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Abstract—Two recent advances have resulted in significant improvements in web server quality-of-service. First, both centralized and
distributed web servers can provide isolation among service classes by fairly distributing system resources. Second, session
admission control can protect classes from performance degradation due to overload. The goal of this work is to design a general
“front-end” algorithm that uses these two building blocks to support a new web service model, namely, multiclass services which
control response latencies to within prespecified targets. Our key technique is to devise a general service abstraction to adaptively
control not only the latency of a particular class, but also to bound the interclass relationships. In this way, we capture the extent to
which classes are isolated or share system resources (as determined by the server architecture and system internals) and hence their
effects on each other's QoS. For example, if the server provides class isolation (i.e., a minimum fraction of system resources
independent of other classes), yet also allows a class to utilize unused resources from other classes, the algorithm infers and exploits
this behavior, without an explicit low level model of the server. Thus, as new functionalities are incorporated into web servers, the
approach naturally exploits their properties to efficiently satisfy the classes’ performance targets. We validate the scheme with trace

driven simulations.

Index Terms—Web servers, QoS, admission control, multiclass, statistical envelopes.

1 INTRODUCTION

THE explosive growth in web traffic [17] has led to
excessive latencies due to overloaded web servers.
Consequently, reducing and controlling server latencies is a
key challenge for delivering end-to-end quality-of-service.

Towards this end, two key mechanisms have been
introduced to improve web QoS. First, admission control
has been proposed as a mechanism to prevent web servers
from entering overload situations [4], [10], [16]. Specifically,
by admitting new sessions only if the measured load is
below a prespecified threshold, admission control can
prevent the server from entering a regime in which latencies
are excessive, or session throughput collapses due to
dropped requests and aborted sessions.

Second, web servers can now provide performance
isolation and differentiation among the different service
classes hosted by the site. In particular, a server may
support a number of service classes which may represent
different classes of users or different applications (news,
email, static documents, dynamic content, etc.). Whether
such classes are supported in a single-node server or a
distributed cluster, mechanisms devised in [3], [6], [7] and
[2], respectively, can ensure that each service class receives
a certain share of system resources (disk, CPU, memory,
etc.). Moreover, by appropriately weighting the share of
system resources, differentiation among service classes is
achieved. Similarly, as delays are also incurred in the
system’s request queues, prioritization of incoming re-
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quests can further differentiate the performance among
classes [4], [12].

Thus, differentiation and isolation can be achieved by
prioritized scheduling of system resources, and protection
from overload can be achieved by admission control.
However, even if taken together, these two mechanisms
cannot ensure that a request’s targeted delay will be
satisfied. Consequently, because end-to-end latency is a
key component of user-perceived quality-of-service, new
mechanisms are needed to ensure that the service class’
request delays are limited to within the targeted value.

In this paper, we introduce a new framework for
multiclass web server control which can satisfy per class
latency constraints and devise an algorithm termed
Latency-Targeted Multiclass Admission Control (LMAC).
Our key technique is to design a scheme within a general
framework of request and service envelopes. Such
envelopes statistically describe the server’s request load
and service capacity as a function of interval length,
resulting in a high-level service abstraction which
circumvents the need to model or measure the compo-
nents of a request’s delay. For example, a request incurs
delays in the request queue, CPU processing, memory,
disk in the case of cache misses, and so on; individually
controlling the latency in each subsystem is a difficult
task in a modern server. Instead, we utilize the envelopes
as a simple tool for controlling class quality-of-service
while maximizing utilization of system resources.

Our approach has three key distinctions. First, it enables
web servers to support a strong service model with class
latencies bounded to a prespecified target, i.e., a minimum
fraction of accepted requests will be serviced within the
class delay target.

1045-9219/02/$17.00 © 2002 IEEE
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Fig. 1. System model.

Second, it provides a mechanism to characterize and
control the interclass relationships. For example, suppose
server resources are allocated to classes in a weighted-fair
manner so that classes have performance isolation, yet a
class is able to utilize unused resources of other classes. In
general, the extent to which an increased load in one class
affects the performance of another class is a complex
function of the total system load, the particular resource
scheduling algorithm, and the low-level interactions among
the server’s resources. Building on the results of [19], we use
the envelopes as a way to characterize the high-level
isolation/sharing relationships among classes and design
a general multiclass algorithm to exploit these effects.

