Design and Implementation of Scalable
Edge-Based Admission Control

Ping Yuan®, Julie Schlembach’, Anders Skoef, and Edward Knightly'
tDepartment of Electrical and Computer Engineering, Rice University
{Department of Electrical Engineering, Stanford University

Abstract

While the IntServ solution to Internet QoS can achieve a strong service model that guarantees flow
throughputs and loss rates, it places excessive burdens on high-speed core routers to signal, schedule, and
manage state for individual flows. Alternatively, the DiffServ solution achieves scalability via aggregate
control, yet cannot ensure a particular QoS to individual flows. To simultaneously achieve scalability and
a strong service model, we have designed and implemented a novel architecture and admission control
algorithm termed Egress Admission Control. In our approach, the available service on a network path is
passively monitored, and admission control is performed only at egress nodes, incorporating the effects
of cross traffic with implicit measurements rather than with explicit signaling. In this paper, we describe
our implementation of the scheme on a network of prototype routers enhanced with ingress-egress path
monitoring and edge admission control. We report the results of testbed experiments and demonstrate
the feasibility of an edge-based architecture for providing IntServ-like services in a scalable way.

Keywords: admission control, quality of service, scalability, Internet.

1 Introduction

The Integrated Services (IntServ) architecture of the Internet Engineering Task Force (IETF) provides a
mechanism for supporting quality-of-service for real-time flows. Two important components of this architec-
ture are admission control [2, 6, 7, 12] and signaling [16]: the former ensures that sufficient network resources
are available for each new flow, and the latter communicates such resource demands to each router along
the flow’s path. However, without further enhancements (e.g., aggregation [10]), the demand for high-speed
core routers to process per-flow reservation requests introduces scalability and deployability limitations for
this architecture.

In contrast, the Differentiated Services (DiffServ) architecture [1, 9, 14] achieves scalability by limiting
quality-of-service functionalities to class-based priority mechanisms together with service level agreements.
However, without per-flow admission control, such an approach necessarily weakens the service model as
compared to IntServ; namely, individual flows are not assured of a bandwidth or loss guarantee.

To simultaneously achieve scalability and a strong service model, we have devised Egress Admission
Control [3], an architecture and algorithm for scalable Quality of Service (QoS) provisioning. In this scheme,
admission control decisions are made solely at egress routers; per-flow state is not maintained in the network
core nor in the egress router, and there is no coordination of state with core nodes or other egress nodes.
Therefore, admission control and resource reservation are performed in a distributed and scalable way. As
a consequence of the scalable architecture, a key challenge is how to assess the network’s available resources
at an egress point. Qur solution is to employ continuous passive monitoring of a path (ingress-egress pair)
and assess its available service by measurement-based analysis of the arrival and service times of packets on
the path. In this way, an egress router holds implicit control over other paths, by ensuring that all classes
on all paths maintain their desired quality-of-service levels. This implicit control factors in effects of cross
traffic and prevents other egress routers from admitting flows that would exceed the available bandwidth.

Figure 1 illustrates a simplified model of egress admission control. The figure depicts how an ingress-to-
egress path is modeled as a “black box” with an unknown service discipline and cross-traffic that cannot be

directly measured. An important part of egress admission control is assessing the available service along this
path. We will show how the abstraction of a statistical service envelope [11] provides a general framework
for characterizing service, including fluctuating available resources due to varying demands of cross traffic.

Edge Nodes

Interfering
l Cross-traffic
Core Nodes)
Arrivals Unknown Services
{"’ |:> Service E

Figure 1: Egress Admission Control System Model

This paper describes our design, implementation, and measurement study of Egress Admission Control.
In particular, we illustrate the key design issues that must be addressed for scalable admission control.
Compared with an IntServ architecture, our implementation addresses three issues. First, we modify RSVP
(Resource reSerVation Protocol) [16] so that only egress nodes process reservation requests. Second, to assess
both arrivals and available service at a path’s egress node, we insert timestamps and path-level sequence
numbers into packets: we describe our implementation of both IPv4 time stamping and Network Time
Protocol (NTP) clock synchronization. Finally, we implement an edge based admission control algorithm in
which measurements of the service along a path are used to predict and control network-wide QoS.

