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Abstract

This paper demonstrates a new, e�cient, and general ap-

proach for providing end-to-end performance guarantees in

integrated services networks. This is achieved by modeling a

tra�c source with a family of bounding interval-dependent

(BIND) random variables and by using a rate-controlled ser-

vice discipline inside the network. The tra�c model stochas-

tically bounds the number of bits sent over time intervals of

di�erent length. The model captures di�erent source behav-

ior over di�erent time scales by making the bounding distri-

bution an explicit function of the interval length. The ser-

vice discipline, RCSP, has the priority queueing mechanisms

necessary to provide performance guarantees in integrated

services networks. In addition, RCSP provides the means

for e�ciently extending the results from a single switch to a

network of arbitrary topology. These techniques are derived

analytically and then demonstrated with numerical exam-

ples.
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1 Introduction

High speed networking has introduced opportunities for new

applications such as scienti�c visualization, network-based

medical imaging and video conferencing. These applica-

tions have stringent performance requirements in terms of

throughput, delay, delay-jitter and loss rate. The best-e�ort

service provided by the current packet-switching networks is

not adequate and services that support performance guar-

antees are needed.

In [5], two types of guaranteed services are proposed:

deterministic service and statistical service. Deterministic

service provides a guarantee that performance bounds are

met for all packets on a connection even in the worst case.

Though such a service is important for many applications

such as interactive medical imaging applications and high

quality video, deterministic service is expensive since re-

sources must be reserved according to the worst case sce-

nario. With deterministic service, the stochastic properties

of tra�c sources cannot be exploited to achieve a statistical

multiplexing gain. Further, when the sources are bursty or

require small queueing delays, providing deterministic ser-

vice results in low average utilization of the network by the

guaranteed performance tra�c. Alternatively, many appli-

cations such as voice and video conferencing can tolerate cer-

tain losses of data without signi�cantly a�ecting the quality.

Statistical service, in which probabilistic or statistical perfor-

mance bounds are guaranteed, can be used to support these

applications. The advantage of providing statistical service

is that the average utilization of the network by guaranteed

performance tra�c can be increased by exploiting statistical

multiplexing.

There are two important aspects to the problem of pro-

viding guaranteed statistical services: developing probabilis-

tic models to characterize tra�c sources, and developing

techniques to provide end-to-end probabilistic bounds in an

internetwork environment.



In the literature, there have been many models proposed

for video or audio tra�c sources. Among the more popular

ones are the on-o� model for voice sources [3] and more so-

phisticated models based on Markov or other renewal pro-

cesses for video sources [11]. A good survey for the proba-

bilistic models for voice and video sources is presented in [12].

There are two important limitations to such tra�c models.

First, in an integrated services network, tra�c sources are

heterogeneous and will not in general conform to one model.

Further, if a tra�c source does not conform to the analytical

model, no statistical guarantees can be made. Second, the

above models cannot capture varying statistical properties

of a source over time intervals of di�erent length. It is there-

fore important to investigate tra�c models that capture this

interval-length dependent property of tra�c sources.

In [10], Kurose proposed modeling a source with a family

of random variables that stochastically bounds the number

of bits sent over various interval lengths. In this paper, we

extend this model so that the random variable that bounds

the source over an interval of length t is an explicit function

of t. This model can thus be used to characterize interval-

length dependent behavior such as the observation that over

longer intervals, the total number of bits sent by a source

can be bounded by a random variable with expectation very

near the source's long-term average rate, while on a shorter

time scale, the source's bounding random variable must be

weighted more towards the peak rate.

Having a tra�c model for sources only solves part of the

problem. In a networking environment, packets from di�er-

ent connections are multiplexed at each switch. Even if the

tra�c can be characterized at the entrance to the network,

complex interactions among connections will destroy many

properties of the tra�c inside the network, and the tra�c

model at the source may not be applicable inside the net-

work. Thus, even if performance guarantees may be made

for a single switch, it may not be possible to make end-to-end

performance guarantees.

