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Abstract

Provisioning resources for network services introduces the con
icting requirement for both deter-

ministic tra�c models to isolate and police users, and statistical multiplexing to e�ciently utilize

and share network resources. We address this issue by introducing two complimentary schemes for

QoS management for deterministically policed 
ows. The �rst is adversarial mode resource alloca-

tion: here we bound the stochastic envelopes of policed 
ows and achieve a statistically multiplexed

QoS-controlled service, even in the case that all 
ows are independently adversarial, i.e., when all


ows are non-collusively behaving in a worst-case manner at all time scales within the constraints

of their policing functions. The second scheme is non-adversarial mode, maximum-entropy alloca-

tion: here we determine the maximum-entropy stochastic envelopes of policed (but non-worst-case)


ows. Consequently, this scheme exploits a further statistical multiplexing gain via a characteriza-

tion of the \most likely" behavior of policed 
ows. Our key technique is to study the problem within

the domain of deterministic and stochastic tra�c envelopes, which allows us to explicitly consider

sources with rate variations over multiple time scales, obtain results for any deterministic tra�c

model, and design accurate admission control tests for bu�ered priority schedulers. We evaluate

the schemes' performance with experiments using traces of compressed video and single and dual

time-scale periodic sources and show that substantial statistical multiplexing gains are achieved.
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1 Introduction

A key challenge for future packet networks is to e�ciently multiplex bursty tra�c 
ows while

simultaneously supporting Quality of Service (QoS) objectives in terms of throughput, loss

probability, and end-to-end delay. At one extreme, performance can be assured even in the

worst case via deterministic service [4]. In addition to its absolute guarantee, deterministic

service also has the advantage of enforceability : when the network guarantees QoS based on

the clients' worst-case descriptions of their tra�c, the network can easily verify that these

tra�c speci�cations are satis�ed. On the other hand, the most important drawback of a

deterministic service is that, by its very nature, it must reserve resources according to a

worst-case scenario, and hence has fundamental limits in its achievable utilization [29].

To overcome the utilization limits of deterministic service, statistical multiplexing must be in-

troduced to exploit the fact that the worst-case scenario will occur quite rarely. To account for

such statistical resource sharing, the tra�c 
ows' rate 
uctuations and temporal correlation

must be characterized. In the literature, such properties are often represented via stochastic

tra�c models, including Markov Modulated, Self-Similar, and others [7,13,15,18,26]. How-

ever, in a shared public network with misbehaving or malfunctioning users, provisioning

resources according to such stochastic source characterizations incurs a signi�cant risk, as

the underlying assumptions of the model are inherently di�cult for the network to enforce

or police.

The need to address the fundamental con
icting requirement for both deterministic tra�c

models to isolate and police users, and statistical multiplexing to e�ciently utilize network

resources was perhaps �rst recognized in [6], and remains an important problem both for per-


ow and aggregate services. In [6], a policeable tra�c model similar to the now standard dual

leaky bucket model is used to provide a statistical network service and exploit a statistical

multiplexing gain. However, in [6] as well as later studies including [2,5], network services

are considered only for single time scale 
ows. We will show that when tra�c 
ows have rate

variations over even two time scales, signi�cant inaccuracies are encountered when applying

a single time scale solution. Consequently, for tra�c 
ows more complex than periodic on-o�,

new techniques are needed for enforcing network services.

In this paper, we develop a general framework for enforceable network services. Our key

technique is to formulate the relationship between deterministic [4] and statistical [22] tra�c

envelopes in order to devise general and enforceable services applicable to any determin-

istic tra�c model. In this way, we are able to provide e�cient (high utilization) services

to multiple-time scale 
ows, exploiting statistical resource sharing, while also enabling net-

work service providers to police tra�c arrivals and ensure that their promised services are

delivered.

We develop two complementary schemes for providing network services to policed 
ows. First,

we develop an adversarial mode scheme. Here, we show how statistical network services can

be assured even if each 
ow independently behaves in a worst-case manner at any or all
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time scales. Speci�cally, we show how the 
ow's policeable deterministic envelope yields a

simple bound on its statistical envelope so that QoS can be assured even if all 
ows are

(non-collusively) adversarial at the worst possible time scale.

Second, we develop a non-adversarial mode scheme using maximum entropy techniques.

Here, our goal is to better estimate the statistical properties of more typical policed but

non-worst-case 
ows. The maximum entropy statistical envelope can be viewed as the most

likely statistical characterization of the 
ow given only its deterministic bounds. Thus, non-

adversarial mode allocation yields a controlled mechanism for network service providers to

achieve an increased statistical multiplexing gain in scenarios where 
ows are expected to be

\random" rather than strictly worst-case adversarial.

Using this framework of tra�c envelopes, we also explore the relationship between source

time scales, deterministic tra�c models, and the admission control algorithm's ability to

accurately determine the network's true admissible region. We �nd that if dual time scale


ows are characterized by a single time scale model (such as the standard peak rate, burst

length, and average rate model), network clients must either ignore their long time scale

characteristics and over-state their mean rate, or ignore their short time scale rate variations

and over-state their burst length and hence the impact of their temporal correlation structure

on network bu�ers. We quantify the impact of such tra�c mischaracterizations on admission

control by examining subsequent errors in the computed admissible region that an inaccurate

tra�c model causes. We show that even with an ideal mapping of a dual time scale source to

a single time scale model, signi�cant errors in the admissible region can occur. Furthermore,

such errors necessarily under -estimate the true admissible region as the tra�c parameters

must be over -stated: under-statement of tra�c parameters would result in tra�c being

blocked by the network's policing elements.

Finally, we study the schemes' performance using trace-driven-simulation experiments as well

as simulations with single and dual time scale periodic 
ows. As an illustrative example, we

�nd through simulations that with MPEG-compressed video traces and a 45 Mbps link with

a bu�er size corresponding to 20 msec delay, the measured maximum achievable utilization

is 86% for a loss probability of 10

�6

. For this same scenario, our adversarial-mode admission

control scheme utilizes resources to 41%, necessarily lower than that of the trace-driven

simulation since the approach assumes that each 
ow is independently adversarial, which is

not the case for these video 
ows. However, this represents a signi�cant improvement over

a single time scale approach which obtains 14% utilization in this case. Alternatively, the

non-adversarial-mode admission control scheme achieves an average link utilization of 79%.

