering >3 packets reduces TCP throughput to \approx zero!

The JellyFish

- For closed-loop traffic: TCP, TFRC-like...
- 6 Passive
- 6 Hard to detect...
 - ... until after the "sting"

End-to-end control protocols infer network status from feedback measurements.

JF interferes with these measurements...

... to attenuate the traffic flows.

The JellyFish

- 6 Passive
- Hard to detect...... until after the "sting"

Species:

- **6** JF-Reorder → "multipath"
- **6** JF-drop \rightarrow "congestion, buffer overflow..."
- **G** JF-Jitter (variable RTT) \rightarrow "variable loads"

For wired networks: the Shrew [Kuzmanovic & Knightly] Dropping 5% of the packets periodically (@T = 1sec)

Dropping 5% of the packets periodically (@T = 1sec)

... reduces TCP throughput to zero!

9

JF-jitter

JF-jitter

TCP infers network/congestion status using RTT...

JF interferes with RTT to attenuate the TCP flow!

The BlackHole

For non-responsive / open-loop traffic...

- 6 Passive
- 6 Forwards routing packets
- 6 "Absorbs" all data packets
- 6 Hard to detect...

The BlackHole

MAC ACK avoids immediate diagnosing

The BlackHole

(zero throughput)

A is sending a packet to C via B

PACK can be fooled by low-power transmissions...

С

... Or by using directional antennas!

Г

Outline

- Introduction and system model
- **o** DoS attacks:
 - "Protocol-compliant" attacks: JellyFish
 - BlackHole
- 6 The cost of counter-measures
- 6 Network performance under DoS attacks
- 6 Conclusion

Non-goal: escalating the "arms race"

- Diagnosis are inevitable
 - ▲ Locally ?
 - End-to-end ?
- Our goal: how do they perform ?

The cost of counter-measures

Counter-measure parameters:

- Diagnosis time $\rightarrow E(T_{diag}^n)$
- 6 (re)Route request $\rightarrow E(T_{RR}^n)$

Routing protocol limitations:

6 Rate limiter $\rightarrow E(T_{RL}^n)$

Let:

- Flow lifetime $\rightarrow E(T_L)$
- Proportion of $JF \rightarrow p$
- Path length (for recvd. pkts.) $\rightarrow h$

The cost of counter-measures

Diagnosis and rerouting times get magnified by $(1-p)^{-h}$. (h: average hop-count, p: proportion of JF)

The cost of counter-measures

 $Goodput = \frac{E(T_L)}{E(T_L) + (E(T_{diag}^n) + E(T_{RL}^n) + E(T_{RR}^n))(1-p)^{-h}}$

- G Mobility
- Network size
- **6** "PACK++"
- Watchdog, path-rater [Marti et al.]
- Identifying "Byzantine nodes" [Awerbuch et al.]
- 6 Reputation systems [Buchegger et al., Michiardi et al.]
- Rushing attack [Hu et al.]

The rushing attack makes things even worse, exponentiating the effect with hop length! (h: average hop-count, p: proportion of JF)

The goodput collapses under 10% of attackers!

Outline

- Introduction and system model
- o DoS attacks:
 - "Protocol-compliant" attacks: JellyFish
 - BlackHole
- The cost of counter-measures
- 6 Network performance under DoS attacks
- 6 Conclusion

Simulation setup:

- **6** 2000m \times 2000m topology
- 6 200 mobile nodes
- Velocity: 0 to 10m/s
- 6 Average pause time: 10s
- **50 UDP flows: 500B packets / 5s, (800b/s)**
- G Clear non-fading channel
- Simulation: 100s warmup + 500s simulation
- (50 simulations, 18 topologies) / point, 95% conf.
 intervals

again ?

DoS increases the capacity of ad-hoc networks!

Г

- End–to–End throughput = channel capacity
- Less interference
- More channel reuse

After DoS: \rightarrow Long paths are extinguished...

Г

- End–to–End throughput = channel capacity
- Less interference
- More channel reuse

- E2E throughput = ch. capacity / 3
- More interference
- Less channel reuse

After DoS: \rightarrow Long paths are extinguished...

After DoS: \rightarrow Long paths are extinguished...

and this is what JF and BlackHoles are doing!

System throughput

System throughput often increases after DoS!

BUT!

System becomes unfair, in favor of short paths.

After DoS...

- 6 Network gets severely partitioned
- 6 Short flows survive
- **6** Long flows are attenuated
- 6 Aggregated system throughput may increase!

More in the paper...

We analyze the performance of the system when varying the:

- offered load
- Metwork size
- 6 Node density
- Solution Node mobility
- G JF placement strategy

Outline

- Introduction and system model
- **o** DoS attacks:
 - "Protocol-compliant" attacks: JellyFish
 - BlackHole
- 6 The cost of counter-measures
- 6 Network performance under DoS attacks
- 6 Conclusion

Conclusion

- **6** TCP collapses with malicious:
 - ▲ Dropping, reordering, jitter ...
- More generally, all closed-loop mechanisms are vulnerable to malicious tampering
- First paper to quantify DoS effects on ad-hoc networks:
 - ▲ DoS increases capacity! BUT!
 - Network gets partitioned
 - Fairness decreases
 - \blacktriangle \rightarrow System throughput, alone, is not enough to measure DoS impacts

PACK

PACK

PACK

Slow Start (SS)

28

29

Simulation results: Number of hops

