Resource Stealing in Endpoint Controlled
Multi-class Networks *

Susana SargentpRui Valadas, and Edward Knightly

! Institute of Telecommunications, University of Aveiro, Portugal
2 ECE Department, Rice University, USA

Abstract. Endpoint admission control is a mechanism for achieving scalable ser-
vices by pushing quality-of-service functionality to end hosts. In particular, hosts
probe the network for available service and are admitted or rejected by the host
itself according to the performance of the probes. While particular algorithms
have been successfully developed to provide a single service, a fundamental
source stealingoroblem is encountered in multi-class systems. In particular, if
the core network provides even rudimentary differentiation in packet forwarding
(such as multiple priority levels in a strict priority scheduler), probing flows may
infer that the quality-of-service in their own priority level is satisfactory, but may
inadvertently and adversely affect the performance of other classes, stealing re-
sources and forcing them into quality-of-service violations. This issue is closely
linked to the network scheduler as the performance isolation property provided by
multi-class schedulers also introduces limitsalrservability or a flow's ability

to assess its impact on other traffic classes. In this paper, we study the problem
of resource stealing in multi-class networks with end-point probing. For this scal-
able architecture, we describe the challenge of simultaneously achieving multiple
service levels, high utilization, and a strong service model without stealing. We
propose a probing algorithm termegbrobing which enables observation of other
traffic classes’ performance with minimal additional overhead. We next develop a
simple but illustrative Markov model to characterize the behavior of a number of
schedulers and network elements, including flow-based fair queueing, class-based
weighted fair queueing and rate limiters. Finally, we perform an extensive set of
simulation experiments to study the performance tradeoffs of such architectures,
and to evaluate the effectivenessegbrobing.

1 Introduction

The Integrated Services (IntServ) architecture of the IETF provides a mechanism for
supporting quality-of-service for real-time flows. Two important components of this
architecture are admission contrpl[[3,8] and signaling [14]: the former ensures that
sufficient network resources are available for each new flow, and the latter communicates
such resource demands to each router along the flow’s path. However, the demand for
high-speed core routers to process per-flow reservation requests introduces scalability
and deployability limitations of this architecture without further enhancements.
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In contrast, the Differentiated Services (DiffServ) architectuli€ [2,9] achieves scala-
bility by limiting quality-of-service functionalities to class-based priority mechanisms
together with service level agreements. However, without per-flow admission control,
such an approach necessarily weakens the service model as compared to IntServ, namely
individual flows are not assured of a bandwidth or loss guarantee.

A key challenge addressed in recent research is how to simultaneously achieve the
scalability of DiffServ and the strong service model of IntServ. Towards this end, several
novel architectures and algorithms have been proposed. For example, architectures for
scalable deterministic services were developed ii [12,15]. In [12], a technique termed
Dynamic Packet State is developed in which inserting state information into packet
headers overcomes the need for per-flow signaling and state management. In [15], a
bandwidth broker is employed to manage deterministic services without explicit co-
ordination among core nodes. A scheme that provides scad#dtistical services is
developed inL[5], whereby only a flow’s egress node performs admission control via
continuous passive monitoring of the available service on a path.

While such approaches are able to achieve scalability and strong service models, they
do so while requiring specific functionality to be employed at edge and/or core nodes.
For example,[[B] requires packet time stamping and egress nodes to process signaling
messages; [12] requires rate monitoring and state packet insertion at ingress points and
special schedulers at core nodes. Thus, despite that such edge/core router modifications
may indeed be feasible, an alternate and equally compelling problem is to ask whether the
same goals can be achieved withanychanges to core or edge routers, or at most with
routers providing simplistic prioritized forwarding as envisioned by DiffServ extensions
such as class based queueing or prioritized dropping policies.

This design constraint is quite severe: it precludes use of a signaling protocol as
well as any special packet processing within core nodes. Such a constraint naturally
leads to probing schemes in which end hosts perform admission control by assessing
the state of the network by transmitting a sequence of probe packets and measuring
the corresponding performance. If the performance (e.g., loss rate) of the probes is
acceptable, the flow is admitted, otherwise it is rejected. Design and analysis of several
such schemes can be found[ifi [116,7]. Such approaches achieve scalability by pushing
quality-of-service functionalities to the end system and indeed removing the need for a
signaling protocol or any special-purpose edge or core router functions. Moréaver, [4]
found that such an architecture is indeed able to provide a single controlled-load like
service as defined in[13].

