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Abstract— Networks that support multiple services through “link-
sharing” must address the fundamental conflicting requirement between
isolation among service classes to satisfy each class’ quality of service re-
quirements, and statisticalsharingof resources for efficient network utiliza-
tion. While a number of service disciplines have been devised which provide
mechanisms to both isolate flows and fairly share excess capacity, admis-
sion control algorithms are needed which exploit the effects of inter-class
resource sharing. In this paper, we develop a framework of using statistical
service envelopesto study inter-class statistical resource sharing. We show
how this service envelope enables a class to over-book resources beyond its
deterministically guaranteed capacity by statistically characterizing the ex-
cess service available due to fluctuating demands of other service classes.
We apply our techniques to several multi-class schedulers,including Gen-
eralized Processor Sharing, and design new admission control algorithms
for multi-class link-sharing environments. We quantify the utilization gains
of our approach with a set of experiments using long traces ofcompressed
video.

I. I NTRODUCTION

Future integrated services networks will support heteroge-
neous Quality of Service (QoS) specifications and traffic de-
mands. For example, a deterministic service [1] uses worst-
case resource allocation to support applications requiring packet
delivery without losses or delay bound violations; a statistical
service [2] achieves a statistical multiplexing gain and provides
statistical QoS guarantees with controlled “over-booking” of re-
sources; a measurement-based service [3] supports QoS by bas-
ing admission control decisions on empirical observations of ag-
gregate traffic behavior; best-effort services support applications
with less stringent QoS requirements such as bulk data transfer.
With appropriate admission control and traffic scheduling, these
services and others can co-exist in a single network, as admis-
sion control limits the number of admitted traffic flows to ensure
that each class’ QoS requirements are met, and packet sched-
ulers ensure that packets are assigned the priority levels needed
to meet their QoS objectives.

In a link sharing environment as outlined in [4], traffic class
k is allocated capacityc

k

such that whenever packets from class
k are backlogged, the class receives service at a rate of at least
c

k

. If classk is not backlogged, then classk’s unused capacity
is distributed fairly among backlogged sessions. Consequently,
classes can be assured to meet their respective QoS require-
ments, regardless of the behavior of other traffic classes, allow-
ing any number of services to co-exist in the network.

In the literature, a number of service disciplines have been de-
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signed to support such link sharing objectives [4], [5], [6]. For
example, [5] develops a class of Hierarchical Packet Fair Queue-
ing algorithms focusing on an algorithm’s fairness, complex-
ity, and ability to provide low end-to-end deterministic delay
bounds. While scheduling algorithms for efficiently and fairly
allocating excess capacity to backlogged classes are an impor-
tant aspect of a link-sharing network, an admission control pol-
icy that enables one class of traffic to quantify the improved QoS
it will receive due to capacity unused by other classes has not
been addressed.

In addition to service disciplines, a number of admission con-
trol algorithms have also been designed both for deterministic
services which do not exploit statistical resource sharing [7],
[8], as well as statistical [2], [9], [10], [11], [12], [13] and
measurement-based services [3] which do. However, such ad-
mission control algorithms consider traffic classes in isolation,
and while a statistical multiplexing gain is achievedwithin a par-
ticular traffic class,inter-classresource sharing is not addressed.
In particular, [10], [13] study statistical service for Generalized
Processor Sharing (GPS) [8], and while the “isolation” property
of GPS is exploited, inter-class statistical resource sharing is not
addressed. Moreover, while [12] allows video on demand sys-
tems to exploit statistical gains from real time traffic flows, it
does not address general link sharing environments.

In this paper, we address the problem of inter-class statistical
resource sharing. Our key technique is to develop a framework
of statistical service envelopesto study the problem. Inspired
by [7], [14], we define a statistical service envelope as a prob-
abilistic description of the service available to a traffic class as
a function of interval length. We use this service envelope to
characterize the additional capacity available to a traffic class
beyond the minimum deterministically guaranteed capacity set
aside by the link sharing rules. In this way, we statistically cap-
ture the fluctuating excess capacity left unused by one traffic
class so that another class may exploit an inter-class statistical
multiplexing gain and potentially admit additional traffic flows
that would not otherwise have been deemed admissible. Thus,
we use the statistical service envelope as a tool for overbooking
inter-class resources in a controlled manner, so that a class can
probabilistically quantify the additional resources available in a
link sharing environment.