Finally, by decoupling access control and resource
allocation from the internals of the server, we obtain a
general solution that applies to a broad class of servers,
including single-node and distributed servers, and servers
with varying levels of quality-of-service support. Conse-
quently, as the server is enhanced with functionalities such
as weighted-fair resource allocation, the algorithm naturally
exploits these features to better utilize the available
resources and support an increased number of sessions
per service class.

To evaluate our scheme, we perform a broad set of trace-
driven-simulation experiments. We first compare our
scheme with an uncontrolled system and illustrate that
the algorithm is able to prevent performance degradation
due to overload. Next, comparing the delays obtained in
simulations with the class QoS objectives, we find that, in
many cases, latencies can be controlled to within several
percent of the targeted value. Moreover, in the single class
case, we compare with a simple queuing theoretic ap-
proach, and find that envelopes control the system to a
significantly higher degree of accuracy. Finally, in the
multiclass case, simulations indicate that substantial inter-
class resource sharing gains are available. Here, we find
that the approach is able to extract these gains and
efficiently utilize system resources while satisfying each
class” delay targets.

The remainder of this paper is organized as follows: In
Section 2, we describe the server architecture and the

system abstraction used for QoS management. Next, in
Section 3, we describe a simple single-class queuing
theoretic approach to serve as a benchmark for performance
analysis, and illustration of the key problems in meeting
delay targets. In Section 4, we introduce the request and
service envelopes and show how they can be computed.
Next, we develop an access control algorithm based on the
properties of these envelopes in Section 5. We describe the
simulation scenario and present experimental results in
Sections 6 and 7, respectively. Finally, in Section 8, we
conclude.

2 SYSTEM ARCHITECTURE

In this section, we describe the basic system architecture of
a QoS web server. We are not proposing a new architecture
as all of the mechanisms described below have been
introduced previously. Rather, our goal is to consider a
general system model for admission control which can
exploit various QoS server mechanisms to efficiently satisfy
targeted class latency objectives.

Fig. 1 depicts the general system model that we consider.
The system consists of a state-of-the-art web server
augmented with admission control capabilities as in [4],
[10], [16]. All incoming requests, which can be sessions (as
in [10]) or individual “page” requests, are classified into
different quality-of-service classes. There are a number of
possible classification criteria including the address of the
server (in case of Web hosting applications), the identity of
the user issuing the request, or the particular application or
data type. The goal of our admission control algorithm is to
determine whether admission of a new request in a
particular service class can be supported while meeting
the latency targets of all classes. If it is not possible, the
request should be rejected outright or redirected to a lower
priority class or a different server.

As shown in Fig. 1, incoming requests are first queued
onto the listen queue or dropped if the listen queue is full.
The admission controller dequeues requests from the listen
queue and determines if they will be admitted or rejected.
Notice that the admission control unit is part of the front-
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Fig. 2. Admission control model. (a) Baseline algorithm and (b) LMAC.

end and monitors all of the server’s arrivals and departures.
As depicted in Fig. 2,' the admission control unit performs
observation-based control of the server using measured
request and service rates of each class. Further, notice from
Fig. 2b that our class-based admission control will also
consider the effects of a new admission on other service
classes.

If admitted, requests are then scheduled according to the
server’s request scheduling algorithm which can be first-
come-first-serve or class based [4], [12]. Finally, requests are
submitted to the back-end nodes in a distributed server [2],
or in the case of a single node server are simply processed
by the node itself.

A key point is that the admission controller applies to a
general system model including single-node and distrib-
uted servers, FCFS and class-based scheduling, and
standard as well as QoS-enhanced operating systems.
When QoS mechanisms are present in the server (such as
class-based rather than FCFS request scheduling), the
admission controller will measure the corresponding
performance improvements and exploit the QoS function-
ality by admitting more requests per class,” thereby
increasing the overall system efficiency. For example,
consider a server farm where the front-end does sophisti-
cated load balancing to achieve better overall throughput by
exploiting locality information at the back end [18]. In this
case, the admission controller will measure the decreased
service latencies and be able to admit an increased number
of sessions into various classes, thereby exploiting the
efficiency gain of load balancing. Finally, notice from Fig. 2
that the admission controller does not measure or model
resources at the operating system level, such as disk,
memory, or CPU. Instead, we abstract all low-level
resources into a virtual server which allows us to design
an admission controller that is applicable to a broad class of
web server architectures and applications.