However, can host-controlled probing schemes be generalized to suppltifile
service classes as achieved by both IntServ and DiffServ? In particular, DiffServ supports
multiple service classes differentiated by simple aggregate scheduling policies (per-hop
behaviors); DiffServ's Service Level Agreements (SLAS) provide aggregate bandwidth
guarantees to traffic classes; IntServ provides mechanisms to associate different quality-
of-service parameters (e.g., loss rate, bandwidth, and delay) with different traffic classes.
Can such multi-class service models co-exist with the host-controlled architecture?

Unfortunately, a resourctealingproblem, first described in[4], can occur in multi-
class systems. In particular, the problem occurs when a user probes within its desired
class and, upon obtaining no loss (or loss below the class’ threshold), infers that sufficient
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capacity is available, which indeed it may be within the class. However, in some cases,
admission of the new probing flow would forotherclasses into a situation of quality-of-
service violations, unbeknownst to the probing flow. Such resource stealing, described in
detail in Sectiof2, arises from a fundamental observability issue in a multi-class system:
the performance isolation property provided by multi-class networks also inhibits flows
from assessing their performance impact on other classes.

The goal of this paper is to investigate host probing in multi-class networks. Ad-
dressing the problem of resource stealing, our contribution is threefold. First, we study
architectural issues and show how service disciplines and the work conservation property
have important roles in the performance of probing systems. For example, while a non-
work-conserving service discipline can prohibit resource borrowing across classes and
remove the stealing problem, such rigid partitioning of system resources limits resource
utilization. Second, we develop a probing algorithm which simultaneously achieves high
utilization and a strong service model without stealing. The algorithm, tegapeadbing,
provides a minimally invasive mechanism to enable flows to assess their impattieon
traffic classes in Class-Based Fair Queueing (CBQ) and strict priority systems. Finally,
we introduce a simple but illustrative analytical model based on Markov Chains. Using
the model, we precisely identify stealing states, comparatively analyze several probing
architectures, and quantify the aforementioned tradeoffs.

In all cases, we use an extensive set of simulations to evaluate different probing
schemes and architectures under a wide range of scenarios and traffic types. The experi-
mental results indicate thatprobing can achieve utilizations close to the limits obtained
by fair queueing, whilesliminatingresource stealing. Consequently, if core networks
provide minimal differentiation on the forwarding pathprobing provides a scalable
mechanism to control multiple service classes, achieve high utilization, and provide a
strong service model without resource stealing.

The remainder of this paper is organized as follows. In SeElion 2, we formulate the
stealing problem in multi-class networks and describe the role of the packet scheduler.
Next, in Sectiori 3, we propose a simple probing algorithm, termypdobing, that
overcomes the observability limitations introduced by multi-class schedulers. In Section
we develop an analytical model to study the performance issues and tradeoffs in
achieving high utilization, multiple service classes, and a strong service model without
stealing. Finally, in Section] 5, we describe an extensive set of simulation experiments
used to investigate the design space under more realistic scenarios.

2 Resource Stealing

The stealing problem arises in multi-class systems in which resources are remotely con-
trolled by observation. This is in contrast to systems in which resources are controlled
with explicit knowledge of their load, such as in IntServ-like architectures. In this sec-
tion, we describe the origins of multi-class stealing and the corresponding design and
performance issues. Throughout, we consider a general definition of “class” that can be
based on application types, service level agreements, etc., and with quality-of-service
parameters such as loss rate and delay associated with each class.
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2.1 Origins and lllustration

Probing schemes, such as those studiedlin [L]4,6,7], can be described with an example
using the network depicted in Figure 1. To establish a real-time flow between hosts Hand
H’, host H transmits a sequence of probes into the network at the desired rate (or peak rate
for variable rate flows). If the loss rate of the probes is below a pre-established threshold
for the traffic class, then the flow is admitted, and otherwise it is rejected. Scalability
is achieved in such a framework by pushing all quality-of-service functionality to end-
hosts, indeed removing the need &y signaling or storage of per-flow state.