We apply this framework of statistical service envelopes to
two multi-class service disciplines, namely, Static Priority (SP)
and link-sharing GPS [4], [5]. We show that while the concept
of a statistical service envelope was implicitly used in previous



studies of SP [11], explicitly computing the service envelope of
other traffic classes provides a simpler analysis and allows us to
uniformly treat deterministic and statistical service classes.

For GPS, we conceptually partition traffic classes intoisola-
tion classes andsharingclasses depending on whether or not the
traffic class will exploit the effects of inter-class resource shar-
ing in making admission control decisions. For example, a de-
terministic service is an isolation class as excess capacity from
other traffic classes is not guaranteed in the worst case and hence
a statistical envelope of excess capacity cannot improve this
class’ admissible region. We then bound the service received
by a traffic class with anarbitrary partition of the classes, and
show that the above partition into isolation and sharing classes
can tightly approximate the statistical service envelope obtained
by the sharing classes. In this way, eachsharingclass can char-
acterize the capacity available beyond its guaranteed rate, in-
corporating the relative weights and traffic demands of all other
traffic classes, and improving the class’ admissible region.

We illustrate the potential utilization gains of our inter-class
resource sharing scheme with a set of trace-driven simulation
experiments using long traces of MPEG-compressed video. As
an illustrative example with a 45 Mbps link supporting equally
weighted deterministic and statistical service classes with the
GPS service discipline, we find that the average utilization of
the link can be improved from 47.7% to 84.6% by using the
statistical service envelope to characterize the excess capacity
of the deterministic class.

II. STATISTICAL SERVICE ENVELOPES:
THEORY AND APPLICATIONS

In this section, we definestatistical service envelopesand de-
velop their applications to inter-class resource sharing. In partic-
ular, we first study the delay distribution for a single class using
statistical traffic envelopes and deterministic service envelopes.
Next, we extend this analysis to include statistical traffic en-
velopes andstatisticalservice envelopes. Finally, we illustrate
the application of statistical service envelopes by deriving ad-
mission control tests for SP schedulers using this theory.

A. Single Class Queueing Model

Throughout this paper, we model a multiplexer by a discrete-
time infinite buffer queue in which fluid flows into and out of the
buffer only at discrete intervals. For traffic classi, letX i

k

denote
its aggregate arrivals in time slotk, and letX i

j;k

denote the total

arrivals between slotsj andk, such thatX i

j;k

=

P

k

t=j

X

i

t

. Let
Y

i

k

represent the amount of fluid served for traffic classi in time
slot k, and denoteY i

j;k

as the total fluid served between time

slotsj andk, such thatY i

j;k

=

P

k

t=j

Y

i

t

.

DenotingQi

k

as the backlog of traffic classi at the end of time
slotk,Qi

k

is obtained from the Lindley recursion as,

Q

i

k

= max

j�k

fX

i

j;k

� Y

i

j;k

g (1)

where the maximum will be reached atj if Qi

j�1

= 0.

B. Deterministic Service Envelopes

Deterministic service is studied in [7] usingdeterministicser-
vice envelopes anddeterministictraffic envelopes. Here, we first
study statistical service withstatisticaltraffic envelopes andde-
terministicservice envelopes, and later focus onstatisticalser-
vice envelopes. First, we formally define both deterministic and
statistical traffic envelopes and service envelopes. We refer to
an interval[j; k] as classi’s backlogged intervalif Qi

m

> 0, for
m = j; � � � ; k.

Definition 1(Available Service) For given input process
X

m

j;k

of all traffic classes excepti, we define the available ser-

vice eY i

j;k

as the output of theith class in the interval[j; k] given

a minimally backlogging input processeX i

j;k

, which is defined
as the minimal classi input such that classi is continuously
backlogged throughout interval[j; k].

Note that available serviceeY i

j;k

is a function of the scheduling
mechanism and input processXm

j;k

,m 6= i, and it is independent
to the input process in classi; whereas theactualoutput process
Y

i

j;k

is decided byall classes’ inputs. By using this notation
of available service, we decouple the impact of classi’s input
on Y i

j;k

, and makeeY i

j;k

a pure description of available network
resources, separate from the traffic that is actually sent.