In this paper, we address these two aspects of the prob-

lem by using bounding interval-dependent (BIND) stochas-

tic tra�c models to characterize tra�c sources, and us-

ing rate-controlled service disciplines inside the network to

reconstruct tra�c patterns. By using interval-dependent

stochastic tra�c models and rate-controlled service disci-

plines, we can provide per-connection end-to-end statistical

guarantees on throughput, delay, and delay-jitter in a net-

work of arbitrary topology. The result is quite general. Un-

like most existing solutions which work only in feed-forward

and some restricted classes of feedback networks, our results

hold in arbitrary networks. Also, unlike most existing solu-

tions which assume a constant link delay between switches,

we need only assume a bounded link delay. This is partic-

ularly important in internetworks where switches are con-

nected by subnetworks. The delays of packets traversing

subnetworks can be bounded, but may be variable.

The remainder of this paper is organized as follows. In

Section 2, the bounding interval dependent (BIND) source

model is developed and examples are presented for both dis-

crete and continuous bounding distributions. Section 3 in-

vestigates multiplexing the discrete model of Section 2 for

both homogeneous and heterogeneous sources. In addition,

the switch utilization for various model parameters is in-

vestigated along with other trends involved with providing

statistical performance guarantees to various sources. The

Rate-Controlled Static-Priority (RCSP) scheduler is used to

provide di�erent performance guarantees to di�erent connec-

tions. Finally, in Section 4, the results of Section 3 are ex-

tended to the network to provide end-to-end per-connection

statistical performance guarantees.

2 BIND Model

The issue of modeling network tra�c sources is gaining im-

portance as networks evolve to provide integrated services

and performance guarantees. Source modeling is a prereq-

uisite to providing such services since admission control al-

gorithms inherently require it.

2.1 Stochastic Processes vs. Bounding

The literature contains a wide variety of analysis techniques

that model tra�c sources by some stochastic process, calcu-

late or approximate the aggregate process, and then solve for

quantities in a switch such as the steady-state bu�er distri-

bution. Though these techniques provide valuable insights

to a certain class of problems, such analysis tools are dif-

�cult to extend to integrated services networks since they

often encounter problems such as the following:

� Model �tting - for a given stochastic model of tra�c

(as opposed to a bounding distribution) some sources

will not �t the model. In such a case, no statistical

guarantees can be made.

� Homogeneous tra�c sources - this is not the case in

integrated services networks.

� Aggregate results - need per-connection analysis to

provide di�erent services to di�erent applications.

� Average results - statistical real-time service needs

stronger guarantees than mean results.



� Limiting results - with connections continually being

established and torn down, steady state results may

not be reached quickly enough.

� Single switch analysis - results are often con�ned to a

single switch and cannot be extended to the network

because of the often intractable transformation of a

switch on individual connections.

� No priorities - often, results only hold for single prior-

ity FCFS queueing. Again, B-ISDN will carry a wide

range of tra�c types, not only voice or only data.

Because of such di�culties with traditional stochastic

models, a great deal of attention has been given to analyz-

ing deterministic tra�c models that provide some means of

bounding a source's peak and average bandwidth over an

averaging interval [4, 6, 7]. Such models are not only prac-

tical, but they also result in an analysis that does not su�er

from many of the problems mentioned above. Speci�cally,

these analyses can provide end-to-end per-connection per-

formance bounds in networks with priority queueing service

disciplines. One drawback to such models is that they cannot

characterize many of the statistical properties of the source,

and without additional assumptions, can only be used to pro-

vide deterministic performance bounds, not statistical per-

formance bounds.