The stealing problem can be illustrated as follows. Consider the following simple
scenario with two flows sharing a single router with link capa€itgnd a flow-based fair
gueueing scheduE(lor similarly core stateless fair queueingl[11] to achieve scalability
onthe data path). Suppose thatthe first flow requires a bandwiétﬁ ahdis admitted to
aninitially idle system. Further suppose thatthe second flow has a bandwidth requirement
%C. Upon probing for the available service in the fair queueing system, the flow will
discover that it can indeed achieve a loss-free service with throudj(fjuand admit
itself. Unfortunately, whileC is indeed the fair rate for each flow, the goal here is
not to achieve packet-level fairness, but rather to achieve flow-level quality-of-service
objectives. Thus, in this example, abruptly reducing the first flow’s capacity is a clear
violation of the flow’s service.

Fig. 1. lllustration of Probing and Multi-Class Stealing

This simple example illustrates an important point. The ability of fair queueing to
provide performance isolation can be exploited for both flow-control (to quickly and
accurately assess a flow’s fair rate) and quality of service (to provide a minimum guar-
anteed bandwidth to a flow or group of flows). However, it is precisely this performance
isolation which introduces the “stealing” problem for scalable services: since the prob-
ing flow is isolated from the established flows, it cannot assess the potentially significant
performance impact that it has on them. Consequently, while a new flow can determine
whether or not its own quality-of-service objectives will be satisfied, it cannot determine

1 We will discuss both flow- and class-based fair queueing. In class-based, the scheduling disci-
pline inside each class is FCFS (First Come First Served), and between classes the discipline
is fair queueing. In flow based each flow is considered as a class.
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its impact on others. Thus, if admitted, the new flow can unknowingly steal resources
from previously admitted flows and result in service violations.

This problem is not limited to fair queueing nor to per-flow schedulers. Consider a
class-based strict priority scheduler in which a new flow wishes to probe for the available
service atamid-level priority. Ideally, the flow could indeed assess the capacity remaining
from higher priority flows by probing at the desired service level. However, it would not
be able to assess its impact on lower priority levels without also probing at lower levels.

Thus, the stealing problem arises from a lac&lodervabilityof multi-class networks,
namely, that assessing one’s own performance does not necessarily ensure that other
flows are not adversely affected.

2.2 Problem Formulation

Within a framework of scalable services based on host probing, the key challenge is
to simultaneously achieve (1) multiple traffic classes (differentiated services), (2) high
utilization, and (3) a strong service model without stealing. To illustrate this challenge,
consider the network of Figufé 1 in which each link has capaCitfurther suppose
the system supports two traffic classéandB with different traffic characteristics and
QoS requirements.

A key design axis which affects these design goals is whether or not the system
allows resource sharing across classes. This in turn is controlled by the scheduler and
whether or not it is work conserving.

Rigid Partitioning without Work Conservation One way to ensure both classes
achieve their desired QoS constraints is via hard partitioning of system resources with no
bandwidth borrowing across classes allowed. Such a system can be implemented with
rate limiters, i.e., policing elements with the peak rate of cldéwited to ¢;C with

o1+ @2 < L.

Observe that a hard partitioning system can support multiple traffic classes and does
not incur stealing, thereby achieving the first and third goal above. However, notice that
the system is non-work-conserving in the sense that it will reject flows even if sufficient
capacity is available and consequently can under utilize system resources. For example,
suppose path A-A of Figulid 1 has a large clasgemand and no clag$and vice versa
on path B-B'. In this case, the system would be under-utilized as only half of the flows
which the system could support would be admitted. In general, whenever the current
bandwidth demands are not in line with the weightsthe system will suffer from low
utilization.

Inter-class Sharing with Work Conservation In contrast to the scenario above, con-
sider a work-conserving system which allows one class to use excess capacity from other
classes. In particular, consider a two-class fair queueing system (without rate limiters)
with weights¢p; and¢.. With the same demand as in the example above, both A-A and
B-B’ flows can fully utilize the capacity due to the soft partitioning of resources in the
work conserving system. Thus, the first and second goals are achieved. However, as de-
scribed in Sectiof??, such a system suffers from the stealing problem, as a newBlass-
flow on A-A or a new classA flow on B-B’ will steal bandwidth from established flows.
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Targeted Behavior The targeted behavior that we strive to achieve is to combine the
advantages of the hard and soft partitioning systems and allow borrowing across classes
to achieve high utilization, while eliminating resource stealing to provide a strong service
model. Thus, in the example, if A-A' is fully utilized by clasé-flows, classB flows