Definition 2(Deterministic Service Envelope)1 A non-de-
creasing non-negative functionsi(t) is a deterministic service
envelope of traffic classi, if for any interval[j + 1; j + t], the
available service satisfies2

e

Y

i

j+1;j+t

� s

i

(t):

To illustrate the concept of a deterministic service envelope, note
that for a FCFS server with capacityC, eY

j+1;j+t

= s(t) = Ct.
In a GPS server, a service class with guaranteed rateg

i, satisfies
e

Y

i

j+1;j+t

� s

i

(t) = g

i

t:

Definition 3(Deterministic Traffic Envelope) [15] A non-
decreasing non-negative functionbi(t) is a deterministic traffic
envelope of classi, if for any interval[j + 1; j + t], the input
traffic satisfies

X

i

j+1;j+t

� b

i

(t):

Definition 4(Statistical Traffic Envelope) [2] A sequence of
random variablesBi

(t) is a statistical traffic envelope of classi,
if for any interval[j + 1; j + t], the input traffic satisfies

X

i

j+1;j+t

�

st

B

i

(t):

where X i

j+1;j+t

�

st

B

i

(t) (stochastic inequality) denotes
P [X

i

j+1;j+t

> z] � P [B

i

(t) > z] for all z:
DenotingDi

k

as the virtual delay experienced by a bit arriv-
ing at time slotk, the key QoS metric that we consider is the
probability of delay bound violation,P [Di

> d

0

]. As long as

lim

t!1

EX

i

1;t

t

< lim

t!1

s

i

(t)

t

1This definition is a slight generalization of the one in [7].
2With abuse of notation,Y � c for a constantc denotesP (Y � c) = 1.



(the stability condition), andX i

k

is stationary and ergodic,
P [D

i

k

> d

0

] converges to a steady state tail probabilityP [D

i

>

d

0

].

D
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Fig. 1. Delay and Buffer Occupancy

Figure 1 shows the delay and buffer occupancy in terms of
X

1;k

andY
1;k

if the buffer is initially empty. The virtual delay
D

k

is defined as [7]

D

k

= min f� : � � 0 andX
1;k

� Y

1;k+�

g: (2)

Lemma 1:For a delay boundd
0

, the event of delay bound
violation in classi at time slotk satisfies

fD

i

k

> d

0

g � fmax

j�k

fX

i

j;k

�

e

Y

i

j;k+d

0

g > 0g: (3)

Proof. By definition

fD

i

k

> d

0

g � fX

i

1;k

� Y

i

1;k+d

0

> 0g

= fmax

j�k

fX

i

j;k

� Y

i

j;k+d

0

g > 0g:

Observe that ifmax

j�k

fX

i

j;k

� Y

i

j;k+d

0

g > 0, then

max

j�k

fX

i

j;k

�

e

Y

i

j;k+d

0

g > 0. This is because if
max

j�k

fX

i

j;k

� Y

i

j;k+d

0

g > 0, there must exist an

s = maxfj : j < k andQi

j

= 0g

such that

max

j�k

fX

i

j;k

� Y

i

j;k+d

0

g = X

i

s+1;k

� Y

i

s+1;k+d

0

;

[s+ 1; k + d

0

] is a backlogged interval of classi, and

e

Y

i

s+1;k+d

0

� Y

i

s+1;k+d

0

;

sinceeY i

s+1;k+d

0

is the minimum backlogged service. Thus

fD

i

k

> d

0

g � fmax

j�k

fX

i

j;k

�

e

Y

i

j;k+d

0

g > 0g: 2

Theorem 1:For a service classi, with deterministic service
envelopesi(t) and statistical traffic envelopeBi

(t), the tail
probability ofP [Di

> d

0

] is given by

P [D

i

> d

0

] � P [max

t�0

fB

i

(t)� s

i

(t+ d

0

)g > 0]: (4)

Proof. P [Di

k

> d

0

] converges toP [Di

> d

0

]. From Equation
(3),

P [D

i

k

> d

0

] = P [max

j�k

fX

i

j;k

�

e

Y

i

j;k+d

0

g > 0]: (5)

