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Abstract

In order for networks to support the delay and loss requirements of interactive multimedia applica-

tions, resource management algorithms are needed that e�ciently allocate network resources. In this

paper, we introduce a new resource allocation scheme based on rate-variance envelopes. Such envelopes

capture a ow's burstiness properties and autocorrelation structure by characterizing the variance of

its rate distribution over intervals of di�erent length. From this tra�c characterization, we develop a

simple and e�cient resource allocation algorithm for static priority schedulers by employing a Gaussian

approximation over intervals and considering a maximal busy period. Our approach supports heteroge-

neous quality of service requirements via our consideration of prioritized service disciplines, and supports

heterogeneous and bursty tra�c ows via our general framework of tra�c envelopes. To evaluate the

scheme, we perform trace-driven simulation experiments with long traces of compressed video and show

that our approach is accurate enough to capture most of the available statistical multiplexing gain,

achieving average network utilizations of up to 90% for these traces and substantially outperforming

alternate schemes.

1 Introduction

Bursty tra�c sources that require Quality of Service (QoS) guarantees in terms of loss and delay bound are

emerging as one of the most important types of tra�c in future integrated services networks. Because of

the variable-bit-rate nature and multiple-time-scale correlation characteristics of many realistic sources, e.g.,

[8, 13, 17, 20], it is di�cult to determine the amount of resources that need to be allocated to individual ows

such that each ow obtains the performance that it requires. This problem is exacerbated when di�erent

ows require di�erent services, such as di�erent throughputs, delay bounds, and loss probabilities, since

resources must then be allocated in networks that use prioritized service disciplines such as Static Priority

(SP) or Earliest Deadline First.

In this paper, we introduce a scheme for allocating resources to heterogeneous and bursty tra�c sources

that are multiplexed with the static priority service discipline. Our approach is based on a simple and

general tra�c characterization which we term a rate-variance envelope; this envelope describes the variances

of the ows' rates as a function of interval length. In the literature, statistical QoS has been studied

via envelopes of bounding moment generating functions [2], exponentially bounded envelopes [26, 28], and

envelopes consisting of a family of bounding distributions [15, 30]. Statistical envelopes have also been applied

to resource allocation for inter-class resource sharing [23] and video-on-demand services [16]. Moreover,

deterministic tra�c envelopes have been studied in the context of worst-case performance guarantees [2,

5, 6, 12, 19, 27]. Here, we use a rate-variance envelope as a simple way to capture the second-moment

properties of temporally correlated tra�c ows, and to describe how quickly the rate-distribution becomes

concentrated at the mean rate with increasing interval-length, a key factor for computing delay-bound-

violation probabilities. We show empirical rate-variance envelopes for several long traces of compressed

video to show how it captures the burstiness properties of realistic network tra�c sources.

This work was supported by NSF CAREER Award ANI-9733610, NSF Grant ANI-9730104, and Nokia Corporation. The

author can be reached via http://www.ece.rice.edu/networks.
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Based on this envelope, we introduce a resource allocation algorithm that provides a simple-to-compute

approximation for QoS parameters such as packet-loss probability and delay-bound-violation probability.

Studying the delay incurred up to the maximal busy period of a static priority scheduler, we introduce a

Gaussian approximation over intervals (based on the Central Limit Theorem) that allows us to determine QoS

parameters from simple computations on the rate-variance envelopes of the tra�c ows. Our solution applies

to a networking environment that allows for both heterogeneous tra�c ows and heterogeneous performance

requirements, considering the case of priority service disciplines that are well suited for delivering integrated

network services.

Our approach di�ers from previous work on statistical resource allocation for multimedia tra�c in two

ways. First, to ensure our approach applies to a general class of tra�c ows, we use a stochastic envelope

to bound the tra�c, rather than attempting to model the arrival process itself with a particular statistical

model such as a Markov Modulated models, histogram-based models, and other more sophisticated video

models [1, 8, 13, 14, 17, 20, 21, 25]. Second, by approaching the problem from the perspective of tra�c

envelopes, the resource allocation problem is signi�cantly simpli�ed, so that we are able to study priority

service disciplines and heterogeneous tra�c ows, a scenario which is quite complex using other techniques

(see [31] for example).