(and classA flows) should be blocked until clas4-flows depart. Below, we develop

new probing schemes which seek to simultaneously achieve the above three design goals
and achieve this targeted behavior. This service model is a greedy one, in which all flows
which can be admitted are, provided that their and all other service requirements can be
satisfied. This strategy does notincorporate blocking probability as a QoS parameter. Itis
possible to have targeting blocking probabilities, but it is beyond the scope of this paper.
Throughout the paper we will only consider the admission controlled traffic. Best-effort
would have a lower priority level so it would not interfere with the admission controlled
one. Also, guaranteed-like service with strict QoS assurances would have a reserved
bandwidth and a higher priority.

3 Epsilon Probing

In this section, we develop probing algorithms which overcome the stealing problem in
fair queueing multi-class servers. The key technique is to infer the “state” of other classes
with minimal overhead in terms of probing traffic or probing duration. Throughout, we
consider a simplified bufferless fluid model aslin [4], in which flows and probes transmit
at constant rate and probing is “perfect” in the sense that probes correctly infer their loss
rate as determined by the scheduling discipline (which defines how loss is distributed
among classes) and the workload (which defines the extent of the loss in the system).

Hosts

Multi-Class Scheduler
(r,.4)

RERAREEA
(r,.4)

K— LI
r,.4)

RERNAR

Fig. 2. lllustration ofe-Probing

Consider a class-based weighted fair queueing server Avithlasses, where class
k has weightp,, and target QoS parameters of loss rateand delay bound, (for
simplicity, we restrict the discussion to loss). According to the definition of WFQ,
the bandwidth utilized by class when all classes are backlogged is givenlhy =

% ' whereS is the set of backlogged classes. Let the demanded bandwidth of

ies 71

i
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classk be denoted byBy. If B; + --- + Bx > C, then loss occurs in the system, and
the loss rate of clagsat that particular instant in time is given by

Vi = (B, — Uy,) " /By. 1)

With probing in a single level, a new clagglow requesting bandwidth), is admitted
if its measured loss rate is less than the class requirement, hg.,df ;. However,
observe that even under congestion and arbitrarily high loss rates in other classes, the
new flow would be admitted as long as

By, + b, < Cor /(1 — I). 2

Thus, stealing across classes can occur as the probing flow fails to observe whether or
not other classes’ loss requirements are also satisfied. While simultaneously probing in
all classes may seemingly solve the problem, it is not only unnecessary, but significantly
damages the performance of the system: namely increased probing traffic forces the
system to more quickly enter a thrashing regime in which excessive probing traffic
causes flows to be mistakenly rejected, and in the limit, causes system cdllapse [4].

We propose-probing as a probing scheme designed to eliminate stealing in a mini-
mally invasive way. Withe-probing, a new flow requesting bandwidthsimultaneously
transmits a small bandwid#) to each other clasis The motivating design principle is
that the impact of the new flow aall classes must be observed, so that the new flow
is only admitted ify; < I is satisfied for alk = 1,---, K. The admissible loss rate
in eache-probe ;) is the same for all classes and globally agreed upon. In particular,
addition of the new clasi-flows can affecU;, for each class: the-probes ensure that
the newU;, is sufficiently large to meet the required loss rate.

In the fluid modelg; can be arbitrarily small, whereas in the packet system, it must
be sufficiently large to detect loss in the class. In the simulation experiments of $éction 5,
we considek; = 64 kb/sec for a 45 Mb/sec link with flows transmitting at rates between
512 kb/sec and 2 Mb/sec.

Finally, we note that despite the utilization advantages of a work-conserving system,
a network may still contain non-work conserving elements to achieve other objectives
(e.g., to ensure that a minimum bandwidth is always available in each class, even if
there is no current demand, cf. Figlite 7). The goal-pfobing is to enable inter-class
resource sharing to the maximal extent allowed by the system architecture.

g-probing is applicable to both class-based fair queueing and strict priority sched-
ulers. In the latter type of scheduler, th@robes are required only in the priority levels
lower than the level of the class for the flow that is requesting admission. In higher
levels stealing cannot occur and ai@robe is required. Therefore, the overhead due to
e-probes is lower in strict priority than in class-based fair queueing schedulers.