From Definition 4 and Definition 2,

max

j�k

fX

i

j;k

�

e

Y

i

j;k+d

0

g

�

st

max

j�k

fB

i

(k � j + 1)� s

i

(k + d

0

� j + 1)g

such that

P [max

j�k

fX

i

j;k

�

e

Y

i

j;k+d

0

g > 0]

� P [max

t

fB

i

(t)� s

i

(t+ d

0

)g > 0]: 2

C. Statistical Service Envelopes

Theorem 1 enables us to exploit the statistical multiplexing
gain of flows within a service class. While the deterministic
service envelopesi(t) provides isolation among service classes
and simplifies admission control, it precludes statistical inter-
class resource sharing. In multi-class schedulers such as SP and
GPS, the utilization gains available from exploiting inter-class
resource sharing can be significant. Next we introduce a statis-
tical service envelope to study the inter-class resource sharing
problem, and develop new theory to calculate the delay bound
violation probability using statistical service envelopes.

In a multi-class server, the available service for classi, eY i

j;k

, is
a function of the input traffic in other classes, and of the partic-
ular service discipline which specifies how to schedule services
among competing classes. The interference among classes is
reflected ineY i

j;k

, and in some cases, it is possible that the avail-
able service is far greater than the minimally guaranteed service,
i.e., eY i

j;k

� s

i

(k � j + 1). Thus we define a statistical service
envelope to describe the available service beyond the determin-
istically guaranteedsi(t).

Definition 5(Statistical Service Envelope) A sequence of ran-
dom variablesSi(t) is a statistical service envelope of traffic in
classi, if for any interval[j + 1; j + t], the available service
satisfies

e

Y

i

j+1;j+t

�

st

S

i

(t):

Notice that while a deterministic service envelopes

i

(t) de-
scribes the service of a class in isolation, the statistical service
envelopeSi(t) describes inter-class resource sharing. We em-
ploy Si(t) in the delay distribution calculation with the follow-
ing theorem.

Theorem 2:For a service classi, with statistical service en-
velopeSi(t) and statistical traffic envelopeBi

(t), the tail prob-
ability of P [Di

> d

0

] is given by

P [D

i

> d

0

] � P [max

t�0

fB

i

(t)� S

i

(t+ d

0

)g > 0]: (6)



Proof. From Equation (5),

P [D

i

k

> d

0

] = P [max

j�k

fX

i

j;k

�

e

Y

i

j;k+d

0

g > 0]: (7)

From Definition 4 and Definition 5,

max

j�k

fX

i

j;k

�

e

Y

i

j;k+d

0

g

�

st

max

j�k

fB

i

(k � j + 1)� S

i

(k + d

0

� j + 1)g

so that

P [max

j�k

fX

i

j;k

�

e

Y

i

j;k+d

0

g > 0]

� P [max

t

fB

i

(t)� S

i

(t+ d

0

)g > 0]: 2

Below we employ Theorem 2 to devise admission control al-
gorithms for multi-class servers that exploit inter-class statistical
resource sharing.

D. Static Priority

Admission control for static priority schedulers was studied
in [11], [16], here we approach the problem using service en-
velopes.

Consider an SP scheduler with N priority queues, link speed
C, and the aggregate traffic in classi bounded byBi

(t) and
b

i

(t), with i = 1; : : : ; N denoting the priority level from higher
priority to lower priority. The statistical service envelope for
classi is

S

i

(t) = (Ct�

i�1

X

j=1

B

j

(t))

+ (8)

The deterministic service envelope for classi is

s

i

(t) = (Ct�

i�1

X

j=1

b

j

(t))

+ (9)

wherebi(t) =

P

j2C

i

b

j

(t); B

i

(t) =

P

j2C

i

B

j

(t); andb
j

(t)

andB
j

(t) are the statistical and deterministic envelopes of the
jth flow in classi.