1. We refer the reader to for the notation used in this figure.

2. The increase in number of admitted requests is as compared with an
admission controller running on top of a server with no inbuilt QoS
functionality.
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3 BASELINE SCHEME

In this section, we sketch a simple queuing theoretic
algorithm devised to satisfy a delay target. The goal here
is threefold. First, we illustrate an abstraction of the server
resources into a simple queuing model. Second, we high-
light key issues for managing multiclass web services.
Finally, we use the approach as a baseline for experimental
comparisons and, by highlighting its limitations, we further
motivate the LMAC scheme.

3.1 Problem Formulation

Consider a single class with quality-of-service targets given
by a delay bound of 0.5 seconds to be met by 95 percent of
requests. Further consider a stationary and homogeneous
arrival of sessions and requests within sessions, so that
there exists some maximum number of requests per second
which can be serviced so that this QoS requirement is met. If
the overall arrival rate of requests to the server is greater
than this maximum, the difference should be blocked * (or
redirected) by the access controller to prevent an overload
situation.

The key question is, how to determine which load level is
the maximum one that can support the service. Specifically,
if the current load is below this maximum, then the current
95 percentile delay will be below the target. However, when
a new session requests access to the server, the new
95 percentile delay of this class and others is, in general, a
complex function of the system workload, and the low-level
interactions among the many resources consumed such as
disk, bandwidth, memory, and CPU. Below, we sketch a
baseline approach for assessing the impact of new requests
and sessions on the delay target via a simple queuing
theoretic abstraction.

3.2 Sketch Algorithm

Here, we approximate class i’s service by an M/M/1 queue
with an unknown service rate. In particular, as described
above, a request’s service latency includes delays from
session queues, disk access, etc. The M/M/1 model
abstracts these resources into a single virtual server with

3. For the purposes of discussion here, we assume blocked requests to
mean requests which are denied access to the server’s resources.



independent and exponential requests and services as
follows.

Over the last 7" seconds from the current time ¢, the mean
arrival rate is
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Under the assumptions of the M/M/1 model, the unknown
service rate is simply

1
i ==+ N, (3)
(],'
so that the delay violation probability under an increased
load X\ > \; will be

P(D; > d}) = exp(—d} (u; — \})). (4)

Thus, the increased load due to the new session should be
admitted if the estimated P(D; > d) is less than the class’
target €. Consequently, under the particular assumptions
of the M/M/1 model, the above scheme limits the class’
latency to within the target d; for the specified fraction of
requests ¢ .

3.3 Limitations of the Baseline Scheme

While server access control based on (1)-(4) does provide
the ability to meet a class’ latency objectives with a high-
level abstraction of system resources, it encounters several
key problems which preclude its practicality to realistic web
servers.

First, it offers no support for multiple services classes.
That is, by treating each class independently, the impact of a
new session on other classes is ignored. Second, the
assumption that interrequest times are independent and
exponentially distributed conflicts with measurement stu-
dies [11]. Third, the assumption of independent and
exponentially distributed service times cannot account for
the highly variable service times of requests and ignores the
strong effects of caching, namely, that consecutive requests
for the same document can result in highly correlated, as
well as highly variable, service times.

In Section 7, we experimentally quantify the impact of
these limitations in a realistic scenario.

4 ENVELOPES: A GENERAL SERVICE AND DEMAND
ABSTRACTION

In this section, we describe envelopes as a tool for developing
an admission control algorithm which can overcome the
limitations of the baseline scheme. Deterministic [13] and
statistical [5], [9], [19] traffic envelopes have been developed
to manage network QoS. Moreover, deterministic [13] and
statistical [19] service envelopes have provided a foundation
for multiclass network QoS, in [19], also incorporating inter-
class resource sharing. Below, we extend these techniques
to the scenario of measurement-based web services by
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exploiting two key properties of envelopes: characterization
of temporal correlation and variance and simple online
measurement via jumping windows.