Finally, we investigate the e�ectiveness of the new scheme via trace-driven simulation experiments. We

utilize 30-minute traces of MPEG-compressed video and simulate a number of ows aggregating at a SP

multiplexer. For a given tra�c mix, we compare the QoS actually obtained by the ows in trace-driven

simulations with that predicted by the algorithm. The results indicate that for these bursty variable bit rate

video sources, the scheme is accurate enough to capture most of the available statistical multiplexing gain

and consequently, attains utilizations considerably higher than those of e�ective bandwidth techniques [4, 9].

The remainder of this paper is organized as follows. In Section 2, we develop the rate-variance admission

control algorithm and resource allocation scheme. Next, in Section 3, we investigate our scheme's implications

for tra�c models and admission control tests in multi-service networks. In Section 4, we perform a set of

trace-driven simulation and admission control experiments, and in Section 5, we conclude.

2 Resource Allocation using Rate-Variance Envelopes

Here, we present our approach for using tra�c ows' rate-variance envelopes to manage network resources and

provide statistical quality of service guarantees. The techniques apply to priority service disciplines that may

be used to support network clients that have heterogeneous QoS requirements. The tra�c characterization

is also quite general in that it allows for an arbitrary autocorrelation structure of individual ows and

heterogeneous statistical characteristics among ows.

2.1 Background on Tra�c Envelopes

A tra�c envelope provides a means of bounding a tra�c ow's arrivals over intervals of di�erent length. In

particular, denote the arrivals of tra�c ow j (in bits for example) in the interval [s; s+ t] as A

j

[s; s+ t].

Deterministic tra�c envelopes were introduced by Cruz [5] in de�ning a constraint function b

j

(t) which

upper bounds source j's arrivals in any interval of length t. In particular, b

j

(t) is a deterministic envelope

of tra�c ow j if

b

j

(t) � A

j

[s; s+ t]; 8; s; t > 0: (1)

Since such a worst-case bound is enforceable by network policers, properties of deterministic envelopes

have primarily been used to provide deterministic network services [2, 5, 6, 12, 19, 27], but also to provide

enforceable statistical services [10, 11].

In [15], Kurose introduced a stochastic analogue to the above envelope such that a collection of bounding

distributions B

j

(t) form a stochastic envelope of arrival process A

j

if

B

j

(t) �

st

A

j

[s; s+ t] 8; s; t > 0 (2)

where the random variable X is said to be stochastically greater than the random variable Y , i.e., X �

st

Y ,

if P (X > x) > P (Y > x) for all x. In [15, 30], such stochastic envelopes were used to study end-to-end

statistical QoS guarantees.
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In [2], Chang studied stochastic tra�c envelopes that bound a tra�c ows moment generating function.

In particular, the function

^

B

j

(�; t) is an envelope of arrival sequence A

j

with respect to parameter � if

^

B

j

(�; t) �

1

�

logEe

�A

j

[s;s+t]

8; s; t > 0: (3)

From this general tra�c characterization, Chang also studied end-to-end statistical QoS guarantees and

showed how e�ective bandwidths can be computed from properties of such envelopes.

2.2 Rate-Variance Envelope

Here, we de�ne and study a rate-variance envelope such that tra�c ow j is bounded by rate-variance

envelope RV

j

(t) if

RV

j

(t) � var

�

A

j

[s; s+ t]

t

�

8s; t > 0 (4)

Our goal in de�ning such a tra�c envelope is to employ a general yet accurate characterization of a tra�c

ow in designing computationally simple admission control tests for priority schedulers. Note that we place

no restrictions on the autocorrelation function of the arrival sequence A

j

so that we consider a general class

of ows with bounded variance. Moreover, as shown below, characterizing a ow by the variance of its rate

as a function of interval length provides an intuitive representation of the ow's stochastic properties.

To illustrate such an envelope, consider a stationary random process fX

1

; X

2

; X

3

; � � �g which represent the

frame sizes of a compressed-video source. Denote the �rst and second moments of the frame-size distribution

by EX and EX

2

respectively so that the variance of the frame size distribution, var(X), is EX

2

� (EX)

2

.

The ow's mean rate is then m = EX=T where T is the duration of the time slot or frame time.

The sequence fX

1

; X

2

; X

3

; � � �g may have an arbitrary autocorrelation structure and the variance of the

distribution of the total number of arrivals over n consecutive frames is given by var(X

i

+X

i+1

+� � �+X

i+n�1

).