4 Theoretical Model

In this section we develop an analytical model based on continuous time Markov chains
to study the problem of resource stealing in multi-class networks.
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4.1 Preliminaries

In the model, each state identifies the number of currently admitted flows in each class

such that withK classes, the Markov chain h&s dimensions. The link capacity is

C resource units and each flow of classccupiesh, resource unitd. We assume

that new flows arrive to the system as a Poisson process with mean inter-arrival time
+, and that flow lifetimes are also exponentially distributed with méanProbmg is

conS|dered instantaneous so that we do not consider the ° thrashmg phenomenon (due

to simultaneously probing flows) describedlin [4].

We definen; to be the number of clags flows in the system such that the total
amount of resources occupied by all flows in the system is givefbbyn), where
b= (b, ,bx),n=(n1, --,nkg),and(b-n) = Zk bing. All classes require 0
loss probability so that we restrlct our focus to multi- class stealing and do not address
QoS differentiation with this model.

In the discussion below, we consider an example consisting of two traffic classes so
that, for example, the transition from stéte 1) to (1, 1) signifies admission of the first
class 1 flow. The link capacit¢' is 6 resource units and the flow bandwidths are 1 and
2,i.e.,by =1 andby = 2.

4.2 Markov Models

Below, we model the different schedulers and probing algorithms which we compare in
Sectiori4B.

FIFO Here, we consider FIFO as a baseline scenario. In our working example with two
classes, each flow will probe the network and will be admitted orblyrif + boyno < C,
including the probing flow. Figurlg 3 depicts the corresponding state transition diagram.
In the general case, the state spacgis {n € I : (b-n) < C} wherel is the set
of non-negative integers add is the set of all -tuples of non-negative integers. The
link utilization is given byu = & > _«(b - n)w(n) wherer(n) is the probability of
being in staten, which can be computed using standard techniques [10]. Notice that the
probability of stealing is zero, since probing flows are only admitted if there is available
bandwidth in the link.

Flow-Based Fair QueueingAs described in Sectidn 2, larger bandwidth flows can have
bandwidth stolen in flow-based fair queueing systems. Figure 4 depicts the system’s
state transition diagram for our working example. As shown, the state space includes all
states in which the number of flows multiplied by the lowest bandwidth flow is lower or
equal to the link capacity. For example, a transition from state (4,1) to (5,1) is possible
because 1 bandwidth unit is guaranteed for each flow, and this is sufficient for class 1
flows. Alternatively, a transition from state (5,0) to (5,1) is not possible because class
2 flows require 2 bandwidth units. Thus, the stealing states represent admissions of

2 In general the rates of flows that belong to the same class may be different; however this
assumption is required for the Markov chain formulation.
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Fig. 3. FIFO Transition Diagram

low bandwidth flows when the system is at full capacity and high bandwidth flows are
forced into a loss state. In the state transition diagrams, stealing states are represented
by a crossed-out state.

SSONANONONS
S

Fig. 4. Flow-Based Fair Queueing Transition Diagram

Suppose{ni,na, ..., ng, ..., nx } is the current admitted set of flows. Then a new
classk flow is admissible ifbyn1+bans + ... + b ([ng + 1] + ng1 + ... + nx) < C}
with {b; < bs < ... < by, < ... < bx}. There are two cases: if the total demand satisfies
{bin1+bang+...+bg(ng+1)+bgr1ng1+...+bgng < C},thenallflows are correctly
admissible; however ifb1ny +bang +... + b (ng + 1) + bpr1ngr1 +... +bgng > C},
then stealing occurs. Since the scheduler fairly allocates bandwidth to all flows, flows
with bandwidth higher than the bandwidth of the flow requesting admission are forced
into a loss state.
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For the case of two types of flows, the state space including stealing states is given
by
SFQ = {n S 2. ((b1n1 + bing < C) A (b2n2 < O) A\ (n1 ;é 0))
\/((b2n2 < C) A (n1 = 0))}

For example, in our transition diagram, state (2,3) (with= 2 # 0) is a possible
state (a stealing state) because; + byjny = 5 < C andbyn, = 6 < C. State (2,4)
is not a possible state sinéen; + biny = 6 < C butbsny = 8 > C. This example
explains the need of the second inequaltiyn, < C). With n; = 0, the state with the
maximum number of flows is (0,3) because, = 6 < C.