Lemma 2:Consider an SP scheduler with N priority queues
and link speedC. For each service class, traffic is bounded
by Bi

(t) andbi(t), with QoS parameters(di; P i

), wheredi is
the delay bound, andP i is the delay bound violation proba-
bility. The QoS for all service classes in this multi-service SP
scheduler is satisfied if for all deterministic service classes with
P

i

= 0,

max

t

fb

i

(t) +

i�1

X

k=1

b

k

(t+ d

i

)� C(t+ d

i

)g � 0

and for all statistical service classes withP i

> 0,

P [max

t

fB

i

(t) +

i�1

X

k=1

B

k

(t+ d

i

)� C(t+ d

i

)g > 0] � P

i

:

Proof. For statistical service classes, Equation (8) gives

B

i

(t)� S

i

(t+ d

i

)

�

st

B

i

(t)� C(t+ d

i

) +

i�1

X

k=1

B

k

(t+ d

i

);

and applying Theorem 2 requiresP [max

t

fB

i

(t)�S

i

(t+d

i

)g >

0] < P

i. Thus, ifP [max

t

fB

i

(t) +

P

i�1

k=1

B

k

(t+ d

i

)� C(t+

d

i

)g > 0] � P

i

; then the statistical service in theith service
class is satisfied. For deterministic service classes, the proof is
similar.2

Note that inter-class interference in an SP scheduler is in a
single direction, only from higher priority classes to lower pri-
ority ones. For GPS, we will see that every class affects every
other class such that the statistical service envelope for one class
becomes a function of the traffic envelopes and relative weights
of all other classes.

III. I NTER-SERVICESRESOURCESHARING IN

L INK -SHARING GPS

In Section II, we developed tools for managing multi-class
services using statistical service envelopes, considering SP as
a specific example. Here we study a link-sharing GPS server,
again using the framework of statistical service envelopes, with
a goal of increasing the total utilization of the multi-class GPS
server by exploiting inter-class resource sharing.

A. Generalized Processor Sharing
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F
lo

w
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Fig. 2. System Model for Admission Control

Figure 2 shows the system model for admission control in
a multi-class GPS scheduler (see [4] for example). There
areN service classes in the system, each allocated a weight
�

i. Each service class provides either deterministic, statisti-
cal, measurement-based, or best-effort services.3 The admission
control algorithm should admit a new flow only if the QoS of all
classes can be satisfied. This multi-class service model can also
support flow-based services, in which some service classes serve
only one flow. Without considering inter-class resource sharing,

3Here, we study multiple deterministic and statistical service classes and leave
study of measurement-based service to future work.



one could view each service class as a FCFS server with capac-
ity g

i, which is the guaranteed service rategi = �

i

P

m

�

m

C; as

defined by the GPS service discipline. However, while exploit-
ing this isolation property of GPS simplifies admission control,
it does not corporate potential utilization gains due to inter-class
statistical sharing.

C

1
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1
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2
tY...

Session  1
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Fig. 3. GPS System

Figure 3 illustrates the GPS system in the view of inputs, out-
puts and buffers. The aggregate traffic in each class is viewed as
a session, and the notation for inputs, outputs and queues are as
defined in Section II.

For1 � i � N , letY i

j;k

be the amount of classi traffic served
during[j; k]. By definition of GPS,

Y

i

j;k

Y

m

j;k

�

�

i

�

m

;m = 1; 2; : : : ; N (10)

for any classi backlogged during[j; k]. Since each class has a
guaranteed rategi whenever it is backlogged, the deterministic
service envelope of classi is si(t) = g

i

t:

B. Statistical Service Envelopes in GPS

Our goal is to calculate the statistical service envelope for
classi which is a lower bound for classi’s available service.
First, we lower bound classi’s service in a backlogged interval
as follows.

We define

�

i

j;k

(A

1

) =

�

i

P

m2A

1

�

m

[C � (k � j + 1)�

X

n2A

2

Y

n

j;k

]; (11)

with theN classes separated into two arbitrary subsets,A

1

and
A

2

, such thatA
1

[ A

2

= f1; � � � ; Ng,A
1

\A

2

is an empty set,
andi 2 A

1

.
From Equation (10), we have

Y

i

j;k

� �

i

j;k

(A

1

) (12)

if classi is backlogged throughout[j; k]. This property enables
us to estimate the backlog service for classi, using�i

j;k

(A

1

)

with an arbitrary partition ofA
1

.
For each interval[j; k] with at least one backlogged class, one

could in principle dynamically partition theN classes into two
subsets: subsetB containing all classes that are continuously

backlogged throughout[j; k], and subsetU containing classes
that arenotcontinuously backlogged throughout[j; k] (although
they may be backlogged for a sub-interval in[j; k]). For any
i 2 B, by definition,

Y

i

j;k

= �

i

j;k

(B): (13)

We also claim that ifA
1

\U is empty set, thenY i

j;k

= �

i

j;k

(A

1

);
otherwiseY i

j;k

� �

i

j;k

(A

1

).
Since the exact distribution of classi’s backlogged service

can be very difficult to compute due to the dynamics of the sets
B andU , we next lower bound the available serviceeY i

j;k

for any
partition.