To evaluate the scheme, we performed an extensive measurement study on a testbed consisting of pro-
totype routers equipped with our implementation of Egress Admission Control. The experiments indicate
that the algorithm is able to control the network’s admissible region within a range such that the requested
quality-of-service parameters can be satisfied. This demonstrates a key component of scalable admission con-
trol, namely, that flow-based QoS can be achieved without signaling each traversed node for each reservation
request.

2 Design and Implementation
Our design consists of three inter-related components: (1) the signaling protocol by which new flows are

established, (2) the traffic measurement module, including time stamping and loss detection, and (3) the
admission control module which accepts or rejects requests to establish new real-time flows.

RSVP S
Daemon
Control
Path
Envelope ~
Statistics Adm. Control
Packet
Monitoring
Data
Path
Ingress Packet Classifier S
Timestamp Scheduler

Figure 2: Edge Router Architecture

Figure 2 depicts the relationship among these system components. As shown, when a user desires to
initiate a new QoS session such as streaming video or voice over IP, the host sends a signaling message
to determine if the requested service is available. The request handler then calls the admission control
routine to determine whether the new flow may be admitted while satisfying all flows’ statistical service
guarantees. Meanwhile, the statistical properties of a path are monitored in real-time at the egress node.
This information is accessed by the admission control algorithm in its decision. Each of these edge-router
components communicate via shared memory.

2.1 Flow Establishment and Signaling

In order to perform flow-based admission control decisions, a signaling protocol is required to communicate
a resource reservation request from a host to a domain’s egress router. Consequently, we modified RSVP to
establish flows in the Egress Admission Control architecture.

In general, RSVP’s functionality as defined in [16] can be described as follows. When a host’s application
requests a specific QoS for its data stream, the host calls the RSVP daemon to deliver its request to
routers along the data stream’s path. Each RSVP router has several local procedures for reservation setup
and enforcement. Policy control determines whether the user has administrative permission to make the
reservation. Admission control keeps track of the system resources and determines whether the node has
sufficient resources to supply the requested QoS. The RSVP daemon invokes both procedures before accepting
the new flow. If either test fails, the RSVP daemon returns an error notification to the application that
originated the request. If both checks succeed, the RSVP daemon sets parameters in the packet classifier
and packet scheduler to obtain the requested QoS. The packet classifier determines the QoS class for each
packet and the packet scheduler orders packet transmission to achieve the promised QoS for each flow.

In our implementation of Egress Admission Control, the requirements of RSVP are significantly simplified.
Foremost, RSVP reservation messages need only be processed by a requesting flow’s egress router (or each
domain’s egress router in the case of multiple domains). Since a prominent feature of RSVP is that it
provides transparent operation through non-supporting regions, the RSVP daemon is simply not running
on the core routers, and reservation requests are merely forwarded by core routers as normal IP packets.
Therefore, it is only necessary to run the RSVP daemon on edge routers where admission control decisions
are made.

The next step is for an edge node to identify that it is in fact the egress node and not an ingress node.
This is quite simple to achieve based on the static configuration of the edge router itself: if it receives an
RSVP message on its core-node interface, it is the egress node for the flow and should process the request;
otherwise, the router is an ingress node and should simply forward the packet.

Our second alteration to RSVP is in the admission control algorithm. We modified the RSVP daemon
to call our egress admission control program (described below) upon receipt of a new reservation request.
This algorithm is invoked as an alternative to IntServ-style per-link measurement based admission control
such as described in [2].

Finally, we do not send explicit tear down messages upon completion of a real-time session, as per-flow
state is not maintained anywhere in the system, and all admission decisions are based on measurements.
(We note however, that tear down messages may be desirable for other purposes such as resource usage
accounting).

Regardless, the RSVP messages themselves are not modified. Excluding the changes made to the RSVP
daemon, the protocol is compliant with the standard, and the host and user interfaces are left unaltered.

2.2 Measuring Path Traffic and Service

In order for an egress router to assess even simple characteristics of a path such as ingress-to-egress queueing
delays, the egress router must measure both the egress router’s service time of packets, and the times that
packets entered the ingress node. Consequently, to reveal such entrance times to the egress nodes, we insert
time stamps for real-time packets at ingress nodes.!

! A modified design that would avoid time stamping would be for ingress nodes to collect arrival statistics and periodically
transmit the aggregate information to the egress nodes. However, such coordination of state among edge nodes is not a part of
our current design.