To generalize the state spaceloatypes of flows, let* be the smallest such that
ng= 7 0, then

SFQ = {n € 5. (bk*nk* + bk*nk*+1 + ot bpeng < C)
A(bk*+1nk*+1 + ot brang <C)A LA (bKnK < C)}

The mean utilization is then

u=— Z (b on)m(n) 3
where

[(b-n)if(b-n)<C
(bon) = { C otherwise “)

The probability of stealing is

Snes(b-n)(n)
S nesee, (0o n(n)

computed as the percentage of bandwidth guaranteed to flows which is stolen by other
flows.

Pl =1- (5)

Rate Limiters With rate limiters class: flows are only allowed to use a maximum

of C}, bandwidth units. Here, we consider rate limitersC4f = 2 units andCs, = 4

units respectively. Figufd 5 depicts the corresponding state transition diagram. Given the
functionality of the rate limiters, the state space is reduced to

Sr ={ne€I" :byny < Cp, k=1,2,..K}. (6)

With this elimination of various high-utilization states, the overall system utilization in
the general case df classes, given by = & > nesy, (0-n)m(n), is then also reduced

as compared to work-conserving systems. Clearly, the extent of this utilization reduction
is a function of the system loab}, and)\;, andCy. If they are properly tuned, the penalty

will be minimal, whereas if they become unbalanced due to load fluctuations, the system
performance will suffer.
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Fig. 6. Class-Based Fair Queueing Transition Diagram

Class-Based Systemsn class-based fair queueing without rate limiters, resource bor-
rowing across classes is allowed. However, as described in SEEtion 2, stealing occurs as
new flows in classes with reserved rate less thar request admission. Thus, with 1-
level probing, a clask flow with bandwidthb;, will be admitted if, including the probing
flow, one of two conditions occurgin; < C when(b-n) < C, orbgng, < C¢p when
(b-n) > C. In the state transition diagram of Figlifedg, = 1/3 and¢2 = 2/3. As an
example, consider the transition from (5,0) to (5,1). In the state space, the first set of in-
equalitiesis not satisfied because, = 2 < C, butb;n; +byn, = 7 > C. Howeverthe
second set of inequalities is satisfied sibgey = 2 < C¢o andbing +bons =7 > C.
Therefore this transition is possible. Similarly, the transition from (4,1) to (5,1) is not
allowed because neither set of inequalities are satisfied.

The state space has two parts. The first one is equal to the one of FIFO and allows
borrowing between classes as longlas n) < C. ThusScpg-1 includes{n € 1% :
(b -n) < C}. Suppose we are in one of the edge FIFO states. Due to the borrowing
between classes, for some classgs;, < C¢y, which we will call the underload classes
(UL), and for othersh,ni, > Cor, which we will call the overload one$XL). Suppose
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there is currently no stealing in the system. New probing flows ftbinclasses can be
admitted untilb,n,; = Cey, with ul € UL, irrespective of the valuéb - n). Thus
departing from an edge FIFO state, new states can be created su¢h thdt<, ul €
UL : bynu < Ce¢yu}. The overall state spack-g¢-—1 is then the union of the FIFO
state space and the one constructed with these new states.

The utilization isu = & ZneSCBQ,l(b o n)w(n) and the probability of stealing
. CBQ-1 _ Znes(bﬂ)ﬂ(n)

IS pgy =1- ZHGSCBQ_l(bon)w(n)
in flow-based fair queueing. Comparing the class-based and flow-based fair queueing,
observe that the class-based system has a larger number of stealing states than the flow-
based system. For example, transition from (6,0) to stealing state (6,1) is possible in
the class-based system whereas state (6,1) does not exist in flow-based fair queueing.
The reason for this is that the flow based fair queueing system blocks this 7th flow as

it forces the system into loss. However, the class based system admits this flow since
the requested rate of 2 bandwidth units is indeed available in class 2, even though it
forces class 1 into a stealing situation. Regardless, even though there are more stealing
states in the class-based system, the overall stealing probability is lower (as indicated
by numerical examples and simulations below) because the fraction of time spent in
such stealing states is lower in the class based system, so the bandwidth stolen will also
become lower.

In contrast to the above 1-level probing, witktprobing, all classes are probed to
ensure that no stealing occurs. Here, the admissible states in this scheduler are the same
as in FIFO, so the state space is the same, as well as the utilization. (We note that the
utilization in the real system with nonzero probe durations is not the same however.)