Lemma 3:The available service for classi in interval [j; k],
e

Y

i

j;k

, always satisfies

e

Y

i

j;k

� �

i

j;k

(A

1

) (14)

for an arbitrary partitionA
1

.
Proof. If classi is backlogged throughout[j; k], then from Equa-
tion (12),eY i

j;k

= Y

i

j;k

� �

i

j;k

(A

1

). If classi is not continuously
backlogged throughout[j; k] with input trafficX i

j;k

, consider

sufficient classi traffic eX i

j;k

, such that classi is backlogged
throughout[j; k], while all Qm

j�1

andXm

j;k

, for m 6= i, remain
the same. The outputs of theN classes will be rearranged ac-
cording to the GPS service discipline and the new inputs, and
will change fromY m

j;k

to Y 0;m
j;k

, for all m = 1; � � � ; N . For the
new outputs, we can again construct two subsets, a backlogged
subsetB0 and an unbacklogged subsetU

0, such that

e

Y

i

j;k

= Y

0;i

j;k

= �

0;i

j;k

(B

0

)

=

�

i

P

m2B

0

�

m

[C � (k � j + 1)�

X

n2U

0

Y

0;n

j;k

]:

For any other partition ofA
1

, eY i

j;k

� �

0;i

j;k

(A

1

). SinceY 0;m
j;k

�

Y

m

j;k

, for m 6= i, �0;i
j;k

(A

1

) � �

i

j;k

(A

1

), thus, we have shown

that eY i

j;k

� �

i

j;k

. 2

Equation (14) enables us to statistically lower boundeY i

j;k

us-
ing the distribution of�i

j;k

(A

1

) with an arbitrary partition of
A

1

3 i,

S

i

(t) =

�

i

P

m2A

1

�

m

[Ct�

X

n2A

2

B

n

out

(t)]; (15)

whereBn

out

(t) is the statistical traffic envelope for the output
traffic Y n

j;k

. By deliberately settingA
1

andA
2

, we can obtain a

tight statistical lower bound foreY i

j;k

. The technique of choosing
A

1

is explored in detail below.

C. Multi-Class Admission Control in GPS

Equation (15) establishes a way to calculate statistical service
envelopes with an arbitrary partition of classes, yet a tight lower
bound is required to fully exploit inter-class resource sharing.
We devise a technique for this purpose as follows.
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Fig. 4. An Isolation/Sharing Model for Admission Control

First, we illustrate an isolation/sharing model for admission
control in Figure 4. In this model, some service classes will
use their deterministic service envelopesi(t) in admission con-
trol. These service classes may support deterministic services,
in which deterministic traffic envelopesbi(t) are used. Or they
may support less aggressive statistical services which do not
wish to exploit spare capacity from other classes. In view of
service envelopes, we refer to these service classes asisolation
classes. Apart from these isolation classes, other service classes
will exploit inter-class resource sharing using their statistical
service envelopeSi(t) to admit an increased number of flows
into the traffic class. We refer to these service classes assharing
classes. Sharing classes cannot support deterministic services,
but can support statistical, measurement-based, and best-effort
services.

Returning to the problem of constructing a tight statistical ser-
vice envelope, from Equation (13), we know that when classi

is backlogged throughout[j; k], if A
1

\ B is an empty set, then
�

i

j;k

(A

1

) =

e

Y

i

j;k

. If we move any unbacklogged class intoA
1

,

then�i

j;k

(A

1

) <

e

Y

i

j;k

. In this sense, we should ensure that all
unbacklogged classes are inA

2

. When classi is not backlogged
throughout[j; k], from Equation (14), we know that if too many
classes are inA

2

, �i

j;k

(A

1

) will be small again. For example, a
greedy best-effort class should never be put intoA

2

.