By normalizing this variance to the length of the interval, we have the variance of the rate distribution over

the respective interval length, which is

RV (nT ) = var

�

X

i

+X

i+1

+ � � �+X

i+n�1

nT

�

; n � 1: (5)

which is independent of i under the stationarity assumption; if the process were non-stationary, the rate-

variance envelope describes the maximum variance over any interval of length t.
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Figure 1: Rate-Variance Envelope for Video Trace

Figure 1 shows the normalized rate-variance envelope for a 30-minute trace of an MPEG-compressed

movie. The trace is that of an action movie taken from [24], with the movie digitized to 384x288 pels

and compressed at 24 frames per second using the MPEG compression algorithm with frame pattern

IBBPBBPBBPBB.
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For the 30-minute sequence of frame sizes, the �gure shows the empirical variance of the rate as given

by Equation (4) as a function of the interval length on a log-log scale. The rate-variance depicted on the

vertical axis is normalized to the frame-size variance so that RV (t

1

= 1=24) = 1. The horizontal axis depicts

the interval length in seconds, which is nT , or the interval length in frame-times, n, multiplied by the frame

time T ,

1

24

th

of a second in this case. The �gure depicts intervals of up to 100 seconds rather than up to the

length of the trace so that there are an adequate number of sample points to determine the sample variance.

We make several observations about the �gure. First, note that the RV (t) characterization di�ers dra-

matically from that of an uncorrelated sequence. In other words, without dependencies among the frame

sizes, the curve in Figure 1 would depict a straight line with a slope of -1. Indeed, the movie's rate-variance

envelope indicates a correlation structure that is present over long interval lengths.

Second, we note that regardless of the correlation structure of the ow, a resource allocation system has

the potential to exploit this second-moment characterization. For example, over wider and wider interval-

lengths, the distribution of the ow's rate becomes more and more concentrated at the mean rate. How

quickly this occurs has implications in the amount of resources that need to be allocated to the ow. Indeed,

an uncorrelated sequence will have lower delays for a given average utilization than the one in Figure 1.

Lastly, we note that the shape of the curve in Figure 1 has implications on the relevant time-scales of the

ow's correlation structure and whether the ow exhibits long-range dependence (see [8] for example): the

resource allocation algorithm we develop below places no restrictions on the shapes of the ows' rate-variance

envelopes.

2.3 Envelope-Based Admission Control

As shown in Figure 2, a static priority scheduler consists of a number of prioritized FCFS queues, where

each queue has an associated delay bound and probability of delay bound violation. At ow setup time, each

ow is assigned a priority level that is based on the requested QoS, including the requested end-to-end delay

bound and probability of delay bound violation. During data transmission, each packet of the ow is serviced

at its pre-established priority level. Thus, a static priority service discipline has an advantage as compared

to many other service disciplines in its simplicity of implementation. For example, in the Earliest Deadline

First service discipline, as well as Generalized Processor Sharing [22], when the scheduler determines which

packet to service next, it must search through all packets to �nd the one with the smallest deadline, or for

Generalized Processor Sharing, the one with the highest priority index. Alternatively, for static priority, the

packet at the head of the highest-priority non-empty queue is always serviced next.

link

d

d

d

1

2

L

Figure 2: Static Priority Scheduler

The algorithm below describes our admission control test for SP schedulers and statistical service.

Result: Consider a SP scheduler with link capacity C such that priority level l has an associated delay

bound d

l

. Let L be the set of ows at level l, so that the j

th

ow in L has mean rate �

l;j

, rate-variance

envelope RV

l;j

(t), and deterministic envelope b

l;j

(t). With application of a Gaussian approximation over
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intervals, the delay-bound violation probability at priority level l is approximately

ProbfD

l

> d

l

g � max

0�t��

Probf

^

B

l

(t) +

^

B

m<l

(t+ d

l

) � C(t+ d

l

)g (6)

with

^

B

l

(t) � N

0

@

X

j2L

t�

l;j

;

X

j2L

t

2

RV

l;j

(t)

1

A

(7)

and

^

B

m<l

(t+ d

l

) � N

0

@

l�1

X

m=1

X

j2M

(t+ d

l

)�

m;j

;

l�1

X

m=1

X

j2M

(t+ d

l

)

2

RV

m;j

(t+ d

l

)

1

A

(8)

where X � N(�; �

2

) denotes a Gaussian distribution such that

ProbfX > xg =

1

p

2�

Z

1

x

exp

�

�(y � �)

2

2�

2

�

dy

and � denotes the maximum busy period

� = minft > 0 j

X

l

X

j2L

b

l;j

(t) � Ctg: (9)

Proof. Assume that all queues are initially empty at time 0 and consider a marked level-l packet arriving

at time t. Let P

l

(t) denote the packets or bits from level-l ows that have priority over the marked packet.