4.1 Measurement-Based Request Envelopes

Here, we define and show how to measure a class’ request
envelope. We aim to characterize the traffic offered to a web
server by measuring the mean and the variance of the
incoming requests over intervals of length 7. The number of
requests in an interval of length 7 is \;7, where ), is as
computed in (1).

Denoting the number of class i requests in the interval
[t1,1:] by (see for the notation used)

Niy(t1,ts) = Zl(/l <ad < /,-2>. (5)

J

The variance of the request envelope, measured over a
measurement window of length 7/, is given by *

(1 :; T/7]-1
7i(7) \T/7] — QZHI:()
(Ni(t — (m+ 1)1, t —mT) — (T/\/>>2‘

(6)

As an example envelope, Fig. 3a shows the request
envelope for the Rice University Computer Science Depart-
ment trace described in Section 6. Specifically, the figure
depicts \; + 1.6450;(7)/7 versus 7, where 1.6450,(7) yields
the 95 percent tail of a Gaussian distribution. In other
words, under a Gaussian distribution of total requests with
empirical mean and variance as above, the figure shows the
value of r such that P(N;(t—7.t)/7 <r)=0.95. Fig. 3b
shows the envelope normalized to the interval length so
that the y-axis is a rate.

For example, in Fig. 3a, the point (100 msec, 17) on the
curve indicates that 17 consecutive requests arrive within
100 msec 95 percent of the time. This corresponds to a rate
of 170 requests per second over the same interval length
which is depicted in Fig. 3b. Thus, the figure shows that
over short interval lengths, significantly more requests than
the mean 100 per second (as can be seen from the rate to
which the curve in Fig. 3b converges) can arrive. Such
characteristics of the request workload are a key input to
admission control.

4.2 Measurement-Based Service Envelopes

Here, we define and show how to adaptively measure a
class’ service envelope. Analogous to the above request
envelope, it describes the service latencies of consecutive
requests which simultaneously compete for system re-
sources, characterizing the variance and temporal correla-
tion of services. In particular, we measure this envelope by
monitoring the service latencies of requests as a function of
the number of concurrent requests. For example, let /& be the
number of consecutive requests in consideration. For k = 1,
the service envelope consists of the mean and variance of
the time required to service a single request. For = 2, the
envelope characterizes the mean and variance of the time

4. The variance is the sum of variances over intervals of length 7. The
variance for any interval is given by the square of difference between the
sample point and the mean value.
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Fig. 3. 95 percentile request envelopes. (a) Cumulative envelope and (b) Rate envelope.

required to service two requests that are concurrently
competing for system resources. That is, if the jth request
enters the system before the (j — 1)th request is serviced,
then (s/ — a/ ') represents the total time required to service
the two requests.’

Thus, in general, we describe the service of class i by
d; (k) and 47 (k) which are the mean and variance of the time
to service k overlapping requests. Denoting //(k) as
indicator of whether request j overlaps with % (where
k > 2) requests such that

P J+m J+m+1 i .«
Bi(k) = 1 s >ALL/ ,0<m<k—2 (7)
0 otherwise,

then the mean latency to service £ concurrent requests is
given by"

S BRIE - T < 5 < 1)
BRI -T < s] <t)

(8)

Notice that d;(1) =d; as in (2). Similarly, the service
variance to serve k concurrent requests is given by

@k B —T < s < t)

k) == (X, Bkt —T < sl <t))—1 - )

Fig. 4 depicts an example service envelope from the
simulation experiments of Section 7. Analogous to Fig. 3, it
depicts the number of concurrent requests serviced as a
function of the the latency incurred. The key property of the
figure is its convexity so that, for example, the time required
to service n requests is far less than n times the time
required to service one request. This is due to the effects of
caching (requests for the same document within close
temporal proximity experience significantly smaller laten-
cies) and, more generally, the server’s ability to efficiently
service concurrent requests.