Recently, Kurose proposed a general framework for

characterizing tra�c sources [10]. Under such a frame-

work, source j is characterized by a family of two tuples
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is a ran-

dom variable that is stochastically larger than the number

of bits generated over any interval of length t

i

by source

j. A random variable X is said to be stochastically larger

than a random variable Y (denoted X �

st

Y) if and only if

Prob(X > x) � Prob(Y > x) for all x. Instead of model-

ing the exact arrival process of the source, Kurose's model

stochastically bounds the number of transmitted bits in in-

tervals of di�erent length. In [16, 17], a stochastic extension

to Cruz's deterministic model [4] is proposed that provides

end-to-end stochastic bounds. However, this model does not

take into account the interval dependent property considered

in this paper. Moreover, these analyses investigate networks

of work-conserving servers which, as discussed in Section 4,

restricts the results to a certain class of networks.

In [6], a deterministic tra�c model (Xmin;Xave;

I; Smax) is proposed, where Xmin is the minimum packet

interarrival time, Xave is the average packet interarrival

time over an averaging interval I, and Smax is the maxi-

mum packet size. We propose the extension of the Tenet de-

terministic model to a probabilistic model within Kurose's

framework. Further, we extend Kurose's model to make the

bounding random variables explicit functions of the interval

length in order to better characterize the properties of the

source. As motivated above, there are two general require-

ments for the stochastic BIND model:
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The �rst property is stochastic sub-additivity. The second

property requires that the mean bounding rate over smaller

time intervals is greater than the mean bounding rate over

larger time intervals. In the next two subsections, we present

two examples of stochastic bounding models that capture

the interval-dependent property of a source. The example

in 2.2 is a discrete model while the one in 2.3 is a continuous

model. To keep the notation clearer, we will assume for the

remainder of the paper that Smax is �xed and equal to 400

bits and that �

pk

is the peak rate (1=Xmin) and �

av

is the

average rate (1=Xave) both in packets or cells per second.

2.2 Discrete Example

In this section, we introduce a discrete-valued family of ran-

dom variables with a parameterized binomial distribution

to bound the number of packets that can be generated by

a source in intervals of di�erent length. Note that this is

not to say that the underlying random process is binomial,

rather that a binomial random variable is used to bound the

process. By choosing di�erent parameters for each of the

family's random variables, it is possible to bound di�erent

processes with complicated distributions.

For the family of binomial bounding random variables,

let the j

th

source, denoted by S

j

, be described by f(R

t;j

; t) j

t � 0g, where R

t;j

stochastically bounds the total number of

packets that can arrive on connection j during any interval

of length t. Dropping the source j subscript, an individual

source is assumed to be bound by a binomial distribution

with parameters M

t

and p

t

which are given by the following

equations:
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) and 
 � 0 is a client-speci�ed

parameter that controls how rapidly the mean bounding rate

over an interval approaches the long-term average rate �

av

as the interval length gets larger. A larger 
 means that

the speed with which �

av

is approached is faster. This is

illustrated in Figure 1 for I = 133 msec. The �gure shows

the mean bounding rate (E(R

t

)=t = M

t

p

t

=t) vs. interval

length t for various values of 
.
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Figure 1: E�ect of 
 on mean bounding rate

This parameterization extends the Tenet deterministic

model to a stochastic tra�c model within Kurose's frame-

work. Further, the stochastic representation above captures

the interval-dependent behavior of a source such that the

following properties hold:

1. The property in equation (2) is satis�ed since the

mean bounding rate over a longer interval is no more

than the mean bounding rate over a shorter interval.

As well, one can verify that equation (1) is satis�ed.

2. The value of the source's mean bounding rate over

any interval is greater than �

av

, and less than �

pk

,

i.e., �

av

� E(R

t

)=t � �

pk

.

3. If two sources S
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, I, and 
,
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pk;k

, then

E(R

t;j

)

t

�

E(R

t;k

)

t

8 t > 0:

Property (3) states that if two connections have the same

long-term bounding average rate �

av

(with interval length

no less than I), the mean bounding rate over any interval

is greater for the connection with the higher peak rate �

pk

.