The arrivals of all level-l packets arriving by t is stochastically bounded by

P

l

(t) =

X

j2L

A

l;j

[0; t] �

st

X

j2L

B

l;j

(t) (10)

by de�nition of B in Equation (2). All of these packets have priority over the marked packet as they share the

same priority level and arrived earlier than the marked packet. Denoting  

l

(A[s; t]) as the backlog induced

by level l arrivals in [s; t] that must be serviced before the marked packet, note that

 

l

(A

l;j

[t; u]) = 0 (11)

for u > t since packets within a priority level are serviced in �rst-come �rst-serve order.

At higher priority levels,

 

m<l

(A

m;j

[0; t]) � 0 (12)

since packets that arrived previously and at higher priority level will be serviced before the marked packet.

Moreover, higher priority packets may contribute to the delay of the marked packet, even if they arrive after

the marked packet by up to d

l

seconds, i.e.,

 

m<l

(A

m;j

[t; t+ d

l

]) � 0: (13)

The distribution of this total number of higher-priority packets that may be served ahead of the marked

packet is bounded by

P

m<l

(t) =

l�1

X

m=1

X

j2M

A

m;j

[0; t+ d

l

] �

st

l�1

X

m=1

X

j2M

B

m;j

(t+ d

l

): (14)

Further, using the de�nition of SP,

 

m>l

(A

m;j

[0; u]) = 0 (15)

for all u > 0, ignoring the possible packet transmission delay from a lower priority packet already in service

when the marked packet arrives.
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Next, observe that the number of packets having priority over the marked packet consists of the aggre-

gate arrivals summed over a large number of independent tra�c ows. Consequently, we approximate its

distribution as Gaussian since the central limit theorem states that if the random variable Y

i

has mean �

i

and variance �

2

i

, and the Y

i

's are mutually independent, then the distribution of the sum Y

1

+ Y

2

+ � � �Y

n

converges to a Gaussian distribution with mean

P

n

i=1

�

i

and variance

P

n

i=1

�

2

i

. The theorem can be shown

to hold under fairly general conditions on the Y

i

's, including for example, the Lindeberg su�cient condition.

Finally, Equation (6) follows by observing that up to Ct bits may be serviced by time t and by considering

all values of t up to the maximal busy period of Equation (9), which is the maximum busy period of any

work conserving service discipline and therefore of SP [5]. 2

Our approach therefore applies the central limit theorem over multiple interval lengths in order to ap-

proximate the delay-bound violation probability in static priority schedulers. We explore the validity of

the Gaussian assumption in Section 4 for loss probabilities as small as 10

�6

. Further rationale for such

techniques can also be found in [3]. While smaller loss probabilities could be studied using large deviations

re�nements to the above scheme, it would require increased computational complexity and more detailed

tra�c models that specify higher-moment envelopes. Moreover, signi�cantly smaller loss probabilities may

not be meaningful to many multimedia applications; for example, a loss probability of 10

�9

corresponds to

an average of one ATM cell lost approximately every 100 hours for a 1 Mbps ow.

3 Implications for Tra�c Models Admission Control

In this section, we consider three practical issues of the rate-variance resource allocation scheme in the

previous section: (1) the manner in which network clients express their tra�c characterization to the network

for on-line admission control tests, (2) calculation of the maximum busy period, and (3) resource allocation

across multiple network nodes.

3.1 Specifying a Rate-Variance Envelope

One application of the above resource allocation scheme is in network planning and design such as bu�er

sizing for switches and routers. In that case, the rate-variance envelopes of the expected workloads can be

used directly in the calculation of the terms in Equation (6).

For an on-line resource allocation system such as an admission control algorithm, or for an adaptive

resource management algorithm, Equation (6) has the advantage that it is a simple computation that does

not require, for example, convolutions or large matrix computations. However, in order to integrate the

scheme with a network signaling protocol, ows must be able to specify their tra�c characteristics more

concisely than the entire RV (t) curve. Several possibilities are described below.