Indeed, with non-adversarial-mode allocation, we �nd that once tra�c 
ows are aggregated

and economies-of-scale are present, the maximum entropy mapping from deterministic to

stochastic envelopes can lead to a considerably accurate admission control test.

In addition to the aforementioned work, our approach is related to several other schemes for

resource provisioning for policed 
ows. In [8], we �rst studied statistical services for multiple

time scale policed 
ows using the D-BIND model [12]. In that work as here, the tra�c model

is policeable, yet accurate enough to capture key properties more typically associated with
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statistical models such as autocorrelation structure. However, [8] requires the on-line solution

of an optimization problem in order to �nd a 
ow's worst-case statistical tra�c envelope.

Here, extending [10], we develop a simpler and more direct approach.

Further work using quite di�erent approaches is found in [21,19,23,25], where multi-level

leaky buckets (a special case of the D-BIND model) are employed to characterize the mul-

tiple time scale nature of 
ows. These schemes are developed in the context of smoothing

and bu�erless multiplexing which has the advantage of simplifying multiple node issues (as

studied in [24]) as tra�c traverses bu�erless multiplexers undistorted. Comparatively, while

our approach does have utilization advantages from exploiting bu�ering rather smoothing

[30], the key di�erence lies in the simplicity and generality of the envelope-based approach,

viz., it applies to any deterministic tra�c model and, employing [22], to a broad class of

tra�c schedulers including weighted fair queueing, static priority, and earliest deadline �rst.

Finally, our non-adversarial scheme is unique in its control of network services to policed

but non-worst case 
ows.

The remainder of this paper is organized as follows. In Section 2, we describe the important

aspects of deterministic tra�c models for provisioning network resources. In Sections 3 and

4, we present the scheme for extracting stochastic envelopes of tra�c 
ows from their en-

forceable parameters, which we apply to admission control in Section 5. We investigate the

impact of the source time scales 6 and evaluate the scheme experimentally using video traces

in Section 7.

2 Background on Tra�c Envelopes

As described above, strict enforcement of network services requires that a 
ow's tra�c be

speci�ed and policed via a deterministic tra�c model which upper bounds its arrivals. Specif-

ically, a deterministic tra�c model uses parameters to de�ne a tra�c constraint function b(t),

which constrains or bounds the number of bits that can be transmitted over any interval of

length t. Denoting A

j

[s; s + t] as the number of 
ow j arrivals in the interval [s; s + t], a

tra�c constraint function (and deterministic envelope) b

j

(t) bounds an arrival sequence A

j

if

A

j

[s; s+ t] � b

j

(t); 8 s; t > 0: (1)

Di�erent tra�c models parameterize di�erent constraint functions b(t). For example, the

(�; �) or leaky-bucket tra�c model de�nes a constraint function b(t) = � + �t so that a

source is allowed to send a burst of size � bits in an arbitrarily small interval, but over longer

interval lengths, the source is constrained to an upper-average rate of � bits-per-second.

We introduced a more accurate tra�c model, termed D-BIND, in [12] to better characterize

the burstiness properties of realistic tra�c 
ows. With the D-BIND model, sources charac-

4



terize their tra�c to the network via multiple rate-interval pairs, (R

k

; I

k

), where a rate R

k

is a bounding or worst-case rate over every interval of length I

k

. With P rate-interval pairs,

the model parameterizes a piece-wise linear constraint function with P linear segments given

by

b(t) =

R

k

I

k

�R

k�1

I

k�1

I

k

� I

k�1

(t� I

k

) +R

k

I

k

; I

k�1

< t � I

k

(2)

with I

0

= 0. In [12], we showed how this source characterization captures a 
ow's burstiness

properties and temporal correlation structure, even over long time scales. For example, with

an MPEG-compressed video source, the 
ow's pattern of alternation between large intra-

coded frames and smaller inter-coded frames is evident from the values of the rate-interval

pairs.

In [29], a (~�; ~�) model is considered along with the above tra�c models. This model consists

of P (�

k

; �

k

) leaky buckets in parallel such that the resulting constraint function is piece-wise

linear concave with P linear segments:

b(t) = min

1�k�P

(�

k

+ �

k

t): (3)

The (~�; ~�) model is therefore a special case of the D-BIND model.

All of the above deterministic tra�c models have the property that they are enforceable by

the network so that when a client (a user or tra�c class) speci�es its tra�c parameters to

the network, the network can verify that these parameters are satis�ed via policing elements

such as multi-level leaky buckets. As illustrated in Figure 1, regardless of the 
ow's arrival

pattern at the entrance of the policer, by delaying or dropping packets that violate the tra�c

parameters speci�ed by the client, the network is assured that Equation (1) is satis�ed at

the output of the policer.

jb (t)
Arrivals network

A [s,s+t] < b (t)jjPolicer

Fig. 1. Policing of the Tra�c Constraint Function b

j

(t)

Figure 2 illustrates deterministic tra�c modeling with an example D-BIND source char-

acterization. The �gure depicts the bounding or worst-case rate versus interval length so

that for small interval lengths, the bounding rate approaches what is commonly called the

\peak-rate," and for long interval lengths, it approaches the source's long-term average rate.

Observe that the worst-case arrivals over di�erent interval lengths characterize a 
ow's bursti-

ness over di�erent time scales in a manner analogous to the variance-time plot of [16] which

describes the second moment of the arrivals over di�erent interval lengths: both models de-

scribe the tra�c in terms of dispersions from the mean rate as a function of interval length.

Indeed, observe from Figure 3 that the statistically described time scales of the source char-
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Fig. 2. Deterministic Source Characterizations for MPEG Traces

acterized by the rate-variance envelope are also evident in the deterministic parameters of

Figure 2.

Regardless, the ultimate e�ectiveness of a deterministic model in describing the important

properties of tra�c 
ows is best determined by its e�ectiveness in resource allocation. We

evaluate this experimentally in Section 7 with trace-driven-simulation experiments using

video traces that exhibit multiple time scale behavior.