5. Note that if the jth request enters the system after the (j — 1)th request
is serviced, then this duration reflects the two request’s interarrival time
rather than the time to service two requests.

6. This equation is valid only if /(%) is not equal to zero.

5 MuLTicLASS ADMISSION CONTROL

In this section, we build on the previous admission control
model and introduce the Latency-Targeted Multiclass
Admission Control (LMAC) algorithm. The goal is to
provide a strong service model for Web classes that controls
statistical latency targets of multiple service classes. The
LMAC algorithm has two key distinctions from the baseline
scheme of Section 3. First, we use envelopes as a general
way of describing a class’ service and demand. As for the
baseline scheme, this is a high-level workload and service
characterization, yet, unlike the baseline scheme, envelopes
capture effects of temporal correlation and high variability
in requests and service latencies. Second, exploiting the
interclass theory of [19], we show how the performance
effects of one class on another can be incorporated into
admission control decisions.

5.1 Sketch LMAC Algorithm

The LMAC test is invoked upon arrival of a new session or
request in class  which will increase the request rate from

TABLE 1

Notation
a,{ arrival time of admitted request j in class ¢
s service time of request j in class ¢
d; mean delay of class 7 requests
A mean arrival rate of admitted class ¢ requests
i mean service rate of class ¢ requests
d; class 7 target delay
€ class 2 delay-violation probability
o2(r) | variance of class 7 requests over durations 7
d;(k) | mean class 7 latency for k concurrent requests
~2(k) | variance of class 7 latency for k£ concurrent requests
T measurement window
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Fig. 4. Service envelope.

its current value A, to A} > \,. The LMAC test consists of
two parts: the first ensures class i’s delay target is satisfied
and the second ensures that other classes will not suffer QoS
violations due to the increased workload of class i. We
illustrate the test pictorially using Fig. 3 and Fig. 4.

For class i itself, with a statistical characterization of both
requests and service, maintaining a maximum horizontal
distance of d; between the two curves ensures that the delay
target is satisfied with probability ¢ (see [19], [15] for
further details). With an increase in );, class i itself increases
its request rate yet retains its previous service level. Hence,
the latency target is satisfied if the two curves remain d;
apart after an increase of (\. — \;)7 in the request envelope.

For classes | # i, we must also consider the performance
effects of class i on class I’s delay targets. Our approach is to
bound the effects of the incremental load resulting from the
arrival of the new request. Specifically, by an upper bound
on class I’s new latency, we ensure that class : does not force
class [ into QoS violations. Moreover, by applying this
bound only to the incremental” load the performance penalty
for this worst-case approach is mitigated. This is true as we
expect the load currently being serviced by the server to be
large as compared with the load currently under service. In
other words, class [’s current service measurements
incorporate the effects of class i’s load ), so that only X, —
A; is included in the bound. The bound is obtained by
considering that the incremental requests \; — \; have strict
priority over class [ sessions. Under this worst-case
scenario, class [’s workload remains the same yet its service
over intervals of length 7 is decreased by (7 + d/)(\ — \;).”
Hence, the new request can be admitted if each class [ # :
can satisfy its d;, even under a reduction in service by
(T+d)N = N).

We make three observations about the LMAC test. First,
each class’ service envelope captures the gains from
interclass resource sharing. For example, if class ¢ can
exploit unused capacity from an idle or lower priority class
[, class ¢ measures a correspondingly larger service
envelope. Similarly, if the server has complete isolation of

7. The new session/request being considered for admission.

8. This follows from the fact that if the incremental load has static
priority over class [ sessions, then the incremental load gets service before
any of class ’s sessions.
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classes (e.g., via separate back-end nodes in the extreme
case), then no such gains will be available and the algorithm
will correctly limit admissions to reflect this. Second, the
algorithm also ensures class performance isolation, i.e., that
admissions in one class do not cause violations in another
class, by incorporating the effects of interclass interference.
Finally, we note that, while LMAC attempts to maximize
the utilization of the Web server subject to the
QoS constraints independent of the server architecture,
QoS functionality in the server itself remains critical. For
example, if a Web server provides no QoS support and no
class differentiation, LMAC infers that only a single service
can truly be provided, and restricts admissions to satisfy the
most stringent class requirements. Alternatively, when
QoS mechanisms are deployed in the Web server [2], [3],
the resulting efficiency gains are in turn exploited by the
LMAC algorithm, which increases the number of admitted
sessions in each class and hence the overall system
utilization.