First, the RV (t) characterization can be inferred or bounded based on the ows' speci�ed parameters,

which may be worst case parameters such as the multi-level leaky bucket (~�; ~�) model [27] or the D-BIND

model's rate-interval pairs [12]. For example, in [10, 11], a scheme is presented to upper bound a ow's

rate-variance envelope based on its worst-case parameters as given by the D-BIND model. Such a scheme

has the advantage that the stochastic properties of the ow can then be policed by using the appropriate

deterministic �lters at the network edge.

Second, if a speci�c shape of the RV (t) rate-variance curve is assumed, then the curve can be speci�ed

to the network concisely by specifying several points on the curve and interpolating. For example, consider

Figure 3 which depicts empirical rate-variance curves for various traces of compressed video.

The �gure depicts RV (t) as given by Equation (4) on a log-log scale, just as in Figure 1 for the MPEG

trace of the action movie. All of the traces in the �gure are of MPEG-compressed video except for the

one labeled \JPEG" which uses only intraframe compression in a manner similar to motion JPEG. The

Star Wars traces are from Bellcore [8], the action movie (Bond) and news traces are from the University

of W�urzburg [24], and the advertisements and lecture traces are from Berkeley [12]. Further details of the

traces may be found in the respective references. Based on the shape of the curves in Figure 3, we observe

that using two or three piece-wise linear segments to bound or approximate the RV (t) curve (on a log-log

scale) would closely bound the rate-variance envelopes of these ows.
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Figure 3: Variance of Rate over Multiple Interval Lengths for Video Traces

Lastly, we note that the slope at which the rate's variance decreases with interval length, as depicted on

Figure 3's log-log scale, has implications on the time-scales of the source's correlation structure and whether

or not the ow exhibits long-range dependence.

For example, as noted in [8] and [18], an uncorrelated process with EX

m

X

m+n

= 0 for n 6= 0 has

RV (n) = V ar(X)=n. As well, RV (n) of a short-range-dependent process asymptotically decreases as 1=n.

However for long range dependent processes, RV (n) asymptotically decreases as n

�k

V ar(X) for 0 < k < 1.

In other words, on a log-log scale, a long-range dependent process has an RV (n) curve with a slope greater

than -1. While none of the curves in Figure 3 behave as strongly in this manner as the Ethernet trace of [18],

whether or not long-range dependence is present can impact the parameters that one chooses to concisely

describe RV (n).

Our point here is not to speculate on the existence of long-range dependence in these traces, but rather

to show the relationship of tra�c envelopes to this topic and to point out that typical shapes of rate-variance

envelopes for realistic multimedia applications will impact how one chooses to map RV (t) to a concise tra�c

speci�cation.

3.2 Calculation of the Busy Period Bound

Equation (6) requires the calculation of the worst-case busy period �. While this might be impossible to

obtain for most traditional stochastic models, it is quite easy to obtain when tra�c ows are policed at the

network edge.

When the network polices a tra�c ow, it ensures that the ow conforms to some client-speci�ed pa-

rameters of a deterministic tra�c model such as the leaky bucket (�; �) model, the multi-level leaky bucket

(~�; ~�) model, or the D-BIND (R

k

; I

k

) model. Moreover, each deterministic (or policeable) tra�c model has

an associated constraint function b(t) that upper bounds a tra�c ow over intervals of length t [27]. For

example, for the D-BIND model, the constraint function is piece-wise linear; for the (�; �) model, it is �+�t.

Hence, if ow j is policed at the network edge, then the network has the required information to determine

the ow's constraint function b

j

(t).

Hence, Equation (9) shows how to obtain the parameter � for sets of policed ows sharing a work

conserving multiplexer. For example, consider N homogeneous (�; �) sources (or leaky bucket sources) of

[5]. In this case the constraint function is b(t) = �+ �t for a maximum burst size of � and an upper average

rate of � so that the maximal busy period is � = N�=(l �N�).

3.3 End-to-end QoS

Here, we describe several techniques for extending our single-node result to networks of general topology.

The di�culty of this problem stems from the fact that the original stochastic properties of tra�c ows are

distorted when the ows are multiplexed inside the network.