Finally, in the sections following we describe schemes for bounding and approximating a


ow's stochastic envelope given its deterministic envelope. In general, the random variables

B

j

(t) are a stochastic envelope of 
ow j if [14]

P (A

j

[s; s+ t] > x) � P (B

j

(t) > x) (4)

for all s, t, and x. In this paper, we consider a rate-variance envelope RV

j

(t) which describes

the variance of a 
ow's arrival rate over intervals of length t as [9]

RV

j

(t) = V ar

 

A

j

[s; s+ t]

t

!

: (5)

While our approach is easily generalizable to higher-moment envelopes, this second moment

characterization has computational advantages in admission control while maintaining a high

degree of accuracy [11].

3 Adversarial Mode Allocation

In this section, we describe a technique for enforcing network services even in the case that

all 
ows are (non-collusively) adversarial. We consider a general deterministic and statistical

tra�c envelope so that our solution applies to any deterministic tra�c model and a broad

class of service disciplines via the theory of statistical service envelopes [22].
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Our key technique is to bound the stochastic properties of the 
ow at each time scale t using

properties of the deterministic envelope and hence the policer parameters. For policed 
ows,

the rate-variance envelope is bounded as follows.

Adversarial Envelope: If 
ow j is stationary and its arrivals are upper bounded such that

A

j

[s; s+ t] � b

j

(t) for all s, t > 0, then its rate-variance envelope is upper bounded by:

RV

�

j

(t) =

�

j

b

j

(t)

t

� �

2

j

(6)

where �

j

is de�ned as:

1

�

j

= lim

t!1

b

j

(t)

t

: (7)

The adversarial bound can be shown as follows. Let the random variable r

j

(s) represent

source j's instantaneous rate at time s and let a

j

(t) represent the total arrivals in an interval

of length t,

a

j

(t) =

s+t

Z

s

r

j

(s) ds (8)

which depends only on t for stationary sources.

Denoting f

t;j

(x) as the distribution of a

j

(t), we show that for any t, the maximal value of

RV

j

(t) = V ar(a

j

(t)=t) subject to the constraints of the policing elements

s+t

Z

s

r

j

(s) ds � b

j

(t) 8s; t � 0 (9)

is given by Equation (6) and is attained when the distribution of a

j

(t) is given by

f

�

t;j

(x) =

 

b

j

(t)� �

j

t

b

j

(t)

!

�(x) +

�

j

t

b

j

(t)

�(x� b

j

(t)) (10)

such that for an interval length t, Equation (10) describes a binomial distribution.

According to (9), f

t;j

(x) = 0 for x > b(t) and x < 0 so that the rate-variance envelope of a

policed 
ow is given by

1

For example, for a source parameterized by multiple (�

k

; �

k

) pairs as in Equation (3), �

j

is simply

the minimum of the �

k

's.
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RV

j

(t)=

Ea

j

(t)

2

� (Ea

j

(t))

2

t

2

(11)

=

1

t

2

b

j

(t)

Z

0

x

2

dF

t;j

(x)�

1

t

2

(

b

j

(t)

Z

0

xdF

t;j

(x))

2

for some distribution f

t;j

(x) satisfying (9). For the distribution f

�

t;j

(x) of Equation (10),

RV

�

j

(t) is given by Equation (6). To show that RV

�

j

(t) � RV

j

(t) for all t and for all distri-

butions f

t;j

(x) satisfying (9), observe that

RV

�

j

(t) � RV

j

(t) =

b

j

(t)�

j

t

�

1

t

2

b

j

(t)

Z

0

x

2

dF

t;j

(x)

=

b

j

(t)

t

2

b

j

(t)

Z

0

x dF

t;j

(x)�

1

t

2

b

j

(t)

Z

0

x

2

dF

t;j

(x) (12)

since the mean rate Ea

j

(t)=t is given by

1

t

b

j

(t)

Z

0

x dF

t;j

(x) = �

j

:

Rewriting Equation (12),

RV

�

j

(t)� RV

j

(t) =

1

t

b

j

(t)

Z

0

xb

j

(t)

t

 

1�

x

b

j

(t)

!

dF

t;j

(x)

which is clearly non-negative.

Notice that the bound applies to any deterministic tra�c model since each deterministic

tra�c model parameterizes a constraint function b

j

(t) as described in Section 2; the more

accurately the model characterizes the tra�c 
ow, the tighter the corresponding bound on

RV

�

j

(t).

We also note that for an adversarial source to realize the variance bound at a time-scale T , it

would �rst transmit its maximal burst such that A

j

[0; t] = b

j

(t) for t � T . Next, the source

would remain idle in order to obtain enough credits or tokens from the policer to send this

same burst of size b

j

(T ) again. This is di�erent than a \greedy" source de�ned in [20] which

always transmits a packet when allowed to do so by the policer and never remains idle to

collect tokens; for a greedy source, A

j

[0; t] = b

j

(t) for all t. For example, consider a (�; �)

source with b

j

(t) = �

j

+ �

j

t. A greedy source would send a burst of size �

j

bits at t = 0 and

then send tra�c at constant rate �

j

for the remainder of the 
ow's lifetime. In contrast, a
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source that alternately sends bursts of size �

j

and remains idle for a time �

j

=�

j

has the same

mean but greater variance and hence is more adversarial for statistical multiplexing.

Thus, together with an envelope-based admission control algorithm, the enforceable RV

�

j

(t)

characterization provides a mechanism for ensuring that network services which extract a

statistical multiplexing gain can be provisioned and policed, even if all sources are indepen-

dently adversarial, i.e., if sources are adversarial, but not collusive.

4 Non-Adversarial Mode Using Maximum Entropy

The adversarial rate-variance bound is achieved only when a 
ow transmits in an on-o� mode

at all time scales. Indeed, while it is possible for a 
ow to realize RV

�

(t) for a particular t

(as in the above example), it is often not possible to simultaneously realize this bound for

all t. Moreover, one may expect that in a large scale network servicing many 
ows, only a

small fraction of the 
ows will be truly adversarial. Consequently, in this section we describe

a scheme for approximating the statistical envelopes of more typical 
ows, again using their

policed parameters. Here, the ultimate goal is to increase the network's utilization for non-

adversarial 
ows with enforced tra�c constraints.