This property is illustrated in Figure 2. In the �gure, the

vertical axis is the mean bounding rate, and the horizontal

axis is the length of the interval over which the average rate

is computed. Curves for three sources are plotted. The three

sources have the same I of 133 ms and �

av

of 2 kpkts/s, but

have di�erent �

pk

's. As shown, a curve with a larger �

pk

is

always above a curve with a smaller �

pk

. The same property

holds in the deterministic model: with a �xed �

av

, a larger

�

pk

means burstier tra�c.
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2.3 Continuous Example

While the previous section presented a discrete valued

interval-length dependent tra�c model, this section presents

a continuous valued BIND model. As in the discrete case,

this model takes into account the existence of di�erent traf-

�c characteristics over various interval lengths. Additionally,

this model illustrates the fact that a wide range of bound-

ing distributions can meet the requirements of equations (1)

and (2). We demonstrate such a model with a family of

random variables (again dropping the source j superscript)

f(R

t

; t) j t � 0g, with R

t

described by a family of 
uid mod-

els where the rate of 
uid 
ow is controlled by a two-state

continuous time Markov chain with rate matrix

G
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Note that �

t

and �

t

are functions of t indicating a depen-

dence of each member of the family of Markov processes on

its interval length. Letting � be the time of the realization

of the process, each Markov chain has a �xed rate matrix

based on the �xed interval length t.

This property allows the model to capture the interval-

dependent behavior of the underlying random process. De-

noting the state of a chain at time � by �

�

, �

�

2 f1; 2g,


uid is generated at rate r
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when �
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= 1, and at rate

r
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when �
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= 2 (again, r

1;t

and r

2;t

are constant for each

Markov chain). The random variable R

t

that bounds the

source's rate over intervals of length t is then de�ned as the

distribution of the total 
uid content at time � . Thus, for

t � 0,
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where 1(�) is an indicator function.
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The two-state 
uid model, a Markov-modulated 
uid

source (MMFS), is familiar to queueing theory. In [1] for

example, the authors calculate the stationary bu�er distri-

bution for a number of independent 
uid sources served by

a link with capacity c. However, the Markov BIND model

di�ers from such traditional models in the following ways:

� R

t

is non-stationary since it is a non-decreasing mea-

sure of the 
uid content at time t.

� This model uses a family of processes as a bounding

random variable for di�erent time intervals. Further,

the random variables are a function of the interval

length. This is quite di�erent from a MMFS or even a

superposition of MMFS's.

The distribution of R

t

may be calculated by taking (without

loss of generality) r

1;t

= 1 and r

2;t

= 0 and noting that the

distribution of R

t

in equation (3) is the distribution of the

occupation time of a two-state Markov chain in state 1 until

time t. The details of this derivation and the closed form

distribution may be found in [14].

An example of a subset of a family of distributions is

shown in Figure 3. The source has a peak rate of 2 Mbps,

an average rate of 667 kbps, and I = 133 ms. In the �gure,

the horizontal axis is the rate normalized to the peak rate of

2 Mbps so that a normalized rate of 1 is the peak rate and

a normalized rate of 0.333 is the average rate since in this

case, the burst ratio (�

pk

=�

av

) is 3. The vertical axis is the

probability density function (PDF) of the bounding random

variable R

t

=t, where the R

t

=t is the bounding rate over an

interval of length t in bits or packets per second. The �gure

shows the PDF of the normalized rate for intervals of length

4, 20 and 120 ms. As shown, in a longer interval such as

120 ms, the source's rate is bounded by a random variable

with expectation very near the source's long-term average

rate (0.333 in the �gure). Alternatively, on a shorter time

scale such as 4 ms, the source's bounding random variable

must be weighted more towards the peak rate (1.0 in the

�gure). The model parameters are r

1;t

= 2 Mbps, r

2;t

= 0,

with �

t

and �

t

chosen so that as t approaches I, the Markov

Chain averages 1/3 of its time in state 1 (corresponding to

the burst ratio of 3). Di�erent values for r

1;t

, r

2;t

, and the

function mapping �

pk

; �

av

; I, and t onto �

t

and �

t

can result

in a wide variety of density function shapes to tightly bound

the tra�c source of interest. Thus, these functions will result

in bounding distributions of di�erent variance that approach

the mean bandwidth with di�erent rates. Also, with r

2

6= 0,

the source will always send at least r

2

�t bits in an interval of

length t resulting in a minimum rate for the source (and an

appropriately weighted delta function at r

2

� t in the source's

bounding PDF).