6 SIMULATION SCENARIO

Our simulation scenario consists of a prototype implementa-
tion of the LMAC algorithm builtinto the simulator described
in [18], which was developed to approximate the behavior of
OS management for CPU, memory, and caching/disk
storage. The front end node has a listen queue in which all
incoming requests are queued before being serviced. Each
back-end node consists of a CPU and locally attached disk(s)
with separate queues for each. In addition, each node
maintains its own main memory cache of configurable size
and replacement policy.

Upon arrival, each request is queued onto the listen queue
or dropped if the listen queue is full. Processing a request
requires the following steps: dequeuing from the listen
queue, connection establishment, disk reads (if needed), data
transmission, and, finally, connection tear down. The proces-
sing occurs as a sequence of CPU and I/O bursts. The CPU
and I/Obursts of different requests can be overlapped but the
individual processing steps for each request must be
performed in sequence. Also, data transmission immediately
follows disk read for each block.

We have used the same costs for basic request processing
as in [18]. The numbers were derived by performing
measurements on a 300 MHz Pentium II machine running
FreeBSD 2.2.5 and an aggressive experimental server.

Connection establishment and tear down costs are set to
145 ps of CPU time each. Transmit processing costs are 40 /s
of CPU time per 512 bytes. Reading a file from the disk
requires a latency of 28 ms for two seeks plus rotational
latency followed by a transfer time of 410 ;s per four KByte
(resulting in a peak transfer rate of 10 MBytes/sec). A file
larger than 44 KBytes is charged an additional latency of 14 ms
(one seek plus rotational latency) for every 44 KByte block
length in excess of 44 KBytes. The cache replacement policy is
Greedy-Dual-Size [8]. To incorporate cache behavior, we
deliberately set the cache size in our simulation to be 32 MB.
The small cache size effectively compensates for the relatively
small data set of our traces since only a subset of requested
files can now be cached.
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The input to the simulator are streams of tokenized
requests, one stream for each user class. Requests within a
user class arrive with a user-defined mean rate. Each request
represents a file (and the corresponding file size in bytes). We
generate the arrival stream from logs collected from real Web
servers.

The latency experienced by a request is the delay from the
time the request arrives at the listen queue until the time when
that connection is torn down. The time taken to make
admission control decisions are assumed to be negligible.
This does notimply that we completely ignore the effect of the
server time spent in processing eventually rejected requests.
In fact, as can be seen from Fig. 1, all admission control
decisions are made after the server dequeues a request from
the listen queue. Thus, any rejected requests have used up
some of the resources of the server (namely, the time spent in
the finite sized listen queue). We ignore the actual processing
time spent while making the admission control decision.
Also, while calculating the arrival envelope we assume the
incoming request is of the average size. Once accepted, the
service time of the request is a function of its size which is
taken into account while calculating the service envelope.

6.1 Web Server Traces

The input to the simulator is derived from Web server logs of
two Web servers, 1) the Web server of the Computer Science
Department at Rice University and 2) the Web server for the
1998 World Cup Soccer [1]. The Rice University trace contains
requests for 26,947 unique files with a data set of 918 MB and
an average request size of 28 KB. The trace does not contain
the request arrival times. For simplicity, we simulate
interarrival times as exponential. We vary the load on the
server (in terms of average reqs/sec) by varying the
interarrival times of the requests, keeping the arrival
distribution exponential.

The other trace used as input to the simulator is a subset of
the trace derived from the 1998 World Cup Soccer web server.
The trace contains requests for 5,200 unique files with a data
set of approximately 91 MB and an average request size of
seven KB. To vary the load upon the server and also to reduce
experimental runtime, we modified the request time stamps
in the original trace in such a way that the load was scaled by
different factors, thus, keeping the order of the requests and
the relative interarrival times between different requests the
same.” While deriving the trace for our experimental
investigations, we ignored the requests with HTTP method
HEAD and POST. POST requests represent CGI requests and
as we have no way of duplicating the processing time
involved, we ignore these requests. The POST and HEAD
requests constituted approximately 0.55 percent of all
requests.