In this scenario, the only information available is the deterministic envelope (and the mean

rate derived from it). Thus, the problem is to approximateRV

j

(t) or more generally the distri-

bution of B

j

(t) given b

j

(t) and �

j

(the maximum and mean). As this is an under-determined

problem with in�nitely many solutions, adversarial mode allocation can be viewed as the

worst case solution with the additional constraint of bounding RV (t).

Here, we propose maximizing entropy of the probability density function to approximate the

rate variance. As a measure of uncertainty or randomness, entropy is de�ned as [3,28]

h(f) = �

Z

S

f(x) ln f(x)dx (13)

for a continuous random variable with probability density function f(x). The maximum

entropy principle states that among the many possible distributions satisfying the known

constraints, we should choose the one that maximizes the entropy. The rationale for doing

this is to assume the least about the distribution, and choose the distribution that is most

uncertain given the available information. In other words, the maximum entropy distribution

is the one which is maximally noncommittal regarding missing information.

We now apply the maximum entropy principle to approximate the distribution (and there-

fore second moment statistics) based on the peak-rate envelope and mean rate. The only

information known about the distribution is its range (from 0 to rate envelope v

j

(t) =

b

j

(t)

t

)

and mean �

j

. Based on the maximum entropy principle, we have the following result.
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Non-adversarial Maximum Entropy Envelope: Given a 
ow j's deterministic tra�c

rate envelope v

j

(t) and tra�c mean rate �

j

, the maximum entropy estimate of rate variance

RV

j

(t) is

d

RV

j

(t) =

A

j

�

3

j;1

[((�

j;1

v

j

(t)� 1)

2

+ 1)e

�

j;1

v

j

(t)

� 2]� �

2

j

(14)

where �

j;1

is the non-zero

2

solution of

e

�

j;1

v

j

(t)

+

1 + �

j

�

j;1

(v

j

(t)� �

j

)�

j;1

� 1

= 0 (15)

and A

j

is

A

j

=

�

j;1

e

�

j;1

v

j

(t)

� 1

: (16)

This envelope is derived as follows. We would like to maximize Equation (13) subject to the

constraints

v

j

(t)

Z

0

f

j

(x)dx = 1 (17)

and

v

j

(t)

Z

0

xf

j

(x)dx = �

j

: (18)

By using the Lagrange multiplier method, the distribution that maximizes the entropy is of

the form

f

j

(x) =

8

>

<

>

:

e

�

j;0

+�

j;1

x

0 � x � v

j

(t)

0 otherwise

(19)

where �

j;0

and �

j;1

are coe�cients that must satisfy Equations (17) and (18). Let A = e

�

j;0

,

and we have

v

j

(t)

Z

0

e

�

j;1

x

dx =

1

A

j

(20)

2

If v

j

(t) = 2�

j

, then �

j;1

= 0
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and

v

j

(t)

Z

0

xe

�

j;1

x

dx =

�

j

A

j

(21)

And these two equations are algebraically equivalent to Equations (15) and (16).

Now let A

j

and �

j;1

be given by Equations (15) and (16), then by de�nition

d

RV

j

(t) =

v

j

(t)

Z

0

x

2

e

�

j;0

+�

j;1

x

dx� �

2

j

: (22)

Thus, one can easily show that Equations (22) and (14) are equivalent.

Notice that Equation (15) does not have an analytical solution in general, but we can obtain

a numerical solution by the following method. First, observe the following relationships about

�

j;1

:

�

j;1

< 0 if v

j

(t) > 2�

j

�

j;1

= 0 if v

j

(t) = 2�

j

�

j;1

= �

1

�

j

if v

j

(t) =1:

Assuming v

j

(t) > 2�

j

, Equation (15) can be rewritten as g(�

j;1

) = 0 where

g(�

j;1

) = e

�

j;1

v

j

(t)

+

1 + �

j

�

j;1

(v

j

(t)� �

j

)�

j;1

� 1

:

Furthermore, g(x) < 0 if x > �

j;1

and g(x) > 0 if x < �

j;1

. Thus standard numerical

techniques can be used to compute �

j;1

e�ciently. Table 1 shows the rate variances using

adversarial mode and maximum entropy for mean rate r = 1 and di�erent peak rates p.

This table shows that adversarial mode gives an unbounded rate variance proportional to

the peak rate. Consequently, mis-specifying a 
ow's peak rate will yield inaccurate admission

control decisions. On the other hand, the maximum entropy approximation gives a bounded

rate variance and provides a more \realistic" estimation when the peak rate is unknown (i.e.,

in�nity).
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p 1 2 4 8 16 32 64 1

Adversarial Mode Variance 0 1 3 7 15 31 63 1

Maximum Entropy Variance 0 0.333 0.778 0.988 1 1 1 1

Table 1

Rate Variances Using Adversarial Mode and Maximum Entropy

5 Integrated Admission Control for Policed Flows

Here, we develop an integrated framework for multi-service admission control for policed


ows. We consider deterministic (or guaranteed) service together with statistically multi-

plexed services via our use of a single framework of deterministic tra�c envelopes to describe

tra�c, regardless of the required service. In this way, we not only enforce all services, but

also incorporate the impact of 
ows obtaining a deterministic service in the calculation of

the loss probabilities for 
ows obtaining a statistical service. Consequently, a further statis-

tical multiplexing gain can be obtained by 
ows employing statistical services due to unused

capacity of deterministic 
ows.

5.1 Multi-Class Admission Condition

In the same way that b

j

(t) and B

j

(t) provide a general way of describing a tra�c 
ow's

arrivals as a function of interval length, the available service to a 
ow can be lower bounded

[4] and statistically described [22] by the deterministic and statistical service envelopes s

j

(t)

and S

j

(t).