First, in [15] Kurose showed how a general stochastic description of a tra�c ow can be translated across

multiple hops using the busy period bound �. While such a transformation requires no special support
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from the network such as sophisticated service disciplines, its primary disadvantage is that it can result in

excessively low utilization of network resources when a number of hops are traversed [30]. The reason for

this is that the ows' tra�c characterizations become more and more bursty with each hop traversed.

Second, in [7] Ferrari showed how delay-jitter control can be used to reconstruct a ow's original tra�c

pattern at each network node. Consequentially, delay-jitter control reconstructs the stochastic properties of

the tra�c ows at each node, including RV (t), allowing the nodes of the network to be analyzed indepen-

dently (see [30] for an example). Such a scheme is able to improve the utilization of network resources, but

requires more sophisticated service disciplines inside the network (e.g., time stamping, synchronized clocks,

and sorted priority queues).

Finally, in contrast to delay-jitter control which reconstructs the exact arrival sequence at each network

node, a class of service disciplines termed rate-controlled service disciplines [29] reconstruct each ow's

deterministic parameters at each network node. In [10], we showed how stochastic properties of tra�c ows

can be derived from parameters of the deterministic model. Here, we note that these derived stochastic

properties are reconstructed at each network node when rate-controlled service disciplines are used. The

advantage of this approach is that rate-controlled service disciplines are simpler to implement than delay-

jitter controlled service disciplines.

4 Experimental Investigations

In this section, we evaluate the resource allocation scheme described in the previous section using 30-minute

traces of MPEG-compressed video. We perform a set of experiments using trace-driven simulations con-

sidering various scenarios with di�erent loads, QoS parameters, and so on. We compare the multiplexer's

performance obtained in these trace-driven simulations with that predicted by our admission control algo-

rithm.

4.1 Trace-driven Simulation Scenario

45 Mbps

Link

τ11 1,1

1,N1

1(d  , p  )
1

τ

τ

2

2,N2

2 2

 A (t -        )

 A (t -        )

 A (t -          )

2,1 (d  , p   )

1
τ A (t -          )

2

Figure 4: Trace-Driven Simulation Scenario

The trace-driven simulation scenario is depicted in Figure 4 using video traces from a newscast and

an action movie as described in Section 2. For each simulation of homogeneous tra�c ows and QoS

requirements, N ows or traces are multiplexed on a simulated 45 Mbps link, with each ow's arrival

pattern given by the movie trace with a start time �

j

chosen uniformly over the length of the trace (30

minutes). All ows obtain a single QoS represented by the pair (d; p) where d is the delay bound and p is the

probability that a packet violates its delay bound or is dropped due to bu�er overow. The bu�er size of the

queue for each simulation is set to C � d bits. Hence, the outputs of these experiments consist of three-tuples

(N; d; p). Multiple simulations are performed with independent start times and average results are reported.

We also consider heterogeneous tra�c mixes and QoS requirements in Section 4.5. In these simulations,

N

1

ows of type 1 are multiplexed with N

2

ows of type 2. In this case, type 1 ows obtain the QoS pair
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(d

1

; p

1

) and type 2 ows (d

2

; p

2

). The outputs of these trace driven simulations report values of (d

i

; p

i

) for

di�erent (N

1

; N

2

) combinations. These results are then compared with the the resource allocation which

determines the maximum numbers of admissible ows (N

1

; N

2

) such that the (d

i

; p

i

) QoS requirements are

satis�ed.

4.2 Performance Metrics

Throughout the experiments, we focus on the following two performance metrics. The �rst is average

utilization of the link. For a given video trace that consists of F frames, we de�ne its average rate as

 =

P

F

i=1

x

i

TF

(16)

where x

i

is the size of the i

th

frame. In other words,  is the total number of bits transmitted by the source

divided by the duration of the transmission. For N multiplexed ows, the average utilization of the link is

therefore

P

N

n=1



n

C

: (17)

In the simulations, this average utilization is also the total number of bits transmitted by all sources for

the duration of a simulation, divided by the total number of bits that the server can transmit during the

duration of the simulation (the link speed multiplied by the simulation time).