In summary, for both the discrete and continuous ran-

dom variables, bounding distributions may be calculated

that satisfy the properties of equations (1) and (2). These

distributions capture the interval length dependent charac-

teristics of tra�c sources.

3 Multiplexing Stochastic

BIND Sources

In this section, we analyze the multiplexing characteristics

of connections speci�ed by the interval-dependent tra�c

model for the Rate Controlled Static Priority (RCSP) sched-

uler [19]. The technique of extending a single switch analysis

to a networking environment is discussed in Section 4. While

Section 4 utilizes the Rate-Controlled aspect of the sched-

uler to provide end-to-end results, this section utilizes the

Static Priority mechanism to analyze the statistical multi-

plexing behavior of the tra�c model. The RCSP scheduler

has the advantage of being both 
exible so that it can o�er a

multiple number of delay bounds, and simple so that it can

be implemented at very high speeds. We present numerical

examples using the discrete tra�c model developed in Sec-

tion 2.2 and consider both a heterogeneous and homogeneous

mix of sources.

The scheduler in an RCSP server consists of a number

of prioritized real-time packet queues as shown in Figure 4.

Packets at priority level 1 have the highest priority. A chan-

nel is assigned to a particular priority level at the channel's

establishment time and all packets from the channel will be

inserted into the real-time packet queue at that priority level.

Multiple channels can be assigned to the same priority level.

The scheduler services packets using a non-preemptive static

priority policy which chooses packets in FCFS order from
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the highest-priority non-empty queue. Non-real-time pack-

ets are serviced from a separate, lower-priority, queue (not

shown) only when there are no real-time packets queued.

The service policy for non-real-time packets can be arbitrary.

There is a delay bound d

m

associated with each priority

level m. For a connection associated with priority level m,

we are interested in calculating the delay-bound violation

probability: Probfd

m

> d

m

g.

Proposition 1 Let d
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; : : : ; d

n

(d

1
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< � � � < d
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be the respective delay bounds associated with each of the n

priority levels in a Static Priority scheduler. Let C

q

be the

set of connections at level q and let the j

th

connection among

C

q

have tra�c speci�cation
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With a link speed l and a maximum packet size of Smax for

all connections,
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Intuitively, a packet meets its delay bound if all packets

with higher priority (the number of which is the double sum

of random variables) plus any packet already in service are

served before the delay expires. The proposition shows that

the tail distribution of the sum of the bounding random vari-

ables for all the connections with same or higher priorities

can be used to provide an upper bound for the delay-bound

violation probability. The result applies to bounding random

variables with any distribution.

In the following sections, we present numerical examples

using the discrete tra�c model developed in Section 2.2. We

consider the cases of both homogeneous and heterogeneous

sources.

3.1 Homogeneous Sources

As in Section 2.2, we assume that R

d

q

;j;q

has a binomial

distribution with parameters M

d

q

;j;q

and p

d

q

;j;q

. For ho-

mogeneous sources, M

d

q

= M

d

q

;j;q

and p

d

q

= p

d

q

;j;q

for

all j and q. With independence among the connections,

m

X

q=1

X

j2C

q

R

d
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;j;q

has a binomial distribution with parame-

ters

P

m

q=1

J

q

M

d

q

and p

d

q

, where J

q

is the number of con-

nections at priority level q, or j C

q

j.
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The following examples show the relationships between

the average utilization � and the delay bound under various

conditions. The link transmission rate is 45 Mbps, 
 = 6:0,

and the delay over
ow probability is 0.1%. The parameters

under consideration are I and the burst ratio B = �

pk

=�

av

.

In all cases, the maximum number of connections are ac-

cepted such that the required performance guarantees of all

connections are satis�ed.