There are four design components to our traffic and service measurement methodology: inserting times-
tamps at ingress nodes, synchronizing edge-router clocks, capturing and reading timestamps along with other
packet header information at the egress node, and calculating traffic envelopes from this data.

2.2.1 Timestamping

In order to communicate packet ingress entrance times to egress routers, we insert information into fields of
the IP header at the ingress node, which is ignored by the core nodes and read at the egress node. With an
approach analogous to the Dynamic Packet State code [13], we utilize 18 bits from the ip_tos field and ip_off
field to transmit a 10-bit timestamp as depicted in Figure 3.

-2 bits- -2 bits- -1 bit- -3 bits- -10 bits-
ingress class | sequence sequence timestam
id identifier | number number P
ip_tos ip_frag

Figure 3: IP Header Insertions for Path Monitoring

The ingress node transmits the ten most significant bits of the fraction of the second that just passed
in Universal Coordinated Time when the call to insert the arrival timestamp is summoned in the ip_input()
routine. At the egress node, the service time is registered when the packet leaves the router at the outgoing
interface. This ensures that when calculating the envelopes, we also account for queuing delays at both edge
routers.

In our particular implementation, inserting the timestamps into the ip_tos and ip_off fields of the IP packet
header ensures that the intermediate routers forward the packets without any additional processing overhead.
Had the IP timestamp options been used, additional packet-processing overhead would have occurred at the
intermediate nodes. This type of implementation does assume that no packets are fragmented, but this is
simple to control in a laboratory setting.

The aspect of the implementation illustrates the current limitations of IP options, as the existence of
the IP_OPTIONS flag invokes the function ip_dooptions(). This then incurs significant overhead since the
function call places the packet on the “slow path”. A more efficient solution could utilize a flag indicating
whether a packet should be simply be forwarded by an interior node, or whether it needs to be processed
further. Such a flag would easily be detected in hardware, and hence be compatible with high-speed core
routers.

2.2.2 Time Synchronization of Edge Routers

As explained above, in order to compute one-way delays and service envelopes at the egress point, the arrival
times of packets at the ingress node must be communicated to the egress node. For this to occur, the clocks
in the various edge routers must be synchronized within a value that guarantees delay bounds on the order of
tens of msec.2 We implemented two solutions to achieve synchronization: a local hardware solution based on
Code Division Multiple Access (CDMA) pilot signals and a remote solution synchronizing to other Internet
hosts which themselves have hardware support such as CDMA or Global Positioning System (GPS). In both
cases, the Network Time Protocol (NTP) protocol is used to synchronize the router’s clock with either the
local hardware or the remote host.

In our testbed implementation, we used a CDMA time device (Pracis CT) on each router that receives
signals broadcast from CDMA base stations and synchronizes its system time and frequency using the pilot
and sync channel data just as a CDMA phone handset does. NTP is then used to synchronize the system
clock with the local CDMA device’s clock. With this approach, we found that the time offset between edge
routers is less then 0.3 milliseconds even under heavy load. As queuing delays and transmission delays are

20bserve that an alternate solution is for core routers to append a cumulative queueing delay to a field in the packet header
so that egress nodes can deduce the entrance time. However, we do not consider such solutions which require special-purpose
functionality of core routers and limit our study to pure edge-based solutions.

significantly larger than this offset, the timestamps are accurate enough to calculate the path characteristics
at the egress router using the timestamp information from the ingress router.

In addition to this local hardware solution, we also used NTP to synchronize with remote hosts that are
not part of the testbed. In particular, NTP operates by sending its own messages, containing the four most
recent timestamps between a client and another server or reference time source, such as a radio or satellite
receiver or modem, at polling intervals between 64 and 1024 seconds, depending on the stability of the two
clocks. The round-trip propagation time and offset are calculated from these four timestamps. Then the
computer specified to adjust its time does so by gradually skewing its clock to the “correct time” of the
other clock using a phase lock loop clock discipline algorithm described in detail in [8]. This algorithm alters
the computer clock time, while compensating for the intrinsic frequency error and dynamically adjusting the
poll interval. The measured time errors discipline a feedback loop, which controls the phase and frequency
of the clock oscillator. This is done with the aid of the clock adjust process, which runs at intervals of one
second.