Our second performance metric is the total fraction of packets that either violate their delay bound or

are dropped due to bu�er overow. We set the bu�er size to be equal to the delay bound multiplied by

the link speed, and drop packets that arrive to a full bu�er. Note that if the bu�er size was larger, these

packets would violate their delay bounds rather than being dropped. We consider a range of delay bounds

d and corresponding bu�er sizes, and report the empirical ProbfDelay > dg or Probflossg as the measured

fraction of packets that are dropped due to bu�er overow. We refer to this probability as p.

4.3 Admissible Region

For a given QoS (d; p) pair, we calculate the maximum number of admissible ows allowed by our resource

allocation algorithm in Section 2. Speci�cally, we �rst determine the RV (t) characterization for the video

trace as in Equation (4) and depicted in Figures 1 and 3. Next, we determine the worst-case busy period

� for the set of ows by �rst calculating deterministic parameters for the trace as in [12]. As described in

Section 3.2, these are the parameters of the policing elements if the ow's parameters are to be enforced [10].

After parameterizing the ow with four rate-interval pairs, we determine � using Equation (9). Finally, with

knowledge of the RV (t) characterization and �, we calculate the maximum number of admissible ows for

the QoS (d; p) pair using Equation (6).

To compare our approach with previous resource allocation schemes, we also perform admission control

experiments using e�ective bandwidth admission control tests of [4]. An e�ective bandwidth scheme as in

[4, 9] reserves a bandwidth for each ow according to its stochastic properties as well as the required loss

probability p. Once the e�ective bandwidth of a ow is determined, which we denote by E

j

(p), the admission

control test checks that

P

j

E

j

(p) < C, where C is the link capacity. Such techniques rely on either large

bu�er asymptotics or large N asymptotics, and are typically based on large deviations theory or eigenvalue

decomposition of Markovian ows. The admission control test that we consider here is based on large bu�er

asymptotics using large deviations theory [4]. In computing the admissible region, we use the same second

moment statistics of the source as for the rate-variance approach.

Figure 5 shows a plot of the average utilization of the multiplexer as a function of the delay bound.

Speci�cally, the vertical axis depicts average utilization which is directly proportional to the number of ows

N as given by Equation (17).

1

This N is the maximum number of ows that can be multiplexed such that all

ows obtain their required QoS. The QoS is depicted on the horizontal axis with the guaranteed delay bound

d. As described above, there is also a corresponding loss or delay-bound violation probability p. Figure 5(a)

depicts the case of p = 10

�3

and Figure 5(b) depicts the case of p = 10

�6

.

1

Since this trace's average rate is 583 kbps, the average utilization is N � 583 kbps / 45 Mbps.

9
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Figure 5: Utilization vs. Delay Bound

In both Figures 5(a) and 5(b), three curves are depicted: the trace-driven simulation, the rate-variance

resource allocation scheme, and the e�ective bandwidth resource allocation scheme. We �rst focus on the

two upper curves of Figure 5. For the trace-driven simulation, a point on the curve indicates the maximum

number of ows that could be multiplexed so that for a given delay bound d, at most a fraction of 10

�3

packets violated that delay bound (or a fraction 10

�6

for Figure 5(b)). Alternatively, the rate-variance

curve uses the variances-over-intervals tra�c characterization, together with the resource allocation scheme

of Section 2, to make an a priori determination of how many ows can be multiplexed such that all ows

obtain the desired QoS. If Section 2's resource allocation scheme is to be used for capacity allocation, then

one would desire that the Rate-Variance Envelope curve be as close as possible to, but not greater than,

the Trace-Driven Simulation curve. Indeed, if the resource allocation scheme allows for more ows than

can actually be supported, then violations of the promised QoS will occur, an undesirable situation for a

guaranteed-services network. Hence, Figure 5 shows that our scheme is able to achieve most of the achievable

statistical multiplexing gain, coming quite close to the results of the trace-driven simulation. Moreover, as

desired, the scheme errs slightly on the conservative side rather than over-committing resources.

In contrast, we note that the e�ective bandwidth test unnecessarily rejects ows and under-utilizes

network resources. For example, in Figure 5(b), for a 30 msec delay bound with a delay-violation probability

of 10

�6

, the simulation curve shows that 66 ows can be multiplexed for an average utilization of 86%.

However, for this same QoS, the e�ective bandwidth test will only admit 20 ows, blocking the remainder

and restricting the network utilization to 26%.