Denoting superscript i as the aggregate arrivals or service of a class, in [22] we showed that

class i with service envelope S

i

(t) and tra�c envelope B

i

(t) has a delay-bound violation

probability

P [D

i

> d] � P [max

t�0

fB

i

(t)� S

i

(t+ d)g > 0]: (23)

Using this general result, multiclass admission control tests can be described succinctly for a

broad class of schedulers by specifying their arrival and service envelopes which are functions

of the policing parameters and service discipline.

We pursue the particular example of static priority scheduling: consider an SP scheduler

with N priority queues, link speed C, and the aggregate tra�c in class i bounded by B

i

(t)

and b

i

(t), with i = 1; : : : ; N denoting the priority level from higher priority to lower priority.

In this case, the available service to a 
ow at priority level i over intervals of length t is the

available capacity less all tra�c arriving at higher priority levels, i.e., the statistical service

12



envelope for class i is

S

i

(t) = (Ct�

i�1

X

j=1

B

j

(t))

+

(24)

and the deterministic service envelope for class i is

s

i

(t) = (Ct�

i�1

X

j=1

b

j

(t))

+

(25)

where b

i

(t) =

P

j2C

i

b

j

(t); B

i

(t) =

P

j2C

i

B

j

(t); and b

j

(t) and B

j

(t) are the statistical and

deterministic envelopes of the jth 
ow in class i, and C

i

denotes the set of 
ows in class i.

Thus at the highest priority levels, delay bound d

i

is deterministically guaranteed if [17]

max

t

fb

i

(t) +

i�1

X

k=1

b

k

(t+ d

i

)� C(t + d

i

)g � 0 (26)

Similarly, for statistically multiplexed services with delay bound d

i

is guaranteed with prob-

ability P

i

> 0 if

P [max

t

fB

i

(t) +

i�1

X

k=1

B

k

(t+ d

i

)� C(t+ d

i

)g > 0] � P

i

: (27)

since for statistical service classes, Equation (23) and Equation (24) indicate that

B

i

(t)� S

i

(t + d

i

) �

st

B

i

(t)� C(t+ d

i

) +

i�1

X

k=1

B

k

(t+ d

i

); (28)

Thus, if P [max

t

fB

i

(t) +

P

i�1

k=1

B

k

(t+ d

i

)� C(t+ d

i

)g > 0] � P

i

; then the statistical service

in the ith service class is satis�ed. Results for other service disciplines can be found in [22].

To calculate P [max

t

fB(t) � S(t + d)g > 0] in Equation (27) we utilize the \maximum

variance" approximation of [1]. Let

�

2

t

= varfB(t)� S(t+ d)g;

�

t

=

0� EfB(t)� S(t+ d)g

�

t

;

� := inf

t

�

t

:

13



Approximating fB(t)� S(t + d)g as Gaussian, under conditions (C1) { (C2) in [1],

P [max

t

fB(t)� S(t+ d)g > 0] � max

t

P [B(t)� S(t+ d) > 0] = �(�) (29)

and

P [max

t

fB(t)� S(t+ d)g > 0] � e

�

�

2

2

(30)

where �(�) =

1

p

2�

R

1

�

e

�

x

2

2

dx. Proof of these two bounds is given in [1], and we utilize the

former in the experiments below.

Finally, notice that the probability of delay-bound violation is strictly increasing with RV

j

(t),

so that by considering the maximal rate-variance envelope RV

�

j

(t) of each policed source, our

estimate of this probability is also maximized. We note further that for both adversarial and

non-adversarial allocation, tra�c 
ows must be statistically independent or non-collusive. If

tra�c 
ows are collusive, then a fully deterministic approach must be employed [29].

5.2 Empirical Adversarial and Maximum Entropy Envelopes

Figure 3 illustrates the adversarial mode and maximum entropy (non-adversarial mode) rate-

variance envelopes for the MPEG-compressed video trace described in Section 7. The curve

labeled \ActualRV (t)" is the true rate-variance envelope as directly computed from the trace

as in [9]. To obtain the \Adversarial" and \Maximum Entropy" envelopes, we �rst calculate

the deterministic parameters of the source. In particular, we characterize the source with 6

rate-interval pairs using the D-BIND tra�c model [12]. These rate-interval pairs, which are

policeable by the network, parameterize a tra�c constraint function as given by Equation

(2), from which RV

�

j

(t) is calculated using Equation (6)

d

RV

j

(t) using Equation (14).
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Fig. 3. Envelopes from Video Trace

We make the following observations about the �gure. First, the trace itself exhibits a non-

trivial autocorrelation structure, even over relatively long time scales. This can be seen from

14



the slope of the RV (t) curve as depicted on the �gure's log-log scale: if arrivals in successive

intervals of length t are uncorrelated, then the slope of this curve would be -1 at t. However,

the curve for the actual source has a slope considerably greater than -1 even for large t.

Second, we observe that both of the inferred envelopes, RV

�

(t) and

d

RV (t) exhibit this same

behavior, i.e., they re
ect the long-time-scale characteristics of the source. This indicates

that even deterministic tra�c models are capable of capturing the stochastic properties of

sources that exhibit rate variations over multiple time scales. Finally, we observe that the

non-adversarial mode rate-variance envelope

d

RV (t) better approximates the 
ow's actual

envelope RV (t), especially at smaller time scales, while it is more conservative for longer

interval lengths. The reason for this is that, while the maximum entropy estimation of the

marginal rate distribution is quite accurate, over longer interval lengths, the tra�c (when

aggregated with itself over long interval lengths) becomes more constant rate, or has lower

variance: the maximum entropy envelope does not incorporate this behavior and hence is

conservative for large t.

5.3 Numerical Examples

We now provide a simple example illustrating admission control using adversarial and non-

adversarial mode allocations. Consider a FCFS multiplexer with link capacity C and bu�er

space B serving N homogeneous 
ows with parameters (P = 2�; �; �). Using adversarial

mode allocation, each 
ow's rate variance is

RV

�

(t) =

8

>

<

>

:

�

2

if 0 < t <

�

2�

�

2t

� if t >

�

2�

(31)

since adversarial mode follows the Bernoulli distribution. The admission control condition

in Equation (29) can then be simpli�ed as

P (D > d) � �

 

C �N� + 2Cd�=�

p

N�

!