In Figure 5, the peak packet rate �

pk

and B are �xed

and I is varied. As shown, a longer averaging interval I

results in lower average utilization of the link. This con�rms

the intuition for the deterministic case (see [18, 20]). Since

a source can send a maximum of �

av

I consecutive packets

at rate �

pk

, a larger I means a larger maximum burst length

which results in lower average utilization of the link.

Figure 6 shows how B a�ects statistical multiplexing.

Figure 6(a) shows that for a given performance require-

ment, smoother tra�c is easier to multiplex and results in

a higher average utilization of the link. Additionally, Fig-

ure 6(b) shows that although the average utilization is lower

for bursty tra�c, the peak utilization, a measure of the sta-

tistical multiplexing gain, is higher. This matches the intu-

ition that higher burst ratios provide more opportunity for

statistical multiplexing, but result in lower network utiliza-

tion in order to meet a speci�c performance guarantee.

3.2 Heterogeneous Sources

This section presents an investigation into the e�ects of in-

teractions among heterogeneous tra�c sources. Since there

is not a closed-form solution for the distribution of the sum

of binomial random variables with di�erent parameters, the

resulting distribution may be calculated by convolving the

individual probability distribution functions. This convolu-

tion can be e�ciently implemented with the Fast Fourier

Transform (FFT).

For simplicity, we consider di�erent mixtures of two dif-

ferent types of sources. The algorithm, however, can cal-

culate the case of arbitrary heterogeneous sources with no

additional computational cost. A Class 1 source has a peak

rate of 2 Mbps, an average rate of 1 Mbps, and I = 198 ms.

A Class 2 source has a lower bandwidth, but has a greater

burst ratio of 6, with a peak rate of 400 kbps and an average

rate of 66:7 kbps. The delay over
ow probability is 0.1%,

and 
 is 6.0.

Figure 7 shows the maximum numbers of Class 1 and

Class 2 connections that can be accepted under di�erent de-

lay constraints. A point (n

1

; n

2

) on the curve means that

if there are n

1

Class 1 connections traversing the link, at

most n

2

Class 2 connections can be accepted over the same

link. As in the case of homogeneous sources, more connec-

tions can be accepted when the delay bound is larger. The

�gure is similar in spirit to [8] where a schedulable region of

admissible connection combinations is shown. However, for

a general service in which tra�c is not restricted to classes,

these calculations would be made with the FFT rather than

by table lookup.

Figure 8 shows the average and peak utilizations of the

link under di�erent mixtures of Class 1 and Class 2 connec-

tions. Each number n

1

on the horizontal axis in the �gures

represents a 2-tuple (n

1

; n

2

) as de�ned in Figure 7. Since

the tra�c of a Class 2 connection is burstier than that of a

Class 1 connection, a larger number of Class 1 connections

means that the mixture has a larger fraction of Class 1 traf-

�c, and is therefore less bursty. Figure 8(a) shows similar

characteristics to the case of homogeneous sources shown in

Figure 6(a): less bursty tra�c is easier to multiplex and re-
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Figure 7: Maximum numbers of accepted connections

sults in a higher average utilization of the link. Figure 8(b)

con�rms the results obtained for homogeneous sources (in

Figure 6(b)): although the average utilization is lower for

burstier tra�c, the peak utilization, a measure of the statis-

tical multiplexing gain, is higher. Again, the intuition is that

higher burst ratios provide more opportunity for statistical

multiplexing but result in lower network utilization.

4 Providing End-to-End Statis-

tical Performance Guarantees

In the previous section, we presented the conditions for

bounding the delay over
ow probability in a Static Prior-

ity scheduler and gave numerical examples to illustrate the

results. In this section, we extend the analysis from a single

scheduler to a network of switches.

In a networking environment, packets from di�erent con-

nections are multiplexed at each switch. Even if the tra�c

can be characterized at the entrance to the network, com-

plex interactions among connections will distort the tra�c

pattern and destroy many properties of the tra�c inside the

network. Thus, the tra�c model at the source may not be

applicable inside the network.