However, we found that using such NTP synchronization with a remote public time server available over
the Internet can be problematic. In particular, we found that under heavy loads, the time accuracy can
degrade to as large as 100 milliseconds, which adversely effects the QoS control mechanisms. Such clock
skew is due primary to the large queueing delays and losses incurred by the NTP messages themselves under
heavy load. While this issue can be addressed with additional modifications to the routers (e.g., a priority
class for NTP packets), we found the local hardware solution to be superior, and use it for all measurements
reported in this paper.

2.2.3 Capturing Traffic at Egress Nodes

In order to collect timestamps of all real-time packets traversing a path, we modified the packet sniffer
tcpdump?, which uses the libpcap library to read header information from IP and TCP/UDP headers.
While tcpdump is not the ideal way to perform this task, since it is performed at user level, it is sufficient
for the 10 Mb/sec routers employed in the testbed. For high-speed implementation, this functionality could
be integrated into the kernel or supplemented with hardware support.

In addition to timestamps, the egress router records the packet length, an ingress node identifier, a class
identifier, and a four-bit per-path sequence number (as depicted in Figure 3). The class and ingress node
identifier will allow admission control on a per-class, per-path (ingress-egress pair) basis.

The per-path sequence number is used to identify loss on the path at the egress point. Using a 4-bit
sequence number ensures that up to 15 consecutive packet losses can be detected. In our current implemen-
tation, we have not used this loss detection, as the class QoS requirements are stringent enough to keep loss
sufficiently low that dropped packets can be ignored. However, for less stringent QoS requirements, such
loss would need to be incorporated: otherwise egress routers may over-estimate the available service along a
path, as not all arriving traffic is incorporated into the measurement.

2.2.4 Computing a Path’s Available Service

To assess the available service on a path, we measure a path’s statistical service envelope [11], a general
characterization of the end-to-end service received by a traffic class. This service abstraction can incorporate
the effects of interfering cross traffic without explicitly measuring or controlling it. Moreover, the service
envelope exploits features of the backbone nodes’ schedulers and the effects of statistical resource sharing
at both the flow level and the class level. For example, if a class is provided a circuit-like service without
sharing among traffic classes, the service envelope will measure a simple linear function. In contrast, if the
network performs scheduling similar to weighted fair queuing, the service envelope will reflect the available
capacity beyond the minimum “guaranteed rate” which can be exploited by the class, i.e., the excess capacity
which is available due to fluctuating resource demands of cross traffic and other traffic classes. Finally, by
limiting a class’ traffic through controlling admission of flows into the class, we can ensure that the class’
predicted quality-of-service is within its requirements. When all edge routers perform the algorithm, the
scheme ensures that all classes of all paths receive their desired service levels.

3www.tcpdump.org

There are two methods for calculating the traffic envelope. One approach is to use the method where a
rate-based envelope is considered; that is, calculate the peak rate for a given interval length. A second, and
analogous method, is to calculate the total number of bytes that arrived in an interval - that is, measure the
minimum interval length over which a certain number of bytes is transmitted. In our implementation, we
use the latter approach, as it removes a number of divisions by the interval size from the algorithm.

In other words, instead of determining the maximum number of bytes to arrive in an interval of given
size (via a sliding window) or discretizing the time scale, we calculate the minimum time required for a
certain number of bytes to arrive/ be serviced or discretize the scale for the number of bytes that arrived.
The primary motivation for this design decision is the fact that the flow requests specify a statistical delay
bound, and following the latter scheme ensures that the variance remains in the time-domain. Consequently,
the admission control equation (described below) can be applied directly without undergoing computationally
expensive conversions.

(a) Interval Discretization (b) Data Discretization

Figure 4: Envelope Illustrations of Bytes vs. Interval Length

2.2.5 Admission Control

An egress router’s admission control decision is described as follows and is illustrated in Figure 5 (see [3]
for further details). Consider a system where a traffic class between a particular ingress-egress pair has a
measured peak rate arrival envelope with mean R(t) and variance o2(t). In other words, over successive
measurement windows, the average maximum number of arrivals is given by tR(t), and its variance is given
by t202(t). Similarly, the class’ minimum service envelope has measured average S(t) and variance W2 (t).
The new flow with peak rate P is admissible with delay bound D if

tR(t) + Pt — S(t + D) 4+ an/t202(t) + ¥2(t + D) < 0

where « is set according to the required violation probability [3]. Moreover, we ensure the stability condition

that 5()
. _ t
lm R(t) <=~

Notice that for a first-come-first-serve server with link capacity C, S(t)/t = C. Figure 5 illustrates that
for a given threshold (in bytes) R(t) is obtained by normalizing the maximal arrival envelope, and S(t)
is computed as the maximum time for service for the particular threshold. The algorithm considers each
threshold and determines whether the network can satisfy the new flow’s quality of service requirements.
If both of the above requirements are satisfied, a message to admit the new flow is relayed by the request
handler and the user may begin sending the traffic.