In order for�i

j;k

to closely approximateeY i

j;k

, we propose par-
titioning all sharing classes intoA

1

, and all isolation classes into
A

2

. We refer to this partition ofA
1

andA
2

as setsS (sharing)
andI (isolation).

Another issue with Equation (15) is that the statistics of the
output traffic,Bn

out

(t) for n 2 A

2

, are difficult to compute, and
the bound in [2],Bn

out

(t) �

st

B

n

in

(t+d

n

), can be quite loose in
practice. Consequently, forn 2 I, we approximateBn

out

(t) by
B

n

in

(t), because for these isolation classes, admission control is
based on the worst case servicesn(t), while the actual service
received is typically higher than the worst case scenario. Conse-
quently, these classes are not backlogged most of the time, and
the distortions of the outputs to inputs are relatively small and
can be neglected, such that we can approximateB

n

out

(t) with the
input traffic envelopesBn

(t). Thus, we propose the following

statistical service envelope for any classi 2 S, 4

S

i

(t) =

�

i

P

m2S

�

m

[Ct�

X

n2I

B

n

(t)]: (16)

We conclude by describing the complete admission control
algorithm for a multi-class GPS server. Each class provides
traffic parametersbi(t) andBi

(t), and QoS parametersdi and
P

i. Each class has a weight�i and guaranteed rategi, with
guaranteed service envelopesi(t) = g

i

t. For deterministic
service classes, ifmax

t

fb

i

(t) � s

i

(t + d

i

)g � 0; then the
deterministic QoS for flows inside classi is guaranteed. For
isolation statistical service classes, ifP [max

t

fB

i

(t) � s

i

(t +

d

i

)g � 0] � P

i

; then the statistical QoS of classi is satis-
fied. Forsharing statistical service classes, the statistical QoS
is satisfied ifP [max

t

fB

i

(t) � s

i

(t + d

i

)g � 0] � P

i

; or if
P [max

t

fB

i

(t) � S

i

(t + d

i

)g � 0] � P

i exists for a statistical
service envelopeSi(t) obtained via any partitionA

1

, A
2

using
Equation (15). For simplicity, we use Equation (16) instead of
testing all partitions ofA

1

andA
2

.

IV. COMPUTATIONAL AND EXPERIMENTAL INVESTIGATION

In Sections II and III, we studied the delay bound violation
probability using statistical traffic and service envelopes for SP
and GPS schedulers. In this section, we address the computa-
tional aspects of these admission control algorithms and perform
trace-driven simulations to quantify the ability of our approach
to exploit inter-class resource sharing. The workload consists of
a set of 30-minute traces of MPEG compressed video from [17].

A. Computing the Delay Tail Probability

To approximate each flow’s traffic descriptorB
j

(t), we use
the rate variance envelopes in [11], where

RV (t) = var

�

X

s;s+t�1

tT

�

;

m = EX=T , and T is the length of the time slot, such
that EfB

j

(t)g = m

j

t and varfB
j

(t)g = t

2

RV

j

(t). When
flows are multiplexed, the aggregate traffic envelope for theith
class approaches a Gaussian envelope withB

i

(t) having mean
P

j2C

i

tm

j

, and variance
P

j2C

i

t

2

RV

j

(t) [11]. In practice,
traffic flows can specify policing parameters, and use [18] to
compute such statistical traffic envelopes from the deterministic
parameters.

To calculateP [max

t

fB(t)�S(t+d

0

)g > 0] in Equation (6)
we utilize the “maximum variance” approximation of [9]. Let

�

2

t

= varfB(t)� S(t+ d

0

)g;

�

t

=

0�EfB(t)� S(t+ d

0

)g

�

t

;

� := inf

t

�

t

:

4For the special case in which all classes are sharing classes, a tighter bound
with alternative partition ofA

1

, A
2

may exist. We leave study of this issue to
future work.



ApproximatingfB(t) � S(t + d

0

)g as Gaussian, under condi-
tions (C1)-(C2) in [9],

P [max

t

fB(t)� S(t+ d

0

)g > 0]

� max

t

P [B(t)� S(t+ d

0

) > 0] = �(�) (17)

and
P [max

t

fB(t)� S(t+ d

0

)g > 0] � e

�

�

2

2 (18)

where�(�) =

1

p

2�

R

1

�

e

�

x

2

2

dx. Proof of these two bounds is
given in [9], and we utilize both in the experiments below.