7 EXPERIMENTAL INVESTIGATIONS

In this section, we describe the experiments performed to
investigate the performance of the LMAC algorithm. The first
experiment was performed to demonstrate LMAC’s cap-
ability to actually protect the server from overload. In

9. Note that, the scaling does not change the distribution of the arrival
process, only the mean and variance.
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Fig. 5. 95 percentile latency versus load for Rice University computer
science trace.

particular, without admission control, as the load offered to
aserver is increased beyond the server’s capacity, the request
latencies become excessive. Admission control provides
protection from overload by monitoring the utilization of
the server and blocking requests which will yield unaccep-
table performance.

7.1 Overload Protection

To demonstrate the overload protection capabilities of the
LMAC algorithm, we simulate various offered loads to the
Web server, keeping the targeted request latencies to be the
same. The trace used was the Rice University Computer
Science Departmental trace. We compare the performance
of LMAC with a Web server without admission control
capabilities and measure the 95 percentile delay in both
cases. Fig. 5 shows the results for a targeted delay of
one second. As depicted in the figure, latencies in the
unmodified server increase without bound as the load is
increased. On the other hand, the LMAC algorithm blocks
requests to meet the delay constraint and thus protects the
web server from overload. In addition to overload protec-
tion, the figure indicates that LMAC controls latencies to
within a small error of the target.

7.2 Accuracy

For the second experiment, we compare the performance of
LMAC with the queuing theoretic baseline approach of
Section 3. (We do not compare with admission control
schemes from the literature as none have latency targets.)
Fig. 6 shows the measured throughput versus 95 percentile
delay for an offered load of 200 requests/sec, for the Rice
University computer science trace. The server is a stand
alone server with all incoming requests belonging to a
single user class. The Baseline and the LMAC curves depict
the throughput obtained when targeting 95 percentile delay
values of 0.25, 0.5, 1, 1.25, 1.5, 1.75, 2, and 2.5 seconds. The
Simulation curve depicts the measured value of 95 percen-
tile delay and measured value of throughput when
targeting the 95 percentile delay values as given above.'’

10. Note that, for any given targeted value of 95 percentile delay, both
the baseline and the LMAC scheme achieve different values of 95 percentile
delay at different throughput values.
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Both the LMAC algorithm and the baseline approach
meet the latency targets, yet the baseline scheme blocks an
excessive number of requests thereby unnecessarily re-
stricting throughput. The low utilization level of the
baseline approach can be explained by the fact that the
assumption of independent and exponentially distributed
service and arrival times does not take into account the
inherent variability introduced by Web traces and the Web
server itself. For example, back-to-back requests for the
same document result in lower delays for subsequent
requests (since the document will reside in cache), yet the
baseline approach does not exploit this correlation when
performing admission control. On the other hand, the
LMAC algorithm incorporates temporal correlation and
variance properties of requests and services and achieves a
correspondingly higher throughput. Regardless, LMAC is
still somewhat conservative. For example, for a targeted
95 percentile latency of one second, a 95 percentile latency
of 0.76 seconds is measured (the Simulation curve in Fig. 6)
at a throughput of 141 reqs/sec. This means that when we
perform simulations targeting a 95 percentile latency of one
second, actual measurements give a 95 percentile latency of
approximately 0.76 seconds, by blocking some of the
incoming requests. But, LMAC could have allowed a larger
number of requests into the system while still maintaining
the targeted latency value. This is illustrated by the fact that
for the Simulation curve in Fig. 6, the 95 percentile latency
value of one second occurs at a sustainable throughput of
147 reqs/sec. Nevertheless LMAC does manage to meet
latency targets with a utilization significantly higher than
that of the baseline case.