One solution to this problem is to characterize the traf-

�c pattern's distortion inside the network, and derive the

tra�c characterization at the entrance to each switch from

characterizations of the source tra�c and the tra�c pattern

distortion. This approach, taken in [4, 2, 13, 10], has several

limitations.

First, it only applies to networks with constant delay

links. Constant delay links have the desirable property that

the tra�c pattern at the receiving end of the link is the

same as that at the transmitting end of the link. This prop-

erty is important for these solutions because central to the

analysis is the technique of characterizing the output traf-

�c from a scheduler and using it as the input tra�c to the

next-hop scheduler. However, in an internetworking environ-

ment, links connecting switches may be subnetworks such as

ATM or FDDI networks. Though it is possible to bound de-

lay over these subnetworks, the delays for di�erent packets

will be variable. Thus, these solutions do not apply to an

internetworking environment.

Second, most of the solutions characterize tra�c in net-

works with work-conserving service disciplines.

1

Character-

izing the tra�c pattern inside the network is equivalent to

solving a set of multi-variable equations [4, 13, 10]. In a

feedback network, where tra�c from di�erent connections

form tra�c loops, the resulting set of equations may be un-

solvable. Thus, most of these solutions apply only to feed-

forward networks or a restricted class of feedback networks.

Finally, in networks with work-conserving service disci-

plines, even if the tra�c inside the network can be char-

acterized, the tra�c characterization must be more bursty

inside the network than at the entrance. For example, in

[4], a deterministic 
uid model (�; �) is used to characterize

tra�c sources. A source is said to satisfy (�; �) if during any

time interval of length u, the amount of its output tra�c is

less than � + �u. In such a model, � is the maximum burst

size, and � is the average rate. If the tra�c of connection j

is characterized by (�

j

; �

j

) at the entrance to the network,

its characterization will be

(�

j

+

i�1

X

i

0

=1

�

j

d

i

0

;j

; �

j

) (4)

at the entrance to the i � th switch along the path, where

d

i

0

;j

is the local delay for the connection at the i

0

�th switch.

Compared to the characterization of the source tra�c, the

maximum burst size in (4) increases by

P

i�1

i

0

=1

�

j

d

i

0

;j

. This

increase of burst size grows linearly along the path.

In [10], a family of bounding random variables is used

to characterize the source. In a work-conserving service

discipline, if the tra�c of connection j is characterized by

f(R

t

1

;j

; t

1

); (R

t

2

;j

; t

2

); :::g at the entrance to the network,

its characterization will be

f(R

t

1

+

P

i�1

i

0

=1

b

i

0

;j

; t

1

); (R

t

2

+

P

i�1

i

0

=1

b

i

0

;j

; t

2

); :::g

at the i

0

th

switch, where b

i

0
is the maximum busy period at

switch i

0

. The same random variable that bounds the max-

imum number of packets over an interval at the entrance of

1

In a work-conserving discipline, the link is never idle when there

are packets waiting in the queue [21].
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Figure 8: Average and peak utilizations with di�erent mixtures

the network bounds the maximum number of packets over a

much smaller interval at switch j. I.e., the tra�c character-

ization is burstier at switch j than at the entrance.

Thus, in both the (�; �) and f(R

t

1

; t

1

); (R

t

2

; t

2

); :::g

analysis, the burstiness of a connection's tra�c accumulates

at each hop along the path from the source to the destina-

tion. This will result in low utilization of the network by the

real-time tra�c.

Another solution to the tra�c pattern distortion prob-

lem, which we adopt in our approach, is to reconstruct

the tra�c pattern at each switch with a class of non-work-

conserving service disciplines called rate-controlled service

disciplines [18]. As in Figure 4, a rate-controlled service dis-

cipline consists of two components, a rate-controller and a

scheduler. The rate-controller shapes the input tra�c from

each connection into the desired tra�c pattern by assigning

an eligibility time to each packet. The scheduler then orders

the transmission of eligible real-time packets from all connec-

tions. Many types of regulators and schedulers can be used.