= �(a): (32)

For example, if C = 45Mbps, N = 60, � = 583Kbps, d = 0:1s, and � = 1Mb, then

P (D > d) � 3:61 � 10

�4

. For non-adversarial mode, since P = 2�, the maximum entropy

distribution is uniform, and the variance is thus 1=3 of adversarial distribution's. Thus the

delay bound violation probability for maximum entropy approximation is

P (D > d) � �(

p

3a): (33)

In the above setting, the delay bound violation probability for maximum entropy mode

allocation is 2:38� 10

�9

, about �ve orders of magnitude less than that of adversarial mode.
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6 Time Scales of Policed Flows

In this section, we explore the impact of the tra�c's time scales on the e�ectiveness of

enforceable network services. In particular, we use single and dual time-scale tra�c sources to

illustrate the importance of explicitly incorporating the source's multiple-time-scale nature

into both the deterministic tra�c model as well as the admission control algorithm. By

investigating the errors introduced with a single time scale scheme, we show that even with

an ideal choice of tra�c parameters, a single-time scale approach can signi�cantly under-

estimate the true admissible region for dual time-scale tra�c.

6.1 Single Time Scale Sources

As a baseline, we �rst consider periodic on-o� sources as depicted in Figure 4. Such a source

can be characterized by three parameters such as the dual leaky bucket's peak rate, maximum

burst length, and upper average rate (P; �; �) with constraint function b(t) = min(Pt; �+�t).

For notational convenience, we consider a transformation of these parameters (P; I

B

; I) such

that I

B

is the maximal duration of a burst at rate P and I is the minimum spacing of such

bursts. In other words I

B

= �=(P � �) and I = I

B

+ �=�.

BI

P
rate

timeI

Fig. 4. Example Single Time Scale Source (P; I

B

; I)

To evaluate an admission control algorithm's ability to predict the correct admissible region,

we perform the following experiments.

First, we simulate a �rst-come �rst-serve multiplexer with capacity C and bu�er size B

which services N sources with parameters (P; I

B

; I). Each source is given a random phase

uniformly distributed between 0 and I such that the sources are statistically independent.

For a given set of source and multiplexer parameters, we perform over 2500 simulations (each

with independent source phases) and measure the empirical average loss probability P

L

.

For the admission control experiments, we consider the loss probability P

L

to be given as

the quality of service parameter. For sources with parameters (P; I

B

; I) and a multiplexer

with bu�er size B and link capacity C we use the scheme of Sections 3 and 5 to determine

the maximum number of admissible 
ows N subject to the tra�c and QoS constraints.

Figure 5 depicts a typical set of experimental results. In the �gure, the link capacity is 45

Mbps and the sources have a peak rate of P = 5.87 Mbps, a burst length of I

B

=.083 seconds,

and a period I of 0.83 seconds. For simplicity of the discussion below, we can consider time
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Fig. 5. Admission Control for Single Time Scale Source

to be slotted to 1=24 seconds, such that the burst length is 2 time slots and the period is 20

time slots. Thus, the source's peak rate P is 10 times its average rate �. The loss probability

for the �gure is P

L

= 10

�3

.

The curve in Figure 5 labeled \Simulation" depicts the maximum number of 
ows N (scaled

to utilization as N�=C) vs. the bu�er size B (scaled to delay as B=C) that could be mul-

tiplexed such that the average loss probability is less than P

L

. In other words, this curve

should be viewed as the true admissible region.

The curve labeled \Adv. Mode" depicts the admissible region for the adversarial mode

admission control test of Sections 3 and 5, and the curve labeled \EMW95" depicts that

of [5]. We make the following observations about these three curves. First, note that both

analytic admission control regions are below the actual admissible regions obtained in the

simulations. The reason for this is that both admission control tests employ bounds at

di�erent stages of their derivations. Next, notice that for small bu�er sizes both algorithms

perform well, with our proposed scheme closest to the true admissible region. This is because

for a bu�erless multiplexer (B approaching 0), both tests in essence calculate the probability

that the aggregate rate distribution exceeds the link capacity for sources with binomial

rate distributions. The discrepancy is due to our use of a Gaussian approximation for the

aggregate rate distribution and [5]'s use of the Cherno� bound. Finally, we note the system's

bu�er scalings. As illustrated, the simulations show that the number of admissible 
ows

increases almost linearly with increasing bu�er size for delays ranging from 0 to 60 msec; over

this range, the utilization doubles, increasing from 38% to nearly 80%. The bu�er scalings

of [5] are more conservative due to an additive approach of estimating the total bu�er

requirement from per source requirements. In contrast, our approach scales in a manner

quite similar to the simulation results, primarily due to its use of envelope-based resource

allocation [9].

6.2 Dual Time Scale Sources

Here, we consider dual time scale sources with parameters (P; I

B1

; I

B2

; I) as depicted in

Figure 6. The sources exhibit rate-variations over two time scales in the sense that on the
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slower time scale, the sources sends bursts of size (2PI

B1

) bits every I seconds. However, in

contrast to the single time scale source of Figure 4, each burst of duration I

B2

consists of

two separate bursts, each of duration I

B1

.

P

time

rate

B1I I B2

I

Fig. 6. Example Dual Time Scale Source

In Figure 6, we have considered sources with peak rate P = 5.87 Mbps, burst lengths I

B1

=

:083, I

B2

= 0.292, and period I = 1:67 seconds. Considering time to be slotted to 1=24 to

seconds, I

B1

is 2 time slots, I

B2

7, and I 40. The peak and average rates are therefore the

same as for the single time scale example above. For the �gure's \Simulation" curve, we

determine the true admissible region in the same manner as for the single time scale sources.

For the admission control curve labeled \Adv. Mode", we use an approach analogous to that

of the single time scale source, except that the constraint function for this dual time scale

source is given by b(t) =

R

t

0

r(s)ds where r(s) is depicted in Figure 6. Notice that such a

constraint function is piece-wise linear as in the D-BIND model of [12].