Fig. 7 shows the results of a similar set of experiments
with the input trace being the trace derived from the World
Cup Soccer trace. The offered load on the server in this case
is 400 reqs/sec while targeting 95 percentile delay values of
0.75, 1.0, 1.25, 1.50, 1.75, 2.0, and 2.5 seconds. From the
figure, we observe that LMAC again satisfies the QoS targets
and outperforms the baseline scheme. However, LMAC is
more conservative than with the previous trace as indicated
by the larger distance between the curves titled Simulation
and LMAC. This difference arises from a number of aspects
in the workloads such as the number of files, mean file size,
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Fig. 7. Throughput versus 95 percentile latency for the World Cup
Soccer trace.

request interarrival times, and request distribution (which
impacts caching).

7.3 Multiclass Experiments

To investigate the performance of LMAC in a multiclass
environment, we simulate a two-class scenario by randomly
classifying incoming requests as belonging to one of the two
classes, with each class having a different arrival rate and
latency target.

An important point to note here is that a Web server
without QoS capabilities would only be able to provide a
single level of service. Hence, if two differentiated classes
are targeted by admission control, the resulting request
latencies will be those of the class with the minimum
targeted latency; indeed, this behavior was confirmed by
our experiments with the simulator.

In order to explore a true multiclass scenario, we devise
an artificial resource isolation policy. We consider a server
with two back-end nodes and a front-end policy in which
the scheme of [18] is modified so that class 1 requests can be
directed to either back-end node but all class 2 requests are
directed only to one particular back end node. Thus, class 1
receives a minimum of one node’s resources yet is able to
exploit unused resources of node 2, whereas class 2 receives
a maximum of one node’s resources. While further class
differentiation can be provided by additional QoS server
mechanisms described in Section 1, this scenario allows a
basic exploration of multiclass issues.

We perform two experiments. First, we perform simula-
tions with complete isolation of the two classes (all class 1
jobs are directed to node one and all class 2 jobs are directed
to node 2) so that there is no interclass resource sharing.
Next, we perform the experiment as described above so that
class 1 exploits interclass resource sharing. The results of
the experiments are shown in . The input trace used
for the results shown in was the Rice computer
Science trace. We obtained similar results with the World
Cup soccer trace.

The request rate for class 1 is 300 reqs/sec with a delay
target of 0.5 seconds and for class two the request rate is
200 reqs/sec with a delay target of one second. Observe
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TABLE 2
Multiclass Performance of LMAC for the Rice Computer Science Trace

Class Isolation Multi-class with Sharing
Throughput (reqs/sec) | Delay (95 percentile) | Throughput (reqs/sec) | Delay (95 percentile)
1 147 467 141 .501
2 92 912 145 935

from that when isolated, both classes meet their
delay targets at different throughput values, as obtained by
the LMAC algorithm. More importantly, when the back-end
nodes perform load balancing, the system itself is providing
interclass resource sharing and the LMAC algorithm
exploits these gains. Specifically, with the above load-
balancing scheme, class two’s throughput increases sig-
nificantly while both classes” delay targets remain satisfied
leading to a net higher level of server utilization. Thus, as
described in Section 5, LMAC can satisfy an arbitrary set of
class QoS targets, yet its efficiency in doing so relies in the
QoS functionality of the server itself. Regardless, the goal of
LMAC is to maximally utilize system resources, given
whatever QoS targets are required, and whatever server
QoS mechanisms are present.

8 CONCLUSIONS

In this paper, we developed a scheme termed Latency-
targeted Multiclass Admission Control (LMAC). The
algorithm uses measurements of requests and service
latencies to control each class’ quality-of-service. By
abstracting system resources into a high-level virtual server
rather than modeling the intricate interactions of low-level
system resources, our approach can be applied to off-the-
shelf servers enhanced with monitoring and admission
control. Moreover, as QoS and performance functionalities
are added to servers, e.g., class-based request scheduling,
operating systems enhanced with quality-of-service me-
chanisms, or locality aware load balancing, we have shown
that the LMAC algorithm exploits these features and
realizes a corresponding increase in utilization to various
service classes.

In future work, we plan to experiment with additional
traces. Further, since dynamic content is becoming a major
component in Web server workloads, we plan to extend
LMAC to take into account dynamic content. We also plan
to investigate the performance of LMAC in presence of
persistent connections. We are also investigating the
performance of LMAC and similar measurement-based
admission control approaches in large-scale Internet Data
Centers (IDC) [20].
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