This approach pushes the task of network resource management to the edge of the system, and does
not require that interior nodes perform per-flow or per-class bandwidth reservation. Instead, edge nodes
exclusively handle admission control decisions and signaling messages. The available service in the contiguous
interior of the network is inferred by inserting timestamps into packet headers at the ingress nodes and
statistically analyzing the path’s characteristics.

3 Experimental Design and Measurements

In this section, we present the results of a measurement study obtained using our implementation of egress
admission control in a network of prototype routers.

./‘
.
_-Arrival
) .-~ envelope
new arrival envelope .-~
>

gl Service
7 envelope
threshold s
e
.
//
tnew tarriva t service

Figure 5: Illustration of Admission Control

3.1 Scenario

In order to study the performance of the scheme, we perform five different experiments, each building upon
the previous one. All routers and hosts run the FreeBSD v3.2 operating system and are connected via 10
Mb/sec links. The buffer size of the routers is 250 packets, which for a link capacity of 10 Mb/sec and
maximum packet size of 1500 bytes corresponds to a maximum queuing delay of 300 milliseconds. We
begin with a baseline experiment depicted in Figure 6, in which a single node functions as both the ingress
and egress router. This router resides between the source machine, which generates the traffic, and the
destination machine, which receives the traffic. In all cases, each host will generate multiple flows, and hosts
are connected to routers via 100 Mb/sec links so that no queueing occurs in hosts.

Figure 6: Baseline Experiment

sc

Sc

The remaining experiments are performed with the configuration depicted in Figure 7. Here, three routers
interconnect five hosts. Depending on the experiment, these routers function as ingress, egress and/or core
routers. Experimental results are reported between the hosts labeled “src¢” and “dest” whereas the two hosts
labeled “cross traffic sr¢” 1 and 2 function as cross-traffic generators to congest routers and test the egress
admission control algorithm’s ability to infer the available service along a path with unmeasured cross traffic.

Cross
traffic
scl

Sc

cross
traffic
sc2

Figure 7: Ingress/Egress Pair Experiments

3.2 Traffic Generation

To emulate the behavior of realistic real-time flows, we designed a Pareto on-off traffic generator that
transmits packets only after the QoS request is admitted by the egress router’s admission control test.
It consists of two components: the actual traffic generation and communication with RSVP. Packets are
generated according to the Pareto on-off model with the following parameters: packet size 1000 bytes, mean
burst time 250 msec, mean idle time 250 msec, and peak rate 400 kb/sec. The Pareto shape parameter is
1.9 (recall that a Pareto shape parameter less than 1 results in an infinite mean while a shape parameter
less than 2 results in an infinite variance) and the flow lifetime is 5 minutes. Thus, this traffic generator
produces highly bursty traffic which, when aggregated, forms a flow that exhibits self-similarity [15].

The second part of the traffic generator handles communication with RSVP. As RSVP is a receiver
oriented reservation protocol, it needs both the path information from the source host and the QoS request
information from the destination host. In order to communicate the user’s request to the egress router, a
module in the traffic generation program on the source host side generates a path message, while a module
on the destination side sends a reserve message with the QoS request. By calling the RSVP application
interface function, the sender side receives the admission control result.

3.3 Measurements
Experiment 1: One Node

The first experiment consists of a single router, one class, and no cross traffic. Pareto on-off traffic is sent
from the main source host to the router, and then to the destination host as depicted in Figure 6. The peak
rate of each flow is 800 kb/sec and the mean rate is 400 kb/sec. The link capacity is manually configured to be
9 Mb/sec using Alternate Queueing (ALTQ) [4]. Thus, under a peak rate allocation scheme, 11 flows would
be admitted, and to ensure stability, no more than 22 flows can be admitted. In this simplified scenario,
the service envelope is simply S(t) = 9t, and we configured S(t) manually (rather than measuring it) in
order to establish a performance benchmark in the case in which service is known and largely deterministic.
Moreover, with the single router configuration, timestamps are not required as the router monitors the
original packet entrance times (similar to the case of IntServ measurement-based admission control [2]). For
the experiments, «, the parameter which controls the fraction of packets violating the class delay bound
(and hence controlling the loss probability as some of these packets will be dropped when the buffer is full)
is 1.0. The arrival envelope is computed by evaluating the output of tcpdump at the end of each one-second
interval.