Observe that to characterize a dual time scale source with a single time scale tra�c model

such as (P; I

B

; I), either the short time scale or long time scale behavior must be ignored. To

ignore the longer time scale, a dual-time-scale source with parameters (P; I

B1

; I

B2

; I) as in

Figure 6 can be upper bounded with a single time scale model with parameters (P; I

B1

; I

B2

�

I

B1

). Note that such a characterization is necessarily conservative as the parameterized mean

rate is PI

B1

=(I

B2

� I

B1

) which is greater than the true mean rate 2PI

B1

=I.
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Fig. 7. Admission Control for Dual Time Scale Source

An alternative single time scale characterization of this same source of Figure 6 is given

by the parameters (P; 2I

B1

; I). In this manner, the source has speci�ed its true long term

average rate but has necessarily over speci�ed its maximum burst length.

Notice that in characterizing a dual time scale source with a single time scale model as

above, the resulting tra�c characterization must upper bound the actual tra�c: otherwise,
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the excess tra�c will be blocked by the policing elements.

Figure 7 depicts the results of these admission control experiments. As was the case of

the single time scale sources, the \Adv. Mode" admission control algorithm is somewhat

conservative, but is able to approximately match the simulation's admissible region and

exploit the relative bene�ts of bu�ering. From the remaining two curves, we see that in

this case, it was better for the single time scale approach to ignore the source's short time

scale dynamics and characterize its longer time scale behavior rather than vice versa. This

is evidenced by the TS2 curve's superior performance to TS1, with the former using the

(P; 2I

B1

; I) tra�c parameters. However, we show in the next section that ignoring short

time scales rather than long is not always bene�cial.

6.3 From Modeling Errors to Admission Control Errors

Here, we explicitly consider the impact of characterizing a dual time scale tra�c source

with a single time scale model by determining the error in the admissible region resulting

from such a bound. We calculate this error as � =

N

STS

�N

DTS

N

DTS

where N

DTS

is the number of

admissible 
ows calculated as in the \Adv. Mode" curve of Figure 7 using the source's true

tra�c parameters, and N

STS

is the number of admissible 
ows using the same envelope-based

admission control algorithm of Section 3 but with a single time scale tra�c model (recall

that these techniques apply to any deterministic tra�c model). As described above, when the

long time scale is ignored, the source's envelope is bounded by parameters (P; I

B1

; I

B2

�I

B1

),

and when its short time scale is ignored, it is bounded by parameters (P; 2I

B1

; I).

Figure 8 depicts the results of this experiment for a bu�er size of 50 msec, a link capacity

of 45 Mbps, and a loss probability of 10

�3

. In the �gure, the vertical axis depicts the error

in the admissible region, �, and the horizontal axis depicts the inter-burst time, I

B2

� 2I

B1

,

i.e., the time between the two fast time scale bursts. In all of the experiments, I

B1

is 2 time

slots and I is 40 time slots.

First, notice that for an inter-burst time of 0 as well as an inter-burst time of 18, the source

is actually a single time scale source. In other words, with an inter-burst time of 0, the source

transmits a single burst for 4 time slots and then remains idle for 36 time slots. Likewise,

when the inter-burst time is 18, the source's short time scale burst matches its long time

scale burst such that the source is actually periodic with period 20 and burst length 2. Hence,

it is not surprising that for an inter-burst time of 0, one is able to ignore the fast time scale

and for an inter-burst time of 18, one is able to ignore the slow time scale.

Second, as the inter-burst time increases, the error caused by ignoring the source's fast time

scale is increased. The reason for this is that as the inter-burst time increases, the source's

fast time-scale bursts are more spread out and hence more 
ows can be admitted. However,

if the fast time scale is ignored due to use of a single time scale model, this e�ect cannot be

exploited by admission control and the same number of 
ows are admitted regardless of the
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inter-burst time. The net e�ect is that the error increases.
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In contrast, by ignoring the slow time scale, one has in essence exactly characterized the

short term burstiness at the expense of over-stating the source's mean rate. Without the

true mean rate, such an approach is quite conservative when the inter-burst time is small,

or equivalently, when the average rate over I

B2

seconds is much greater than the average

rate over I seconds. However, as these two rates become closer with longer inter burst times,

this approach becomes the superior of the two, as the disadvantage of mis-characterizing the

mean rate is outweighed by the bene�ts of the source's correct bound of its maximal burst

length before shutting o�.

Note therefore that even with an ideal selection of tra�c parameters to suit the inter-burst

time, it is not possible to match the performance of a two time scale model. In this example,

the maximal error under an ideal selection of tra�c parameters is -26%, i.e., 26% of 
ows

will be unnecessarily blocked for sources with an inter-burst time of 13 (I

B2

= 15).

Lastly, we reiterate that the error in the admissible region due to using an overly simple

tra�c model is necessarily negative, as the tra�c must be parameterized with an upper

approximation; otherwise the source's excess tra�c will be blocked by the policer.

7 Experiments with Video Traces

In this section, we evaluate our proposed scheme for provisioning enforceable statistical QoS

guarantees via a set of trace-driven experiments. With an implementation of the proposed

adversarial-mode and maximum-entropy resource reservation schemes, we compare the 
ows'

performance obtained in trace-driven simulations with that predicted by the admission con-

trol tests and RV (t) tra�c characterizations.
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7.1 Experimental Scenario

The workload consists of a 30 minute trace of MPEG-compressed video taken from an action

movie. It was digitized to 384 by 288 pixels and compressed with constant-quality MPEG 1

compression at 24 frames per second with frame pattern IBBPBBPBBPBB. Further details

of the trace and its characteristics may be found in [27].

For each simulation, N 
ows or traces are multiplexed on a simulated 45 Mbps �rst-come-

�rst-serve link, with each 
ow's arrival pattern given by the movie trace with a start time

chosen uniformly over the length of the trace (30 minutes). For a given number of 
ows N

and bu�er size C � d (the link capacity times the delay bound) we measure the fraction of

packets P

L

that are dropped due to bu�er over
ow. Many simulations are performed with

independent start times and average results are reported.
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Fig. 9. Utilization vs. Delay Bound

In the admission control part of the experiments, we determine the 
ows' rate-variance

envelopes from their enforceable deterministic parameters as depicted in Figure 3. We then

use the admission control test of Section 5 to determine the maximum number of admissible


ows, N , subject to the QoS constraints for delay, d, and loss probability, P

L

.