Next, we take note of the general shapes of the Trace-Driven Simulation and Rate-Variance Envelope

curves of Figure 5. Since the delay bound depicted on the horizontal axis corresponds to a bu�er size Cd,

we can see the impact of increasing the bu�er size at the network nodes. Both Figures 5(a) and 5(b) show

a considerable increase in utilization for minor increases in bu�er size for delay bounds in the range of up

to 10 msec for Figure 5(a) and 20 msec for Figure 5(b) (10 msec of bu�ering corresponds to roughly 1000

ATM cells on a 45 Mbps link). However, after the respective delay bounds of 10 and 20 msec, the curves

atten considerably, indicating that increasing the bu�er size further is of relatively little use. While the

attening of this curve is most likely due to the longer time-scale characteristics of the tra�c ows, we note

here that our variance-based resource allocation is able to follow the knee of this curve and to approximate

the admissible region quite closely.

Finally, regarding the relevant time scales of these sources for resource allocation, the maximizing t of

Equation (6) in these experiments is on the order of several seconds, approximately two orders of magnitude

larger than the bu�er size. We note that this interval length, which can be referred to as the system's critical

time scale, is of most importance for admission control so that the tra�c characteristics (mean and rate

variance) must be accurately speci�ed for this interval length.
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Figure 6: Probability of Loss vs. Bu�er Size

4.4 Loss Probability and Bu�er Size

Figure 6 further describes the results of the experiments by plotting the loss or delay-bound violation

probability p vs. delay bound d for a �xed number of ows N and hence a �xed utilization. Figure 6(a)

depicts the case of 66 multiplexed ows for an average utilization of 85.6%, and Figure 6(b) depicts the case

of 68 multiplexed ows for an average utilization of 88.2%.

From Figure 6, we take note of the shapes of the loss probability as a function of delay bound, d, or

bu�er space, Cd. For the simulation curves, Figure 6(a) shows a sub-exponential relationship (note that

an exponential relationship would be linear on the �gure's semi-log scale). We make the following two

observations. First, an e�ective bandwidth scheme approximates the delay-bound violation probability by

a single exponential p � e

��d

. As shown by the �gure, the e�ective bandwidth scheme considerably over-

estimates this probability and does not capture its non-exponential behavior.

Second, we note that our resource allocation scheme based on application of the central limit theorem

over intervals tracks this non-exponential loss-behavior quite well. Indeed, as shown in Figure 5, the scheme

is able to admit most of the allowable ows, and as shown in both Figures 5 and 6, it is able to track

the complex behavior of the multiplexer's performance across a wide range of loads and QoS parameters,

including behavior expected from long-range dependent sources.

4.5 Heterogeneous Sources and QoS Requirements

To investigate the case of heterogeneous tra�c mixes with di�erent QoS requirements, we multiplex N

1

news

traces with N

2

movie traces (both traces are from [24]). For the static priority scheduler, the news traces are

serviced at the higher priority level with a delay bound of 10 msec and a delay-bound-violation probability

of 10

�6

. The movie traces are serviced at the lower priority level with a delay bound of 50 msec and a

delay-bound-violation probability of 10

�3

.

For the above QoS requirements, Figure 7 shows two curves. The curve labeled \Trace-Driven Simulation"

depicts the actual admissible region, or the maximum (N

1

; N

2

) combinations such that the respective QoS

requirements are met. The curve labeled \Rate Variance Envelope" depicts the maximum number of ows

that the resource allocation scheme of Equation (6) will allow based on the ows' second moment statistics

and their QoS requirements. As was the case in the homogeneous experiments, the �gure shows that our

approach extracts most of the statistical multiplexing gain, admitting nearly all of the ows that can be

multiplexed for the required QoS constraints.

5 Conclusion

In this paper, we introduced a new scheme for allocating resources to multimedia tra�c ows. Our approach

uses simple computations on the tra�c ows' rate-variance envelopes to estimate QoS parameters such as
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Figure 7: Admissible Region for Heterogeneous Tra�c and SP Scheduler

delay-bound-violation probability for heterogeneous and bursty tra�c ows. Our experiments with traces

of MPEG-compressed video and trace-driven simulations indicate that our scheme is accurate enough to

capture most of the achievable statistical multiplexing gain over a wide range of utilizations, bu�er sizes,

and loss probabilities, achieving typical average utilizations in the range of 60% to 90%.

Our results have implications for network design and planning as well as on-line capacity allocation in

admission control algorithms.
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