Delay Regst | Number | Mean Delay Maximum % Outside
(msec) of Flows (msec) Delay (msec) Bound
5 16.0 1.52 17.9 1.25
10 16.3 1.83 22.5 1.20
20 18.0 2.35 36.8 0.56
60 21.1 12.85 124.7 6.16

Table 1: Single Node Baseline Experiments

We make the following observations about the experimental results reported in Table 1.* First, the
algorithm has exploited statistical multiplexing gains, even in this scenario of a moderate number of traffic
flows. The average link utilizations are in the range of 67% to 94%. As a consequence of overbooking,
violations of the target delay occur and the fifth column indicates that the violations range from 0.56% to
6.16% of packets. Second, observe that assigning different delay targets has the desired impact on measured
performance, allowing mean delays in the range of 1.52 msec to 12.85 msec, and maximum delays in the
range of 17.9 msec to 124.7 msec. Hence, the algorithm provides the basic mechanisms for performance
differentiation in multi-class networks. Finally, we observe that the targeted violations due to statistical
multiplexing are not precisely met, as the percentage of violations differs in the four cases despite having
the same « of 1.0 for all experiments. The differences arise from a number of factors: the quantization of

4All reported measurements refer to average results from at least three experiments.

the measured arrival process; the discrete nature of flows themselves (a discrete number of flows is admitted,
whereas to achieve the precise QoS target may require between N and N + 1 flows); the strong impact on
QoS for each new flow in the regime of a moderate number of flows; and the extreme burstiness of the traffic
itself.

Experiment 2: Ingress-Egress Pair

In the second set of experiments, we consider multiple routers but without cross traffic. As depicted in
Figure 7, the system contains an ingress, core, and egress router (A, B, and C respectively), and traffic is
transmitted between the two hosts at ingress node A and a single destination host attached to egress router
C.

Here, we establish Pareto on-off flows with peak rate 800 kb/sec, mean rate 400 kb/sec, and a link
capacity of 9 Mb/sec, so that the range of admissible flows is 11 to 22. The target delay bound is 20 msec
and a = 1.0.

Figure 8 displays an example arrival and service envelope used to make an admission decision at a
particular time instance of the experiment. Observe that the arrival and service envelopes have crossed
indicating that the stability condition is satisfied. Moreover, observe the general concavity of the arrival
envelope and convexity of the service envelope. Convexity of service envelopes is normally evident in multi-
class scenarios, for if a flow remains continually backlogged over longer interval lengths, it attains a greater
service on average, due to the fluctuating demands of other flows in other classes. In this case with a single
class and no cross traffic, one may expect the service to be closer to linear, i.e., S(t) = 9t. However, there are
two reasons for its convexity. First, other traffic is still traversing the links, including RSVP messages, NTP
traffic, and other minor but noticeable background traffic such as NFS (Network File System) traffic. Second,
the empirical service envelope is actually an approximation to the true available service. For example, while
an infinite rate input flow would indeed measure a service envelope of 9t, a “minimally backlogged” flow,
such as described in [11] would measure a lower service envelope due to its own rate variations.

In the experiments, the maximum number of admitted flows is 19, corresponding to an average link
utilization of 84%, quite similar to utilizations obtained in theory for similar types of flows (see [7] for
example).® In this scenario, we measured a mean delay of 2.45 msec and a maximum delay of 33.9 msec,
with the percentage of packets exceeding the delay bound of 20 msec measured to be 0.81%. (Refer to Table
2 below for summary results.)