Di�erent combinations of regulators and schedulers result in

di�erent service disciplines. The class is quite general. Most

non-work-conserving disciplines proposed for high speed net-

works such as Delay-EDD [15], Stop-and-Go [7], Hierarchical

Round Robin [9], and Rate-Controlled Static Priority [19],

either belong to this class, or can be implemented by a rate-

controlled service discipline with the appropriate choices of

rate-controllers and schedulers [18].

Rate-controlled service disciplines have several impor-

tant properties:

(1) If a connection's tra�c satis�es certain tra�c char-

acteristics at the entrance to the network, with use of the

appropriate rate-controllers, the same characteristics will be

satis�ed by the tra�c at the entrance to each scheduler along

the path. One type of rate-controller, a delay-jitter control-

ling regulator [19, 18], completely reconstructs the original

tra�c pattern at each switch. If a connection traverses a

path of rate-controlled servers with delay-jitter controlling

regulators, the tra�c pattern at the entrance to each of the

schedulers is exactly the same as that at the entrance to the

network. This allows us to analyze each scheduler using the

same tra�c characterization.

(2) The end-to-end delay of a packet in a network with

rate-controlled servers consists of the following components:

waiting time in the schedulers, holding time in the rate-

controllers, and the link delays. In [18], it is shown that the

end-to-end delay can be bounded by the sum of bounds on

link delays and bounds on waiting time in the schedulers;

holding packets in rate-controllers will not increase the end-

to-end delay bound, although it may increase the end-to-end

average delay.

Properties (1) and (2) are signi�cant. Property (1)

means that we can analyze the delay characteristic of each

scheduler along a path with the same tra�c characteristics

of the original source. The tra�c characteristics need not

be the ones discussed in this paper. For example, if a con-

nection can be characterized by a MMPP at the entrance

to the network, it can be characterized by the same MMPP

at each of the schedulers. Property (2) means that we can

combine the delay analysis of each individual scheduler and

obtain the end-to-end delay characteristics of a connection.

If we assume that any packet missing the local delay bound

at a scheduler is dropped immediately, the end-to-end delay

over
ow probability Z, can be decomposed into local delay

over
ow probabilities z

i

, where Z =

Q

n

i=1

z

i

and n is the

total number of switches along the path traversed by the

connection. This is done in [6].



In summary, using rate-controlled service disciplines and

analyzing delay characteristics using the same tra�c char-

acterization at each scheduler will achieve higher network

utilization than using work-conserving disciplines and char-

acterizing the tra�c inside the network. This is due to the

fact that in the latter case, a connection's tra�c character-

ization must become more bursty with each hop. Addition-

ally, using rate-controlled service disciplines allows us to ob-

tain end-to-end performance bounds in much more general

networking environments than previous solutions allow.

5 Conclusions and Future Work

In this paper, we have proposed and demonstrated the e�-

ciency of a new mechanism for providing end-to-end prob-

abilistic performance guarantees in an integrated services

network. First, we present a new BIND tra�c model, which

stochastically bounds the number of bits sent over time inter-

vals of di�erent length and requires that these distributions

are explicit functions of the interval length. Second, we ana-

lyze the multiplexing of such sources in a single switch served

by an RCSP scheduler considering both homogeneous and

heterogeneous sources. Finally, using delay-jitter control, we

e�ciently extend these results to the network to provide end-

to-end per-connection statistical performance guarantees.

The focus of our current and future work is to charac-

terize a wide variety of real-time tra�c sources using both

the deterministic and stochastic BIND model. With such

characterizations, we will investigate various facets of multi-

plexing these sources. The goal is to achieve a high network

utilization while providing mathematically provable statis-

tical or deterministic performance guarantees. Other areas

of the work will include compacting the model to its most

signi�cant parameters and comparing the model and its per-

formance metrics to other models in the literature.
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