. Note that(b o n) has the same definition as

4.3 Numerical Examples

Here we numerically solve the Markov models for each system described above. With the
solution to the state probabilities, we compute the utilization and probability of stealing
using the expressions derived above. We consider the scenario of previous sections
with a link capacity of 6 bandwidth units. The weights of classes 1 and 2 are 1/3 and
2/3, respectively. The bandwidths of class-1 and class-2 flows are 1 unit and 2 units,
respectively. Class 1's mean flow arrival rate is 8 requests per second while class 2's is
5. The mean life time of class 1 flows is 2/3 time units while class 2’s is 1/4 time units.

Table 1. Utilization and Stealing Probability

Probing Scheme|Utilization | Stealing

e-probing/FIFO 0.789 0
Flow-FQ 0.792 0.140
Rate Limiters 0.702 0

Class-FQ (1-level) 0.789 (8.28.10*

We make two observations about numerical examples presented ifiTable 1. First, no-
tice that=-probing and rate limiters both have the effecebiminatingresource stealing.
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Howeverg-probing does so at higher utilizations. For examplprobing achieves 79%
utilization as compared to 70% under rate limiters. Moreover, the difference between
these two utilizations is determined by the relative class demands, which in this context
are the relative flow arrival rates.

Second, note the stealing probabilities for flow- and class-based fair queueing (with-
out e-probing). Here, the stolen bandwidth is 0.140 for flow-basedsa?gl- 10~* for
class-based. As evident from the model, CBQ incurs far less stealing than flow-based
fair queueing. In simulation experiments, this relative difference still exists, however
the probability of stealing for CBQ is far greater than it is in these numerical examples.
The reason for this is even evident from the Markov model. In the CBQ system, stealing
occurs as classes first demand bandwidths below and then later@iédas defined in
the state space of CBQ-1 level. It is precisely such system dynamics (changing resource
demands) which are well captured by simulations but less via the Markov model. Thus,
while the Markov model is useful to explore the origins and structure of multi-class re-
source stealing, we now turn to simulation experiments to quantitatively explore stealing
under more realistic scenarios.

5 Experimental Studies

In this section, we present a set of simulation experiments with the goal of exploring the
architectural design space as outlined in Sedfion 2, evaluatPigbing presented in
Sectior B, and validating the conclusions of the analytical model of Sédtion 4 in a more
general setting.

Hosts

Rate Limiters Multi-Class Scheduler

[T11]
O ) [1111]
[111]

Fig. 7. Simulation Scenario

The basic scenario is illustrated in Figlie 7. It consists of a large number of hosts
interconnected via a 45 Mb/sec multi-class router. For some experiments, the router
contains rate limiters which drop all of a class’ packets exceeding the pre-specified rate.
We consider several multi-class schedulers including CBQ, flow-based fair queueing,
and rate limiters. We also consider FIFO for baseline comparisons. New flows arrive
to the system with independent and exponential inter-arrival times through a Poisson
process and probe for a constant time of 2 seconds. Flows send probes at their desired
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admission rate except ferprobes, which are transmitted at 64 kb/sec. New flows are
admitted if the loss rate of the probes is below the class’ threshold.
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e———= CBQ 1 level probing
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Stealing
o
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@
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03l —  FIFO |
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v—~ CBQ 1 level probing
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(a) Utilization (b) Probability of Stealing

Fig. 8. Utilization and Stealing vs. Load for Various Node Architectures

Utilization and Stealing In the first set of experiments depicted in Figuke 8, we inves-
tigate the challenge of simultaneously achieving high utilization and a strong service
model without stealing. In this scenario, there are three traffic classes with bandwidth
requirements of 512 kb/sec, 1 Mb/sec, and 2 Mb/sec respectively. We consider three
variants of the system depicted in Figlite 7. The flow-based fair queueing curve, (labeled
“FQ”) represents the case in which the scheduler allocates bandwidth fairly dloasg

i.e., theN*" probing flow measures no loss if its rate is less thaV. In contrast, the
curves labeled “Rate Limiters 1”, “Rate Limiters 2” and “CBQ 1 level probing” represent
class-based scheduling. In the former case, each class is rate lim{&@ &o that all

loss occurs in the rate limiters and none in the scheduler (cf. Higure 7). In the latter case,
the classes ampot rate limited and the scheduler performs CBQ with each class’ weight
set to 1/3. In all cases, probes are transmitted at the flow’s desired ratepobding

of Sectior B isnot performed. The x-axis, labeled load, refers to the resource demand
given by 2.