4500
—— Aurrival Envelope
40001 —~ - Service Envelope

3500

3000+

25001

kbits

20001

15001

10001

5001

o

0.4 0.5

0.1

0.2 0.3
Interval length (secs)

Figure 8: Measured Arrival and Service Envelopes

Experiment 3: Cross Traffic- Congested Ingress Router

In these experiments, we introduce cross traffic between the host labeled “cross traffic src 1” and “cross
traffic dest 1.” Thus, the cross traffic flows traverse routers A and B whereas the test flows traverse routers
A, B, and C. Consequently, egress router C has no explicit measurements of the cross traffic, and must rely
on its own path measurements to assess the available capacity on the link between routers A and B. We

5Unfortunately, no precise theoretical multi-node admission control algorithm yet exists for comparison.

establish 10 on-off flows as described above for cross traffic, which correspondingly reduces the available
capacity along path A-B-C. As in Experiment 2, the delay request for users’ traffic is 20 msec and a in the
algorithm is again set to 1.0. With the 10 cross-traffic flows, 7.7 of the A-B-C source’s flows were admitted
on average. Thus, the egress node has inferred the reduction in available service as compared to experiment
3 and significantly reduced its number of admitted flows. Regardless, the 7.7 admitted flows correspond to
17.7 flows on link A-B, one less than allowed in Experiment 2, indicating that the un-measured cross traffic
has caused the algorithm to slightly under admit. In the experiments, the mean packet delay is 2.2 msec,
and the maximum delay is 51.4 msec, which led to 0.69% of the packets exceeding the requested target.

Experiment 4: Cross Traffic- Congested Egress Router

For the final experiments, we establish cross traffic sessions through the egress router rather than the ingress
router. While node C is the egress point for both the A-B-C flows and the cross traffic, these flows do not
share the same path, and hence are treated separately by node C. Thus, egress router C must again implicitly
discover the cross traffic’s effect on the available service. Again, 10 flows of the cross traffic were established,
with a set to 1.0 and a delay request of 20 msec.

In the experiments, 7.3 flows from the primary host on path A-B-C were admitted by the egress router,
totaling 17.3 flows when combined with the cross traffic. This closely approximates the 83% utilization
achieved in Experiment 2. In the experiments, the mean packet delay is 3.21 msec, the maximum delay is
30.8 msec, and the percentage of packets exceeding 20 msec delay is 0.27%.

Exp. Number Mean Mean Maximum % Outside
No. of Flows Util. Delay Delay Bound

2 18.7 0.830 2.45 msec 33.9 msec 0.81

3 10+4-7.7 0.785 2.20 msec 51.4 msec 0.69

4 10+7.3 0.770 3.21 msec 30.8 msec 0.27

Table 2: Multiple Router Experiments

Comparing experiments 2, 3, and 4, variations in the total number of admitted flows should be expected,
as the scenarios have different queueing and multiplexing characteristics. However, the percentage of packets
outside the targeted delay bound would ideally be nearly identical in all three cases, at least to within the
granularity of a traffic flow. Figure 9 further illustrates performance differences in the three experiments by
depicting the different delay histograms in each case. While these measurements illustrate the difficulties
of achieving precise control of end-to-end quality-of-service measures, the experiments do indicate that the
algorithm can control admissions so that empirical quality-of-service have a strong correspondence to the
targeted values.

0.5

— Exp2
Exp3
- - Exp4

o
=

o
w

Probability Density

o
)

0 0.005 0.01 0.015
Delay (secs)

Figure 9: Delay Distribution

10

Experiment 5: Multi-class

In this set of experiments, we consider two traffic classes sharing a link with capacity 9 Mb/sec. Each
link (edge and core) is scheduled according to Class-Based Queueing (CBQ) [5] using ALTQ with the
classes having equal bandwidth allocations of 4.5 Mb/sec each and identical priorities for borrowing excess
bandwidth. Class 1 has a 40 msec delay bound and a = 1.0 whereas Class 2 has a 10 msec delay bound and
a = 3.0. We consider the same topology as in Figure 7 with Pareto on-off flows with peak rate 800 kb/sec
and mean rate 400 kb/sec.

Figure 10 shows the average number of class 2 flows vs. the average number of class 1 flows admitted
by the egress admission control algorithm. We make the following observations about the figure. First, the
intercepts of the graph indicate that if no class 1 flows are present, 14.5 class 2 flows are admitted, whereas
if no class 2 flows are present, 19 class 1 flows are admitted. This illustrates that the QoS differentiation
specified by the classes’ demands is incorporated into the admission control algorithm and results in a more
restrictive admission policy for class 2 to achieve the more stringent performance criteria. Second, we observe
that as the number of flows in one class is changed, the other class is able to exploit the available excess
capacity and admit additional flows. For example, if 5 class 1 flows are admitted, class 2 can admit 10.5
flows: in this case, class 1 is transmitting at a rate that is less than half of the link capacity, and class 2
infers this additional available capacity and admits 10.5 flows, more than class 2 would be able to admit if it
utilized no more than half of the link capacity. Hence, the “borrowing” mechanism of CBQ is exploited by
the admission control algorithm to admit more flows than would be possible under a non-work-conserving
multi-class scheme in which rate-controllers limit the available bandwidth to each class.