B. Admissible Regions in Multi-Class GPS

The scenario we consider is a link sharing GPS server with
a total capacity of45 Mbps. Different weights�i are given to
different classes, which require either deterministic or statistical
services. In the experiments, some classes will exploit inter-
class resource sharing, while others will not.

In each experiment, we calculate the admissible region for
each class according to the flows’ traffic characterizations and
QoS requirements using the admission control algorithm de-
scribed in Section III. We then perform trace-driven simula-
tions using a GPS scheduler with each flow having a randomly
shifted initial phase. After the simulation, we measure the uti-
lization and the experimental delay bound violation probability,
and compare the simulation results with the required QoS.

In the first experiment, we consider a GPS server with two
service classes. Class 1 requires deterministic service, with
d

1

= 10 msec, class 2 requires statistical service, withd

2

= 20

msec andP 2

= 10

�4. In the admission control tests, we use
both the lower bound of Equation (17) and the upper bound of
Equation (18) to approximateP [D > d].
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Figure 5 shows the admissible regions for class 1 and 2 under
four different conditions: with and without inter-class sharing
for class 2, and upper and lower bounds forP [D > d]. Notice
the significant increase in the admissible region due to exploit-
ing inter-class resource sharing using our framework of statisti-
cal service envelopes. For example, using the lower bound for
P [D > d] and settingg1 = g

2

= C=2, without inter-class shar-
ing, the admissible region is(7; 31) flows and the total utiliza-

tion is 45:3%. In contrast, with inter-class sharing, the admis-
sible region is(7; 62) flows and the total utilization is82:2%,
an increase of81%. We also observe that the differences in
the admissible regions using the lower and upper bounds are
merely 1 or 2 flows. We next perform trace-driven simulations
and measure the experimental delay bound violation rates using
the admissible region calculated from the “sharing” tests. For
the lower bound, the mean delay bound violation rate for class 2
is 5� 10

�4, while for the upper bound, the mean violation rate
for class 2 is approximately5 � 10

�5. Since the QoS parame-
ter isP 2

= 10

�4, we observe that the actual admissible region
must be between the LB and UB sharing curves, and that the
admissible regions calculated using both bounds are very close
to the true ones.
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Fig. 6. Admissible Regions for a Three-Class GPS Server

In the next experiment, we consider a three-class GPS sched-
uler. Class 1 requires deterministic service withd1 = 20

msec, class 2 requires statistical service withd

2

= 20 msec
andP 2

= 10

�4, and class 3 requires statistical service with
d

3

= 30 msec andP 3

= 10

�4. Class 1 and 2 are isolation
classes. We perform admission tests with and without class 3
exploiting inter-class sharing, and use the lower bound of Equa-
tion (17) to approximateP [D > d]. The admissible region is
shown in Figure 6, which also illustrates the significant utiliza-
tion gain of the approach.

In the above two experiments, the deterministic service class
is exploited by the statistical service class to allow inter-class
sharing. In the next experiment, we show that our approach is
also able to exploit inter-class sharing among statistical service
classes. We consider a three class GPS server with each class
providing statistical services with the same QoS:d = 20 msec
andP = 10

�4. Class 1 and 2 are set to isolation classes. In
Figure 7, we show the difference in the admissible regions by
allowing class 3 to exploit inter-class sharing.

From Figure 7, observe that ignoring inter-class sharing leads
to as many as 8 fewer flows admitted in class 3, for a loss of
approximately10% of the resource utilization. In this scenario,
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the intra-class statistics are fully exploited, and the gain comes
solely from the inter-class statistics. In a high-speed GPS server,
even if each class provides statistical service, when the number
of service classes is large, the inter-class resource sharing gain
can be signficant.

V. CONCLUSIONS

In this paper, we developed multi-class admission control al-
gorithms that exploit inter-class statistical resource sharing. We
developed a framework of statistical service envelopes to study
the problem and showed how such envelopes characterize the
excess capacity available to a traffic class due to varying re-
source demands of other classes. We applied the approach to
Static Priority and Generalized Processor Sharing schedulers
and experimentally demonstrated that our admission control al-
gorithms are able to extract a significant utilization gain from
inter-class resource sharing.
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