We make the following observations about the figure. First, comparing the results
with rate limiters and CBQ, Figufé 8(a), indicates that CBQ achieves higher utilization
than rate limiters due to the latter’s non-work-conserving nature. That is, the rate limiters
prevent flows from being admitted in a particular class whenever the class’ total reserved
rate isC'/3, even if capacity is available in other classes. However, from Figure 8(b), it
is clear that the higher utilization of CBQ is achieved at a significant cost: namely, CBQ
incurs stealing in which up to 1.5% of the bandwidth (in the range shown) guaranteed
to flows is stolen by flows in other classes. Hence the experiments illustrate that neither
technique simultaneously achieves high resource utilization and a strong service model.
Moreover, as the resources demanded by a class become mismatched with the pre-
allocated weights, the performance penalty of rate limiters is further increased. That is,
if the demanded bandwidth were temporarily 80/10/10 rather than 33/33/33, as is the
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case for the curve labeled “Rate Limiters 2" at a load of 40, then the rate limiters would
restrict the system utilization to at most 53% representing a 33/10/10 allocation.
Second, observe the effects of flaggregatioron system performance. In particular,

flow-based fair queueing achieves higher utilization and has higher stealing than CBQ.
With no aggregation and flow-based queueing, smaller bandwidth flows can always steal
bandwidth from higher bandwidth flows resulting in both higher utilization since more
flows are admitted (in particular low bandwidth flows) as well as more flows having
bandwidth stolen. In contrast, with class based fair queueing, stealing only occurs when
aclassexceeds its 1/3 allocation (rather than a flow exceeding/id allocation) and

a flow from another class requests admission, an event that occurs with less frequency.

e-Probing Figure[9(a) depicts utilization vs. load for three cases: CBQ with one-level
probing, CBQ withe-probing, and rate limiters. Observe that compared to one-level
probing,e-probing incurs a utilization penalty. There are two contributing factors. First,
thee-probes themselves cause an additional traffic load on the system despite their small
bandwidth requirement. Second, by blocking flows which will result in stealing, there
are fewer flows in the system on average witprobing than with one class probing.
Regardless, this moderate reduction in utilization has the advantage of eliminating steal-
ing completely. Moreover, the utilization penaltyrate limiterscan be arbitrarily high
depending on the mismatch between the demanded resources and the established limits.
In contrast, the performance ©fprobing does not rely on proper tuning of rate limiters,

but rather the overhead efprobing simply increases linearly with the number of classes.
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Fig. 9. Utilization and Overhead af-Probing

The utilization reduction solely due to probing is further illustrated in Figure 9(b).
Observe that the overhead incurreceiprobing is necessarily higher larger than that
incurred by probing in only one class, agprobing must also ensure that other traffic
classes are not in overload. However, due to the limited bandwidth required to probe
in other classesg;-probing incurs moderate utilization reductions typically below 2.5%.
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Thereforeg-probing is able to simultaneously eliminate stealing, provide multiple ser-
vice levels, and enable full statistical sharing across classes.

6 Conclusions

Placing admission control functions at the network’s endpoints has been proposed as
a mechanism for achieving per-flow quality-of-service in a scalable way. However, if
routers perform class differentiation such as multiple priority queues, the system be-
comes less observable to probing flows, precisely because of the performance isolation
provided by the service discipline. In this paper, we have studied the resource stealing
problem that arises in such multi-class networks and developed a simple probing scheme
termede-probing which attains the high utilization of work-conserving systems while
preventing stealing as in non-work-conserving systems with hard class-based rate limits.
We introduced a Markov model that illustrated the design space of key network differ-
entiation mechanisms, such as class- and flow-based weighted fair queueing and rate
limiters. The model showed the different ways that stealing is manifested in the different
configurations and provided a tool for formal comparison of diverse systems. Finally,
our simulation experiments explored the design space under a broader set of scenarios.
We quantified the severity of bandwidth stealing and found t¢hatobing eliminates
stealing with a modest utilization penalty required to observe the impact of a new flow
on other traffic classes.
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