Number of class2 flows

R S

7 8 11 12 13 14 15 16 17 18 1
Number of class1 flows

Figure 10: Multi-class Admissible Region

4 Conclusions

This paper describes our design, implementation, and measurements of Egress Admission Control, an ar-
chitecture and algorithm designed to combine the strong service model of IntServ with the scalability of
DiffServ, without sacrificing network utilization. While some aspects of scalability cannot be explored in
a laboratory setting, our results demonstrate a key component of scalable admission control, namely, that
admission control, signaling, and state management, need not be performed at each node traversed by a
flow. Instead, with proper monitoring and control of the available service on an ingress-egress path, network
wide quality-of-service can be ensured while signaling only egress nodes.

Acknowledgements
The authors are grateful to Dayong Huang for designing the envelope visualization tools, and to members

of the Rice Networks Group for the helpful discussions. We would also like to thank Ion Stoica for the use
of his dynamic-packet-state code and Brent Hendricks for sharing his knowledge of FreeBSD.

11

References

[1]
[2]

[3]
[4]

[5]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

S. Blake et al. An architecture for differentiated services, 1998. Internet RFC 2475.

L. Breslau, S. Jamin, and S. Shenker. Comments on the performance of measurement-based admission
control algorithms. In Proceedings of IEEE INFOCOM 2000, Tel Aviv, Israel, March 2000.

C. Cetinkaya and E. Knightly. Scalable services via egress admission control. In Proceedings of IEEFE
INFOCOM 2000, Tel Aviv, Israel, March 2000.

K. Cho. A framework for alternate queueing: Towards traffic management by PC-UNIX based routers.
In USENIX ’98 Technical Conference, New Orleans, LA, June 1998.

S. Floyd and V. Jacobson. Link-sharing and resource management models for packet network.
IEEE/ACM Transactions on Networking, 3(4):365-386, August 1995.

S. Jamin, P. Danzig, S. Shenker, and L. Zhang. A measurement-based admission control algorithm for
integrated services packet networks. IEEE/ACM Transactions on Networking, 5(1):56-70, February
1997.

E. Knightly and N. Shroff. Admission control for statistical QoS: Theory and practice. IEEE Network,
13(2):20-29, March 1999.

D. Mills. On the accuracy and stability of clocks synchronized by the Network Time Protocol in Internet
systems. Computer Communications Review, 20(1), January 1990.

K. Nichols, V. Jacobson, and L. Zhang. Two-bit differentiated services architecture for the Internet,
1999. Internet RFC 2638.

P. Pan, E. Hahne, and H. Schulzrinne. BGRP: A framework for scalable resource reservation, 2000.
Internet Draft, draft-pan-bgrp-framework-00.txt.

J. Qiu and E. Knightly. Inter-class resource sharing using statistical service envelopes. In Proceedings
of IEEE INFOCOM 99, New York, NY, March 1999.

J. Qiu and E. Knightly. Measurement-based admission control with aggregate traffic envelopes.
IEEE/ACM Transactions on Networking, 9(2):199-210, April 2001.

I. Stoica and H. Zhang. Providing guaranteed services without per flow management. In Proceedings of
ACM SIGCOMM 99, Cambridge, MA, August 1999.

B. Teitelbaum et al. Internet2 QBone: Building a testbed for differentiated services. IEEE Network,
13(5):8-17, September 1999.

W. Willinger, M. Taqqu, R. Sherman, and D. Wilson. Self-similarity through high-variability: Statistical
analyisis of Ethernet LAN traffic at the source level. IEEE/ACM Transactions on Networking, 5(1):71-
86, February 1997.

L. Zhang, S. Deering, D. Estrin, S. Shenker, and D. Zappala. RSVP: A New Resource ReSerVation
Protocol. IEEE Network, 7(5):8-18, September 1993.

12