7.2 Results

Here, we compare the results of the trace-driven simulations with the admission control tests.

To further evaluate our approach, we also compare with the admission control algorithm of

[25].

Figure 9 shows the results of the trace-driven simulation and admission control experiments.

3

The �gure shows the average utilization of the multiplexer (which is proportional to the

3

95% con�dence intervals for the simulations are all within a single 
ow and are therefore not

shown.
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number of 
ows as N�=C) versus bu�er size scaled to delay. In other words, for a given

delay d depicted on the horizontal axis, the vertical axis shows shows the maximum number

of 
ows N (scaled to utilization) that can be multiplexed such that all 
ows are guaranteed

a probability of delay-bound violation or bu�er over
ow of 10

�3

in Figure 9(a) and 10

�6

in

Figure 9(b).

In the �gures, four curves are depicted (from top to bottom): (1) the results of the trace-

driven simulation; (2) admission control tests based on the Non-Adversarial Mode

d

RV (t)

tra�c characterization (an approximate rate-variance envelope for a non-adversarial, but

policed, tra�c 
ow); (3) admission control tests based on the Adversarial Mode RV

�

(t)

tra�c characterization (the worst-case rate-variance envelope of a policed 
ow); and (4) the

admission control test of [25].

Trace-driven Simulation - For the simulation curves of Figures 9(a) and 9(b), the average

utilization of the multiplexer, and hence the number of multiplexed 
ows, increases with

increasing delay or bu�er size. However, notice that increasing the bu�er size beyond that of

a 10 to 20 msec delay is of little bene�t, i.e., larger bu�ers will not provide a better QoS or

support more 
ows for a given QoS. Regardless, the utilizations are in the range of 79% to

93% (61 to 72 
ows on the simulated 45 Mbps link) for P

L

= 10

�3

, and in the range of 64%

to 88% (49 to 68 
ows) for P

L

= 10

�6

. Such high utilizations indicate that these MPEG 
ows

are well suited to statistical multiplexing, despite their burstiness over multiple time-scales.

Non-Adversarial Mode Admission Control - The second curve from the top depicts

the admission control experiments that use the

d

RV (t) characterization for non-adversarial

policed 
ows. Notice that the non-adversarial-mode curves are quite close to those of the

trace-driven simulation, indicating that with only knowledge of the 
ows' deterministic pa-

rameters (in this case, six worst-case rate-interval pairs), the maximum entropy scheme is

able to deliver a statistical service that exploits nearly all of the achievable statistical mul-

tiplexing gain.

Adversarial Mode Admission Control - The third curve shows the results of the admis-

sion control experiments using the RV

�

(t) bound on a policed 
ow's rate-variance envelope.

As described in Section 3, RV

�

(t) bounds the stochastic properties of policed 
ows so that

statistical QoS guarantees can be provided even if all 
ows are independently adversarial.

Consequently, the RV

�

(t) envelope is necessarily more pessimistic than the

d

RV (t) envelope

for non-worst-case policed 
ows (cf. Figure 3) so that the adversarial-mode scheme captures

some, but not all, of the possible statistical multiplexing gain. Its utilizations are 43% to

67% (P

L

= 10

�3

) and 25% to 51% (P

L

= 10

�6

) for delays between 1 and 80 msec, utiliza-

tions that are considerably below that of the trace-driven simulation. However, despite not

capturing all of the multiplexing gain, this scheme does have a distinct advantage in terms

of protection: if there are many adversarial sources rather than MPEG video sources (the

MPEG trace is bursty, but not worst-case), then the adversarial mode service is still able to

deliver a rigorous statistical QoS guarantee.

Comparison - The �nal curve depicts admission control experiments based on [25]. Here,
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the trace is characterized in the same way as in adversarial and non-adversarial modes. The

test assumes that sources transmit tra�c according to an extremal periodic on-o� model

with these parameters. As shown, the test is achieves utilizations in the range of 36% to 67%

for delays less than 80 msec and loss probabilities less than 10

�3

. For a more stringent loss

probability requirement of 10

�6

, the admissible region of [25] is 16% to 48%. The primary

reason for the performance gain of adversarial allocation over [25] is the underlying admission

control algorithm (cf. Section 5 and [11]) rather than the bounds on the 
ows parameters,

as both approaches �nd the most adversarial 
ow to be a type of on-o� 
ow. Moreover, the

non-adversarial scheme, unlike both adversarial mode and [25], is able to extract nearly the

full statistical multiplexing gain via the maximum entropy technique.

8 Conclusions

Design of admission control and capacity allocation algorithms encounter a con
icting re-

quirement between the need to obtain a statistical multiplexing gain, which often engenders

the use of a statistical tra�c model, and the need to police tra�c 
ows, which necessi-

tates a deterministic tra�c model. In this paper, we introduced two schemes for delivering

a statistically multiplexed service that extracts a tra�c 
ow's stochastic envelope from its

network-enforceable deterministic parameters. We �rst showed how to bound a policed 
ow's

rate-variance envelope to provide a probabilistically guaranteed service and achieve a statis-

tical multiplexing gain even in the case that all tra�c sources are independently adversarial.

We then showed how to approximate this same rate-variance envelope for perhaps the more

typical case of policed, but non-worst-case tra�c 
ows; this latter approach uses maximum

entropy techniques to allow the network to exploit a further statistical multiplexing gain

when multiplexing policed, but non statistically-adversarial sources. The key components of

our approach are (1) simple-to-compute mechanisms to bound and approximate stochastic

envelopes from enforceable deterministic parameters, (2) use of an accurate deterministic

model to characterize the important properties of the tra�c for both deterministic and

statistical services, and (3) stochastic envelope based admission control tests for bu�ered,

priority multiplexers. Evaluations of our approach with experiments using compressed video

traces showed that the scheme is able to achieve a substantial statistical multiplexing gain.
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