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Scalable Services via Egress Admission Control
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Abstract—Allocating resources for multimedia traffic flows with ~ of the aggregate flow rather than user-specified properties of
real-time performance requirements is an important challenge for  individual flows. However, despite their use of aggregate con-
future packet networks. However, in large-scale networks, individ- trol, extant measurement-based admission control algorithms

ually managing each traffic flow on each of its traversed routers ) . .
has fundamentalscalabilitylimitations, in both the control plane’s have been developed in the context ofiatservarchitecture,

requirements for signaling, state management, and admission con- in Which per-flow signaling and state management are used to
trol, and the data plane’s requirements for per-flow scheduling incorporate the effects of a newly admitted flow into the aggre-
mechanisms. In this paper, we develop a scalable architecture and gate load at each network node [29].
algorithm for quality-of-service management termedegress admis- Second, current measurement-based admission control algo-

sion control In our approach, resource management and admis- ith ke strict Hi bout th derlvi t
sion control are performed only at egress routers, without any coor- fItmS Mmaxe Strict assumptions adout e Linderying Systeim

dination among backbone nodes or per-flow management. Our key b€ing controlled, e.g., that the multiplexer employs first-come-
technique is to develop a framework for admission control under first-serve scheduling and has a fixed and known link capacity

a general “black box” model, which allows for cross traffic that and buffer size. Moreover, it is assumed that the impact of all
cannot be directly measured, and scheduling policies that may be flows being serviced by the node can be explicitly measured at

ill-described across many network nodes. By monitoring and con- th de itself. While th b bl ti f
trolling egress routers’ class-based arrival and service envelopes, € NOGE ILSEl. lie (NESE May be feasonanie asSUMpPLIONS 10F

we show how network services can be provisioned via scalable con-a Single multiplexer, we will show that they are quite problem-
trol at the network edge. We illustrate the performance of our ap-  atic in scalable networking environments, in which cross traffic

proach with a set of simulation experiments using highly bursty js present and end-to-end packet service is ill-described by a
traffic flows and find that despite our use of distributed adm|513|on simple scheduling policy or a single link capacity.
control, our approach is able to accurately control the system'’s ad- - .
missible region under a wide range of conditions. Flnally,_ both measurement- and model-ba_se_d gdm|53|on con-
trol algorithms have largely focused on provisioning resources
at a single network node. Extending previous techniques
to multinode environments would require coordination of
|. INTRODUCTION state among nodes, as well as development of algorithms for
- . . composing end-to-end services from per-node mechanisms in
NSURING minimum quality-of-service (QoS) levels tOenvirrz)nmegntswithoutper-ﬂow traffic resﬂaping [28].

real-time multimedia traffic flows is an important chal- In this paper, we introduce a new framework for scalable
lenge for future packet networks. Toward this end, a numberaf !

dmissi trol algorithms h b devised which 0S provisioning termed Egress Admission Control. In our ap-
admission control algorithms have been devised which resey ach, admission control decisions are made at egress routers,
network resources to ensure that user and class QoS objec

o . . . ftfout maintaining per-flow state in either the network core
can be satisfied [16]. Such algorithms achieve this goal by € the egress node, and without coordination of state with core

ploying user-specified traffic parameters to estimate 299re9i81es or other egress nodes, i.e., admission decisions are made

resource demands after accounting for the effects of statistiBgISed solely on aggregate measurements obtained at a flow’s
multiplexing. However, a key difficulty encountered with Sucrégress router

approaches is_the?r requir_ement that each_network node coo Our goal is to develop an architecture and algorithm for ad-
dinate and maintain staFe information (traffic parameters, Q?fﬁssion control that can simultaneously achieve:
class, etc.) for each traffic flow. Consequently, due to the corre- . . . :
sponding signaling and computational demands, there are fun- @ strong and d|ﬁerent|at§q (multlclgss) service .mijeI;
damental limits to the scalability of such admission control algo- * flow af!‘?' class level stat|§t|cal_ sharing (high utllization); .
rithms which may prohibit their deployment in large-scale net- * scalability (no per-flow signaling or state management in
works such as the Internet. core routers)

It may appear that recent algorithms for measurement-ba$B@reby providing a new framework for combining the strong
admission control, e.g., [6], [15], [21] solve this problem vigervice model of intserv with the scalability of diffsewithout
their management afggregatetraffic. In other words, such al- sacrificing network utilization.

gorithms allocate resources according to measured propertie@ur solution and contribution has two components: an ar-
chitecture and an admission control algorithm. Architecturally,
we achieve scalability by making admission control decisions
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Fig. 1. Egress admission control model.

the raw workload, we can control not only the service acrossstill able to accurately control the network’s admissible region,
particular ingress—egress pair, but also implicitly control othachieving efficient utilization of network resources, exploiting
paths, thereby ensuring that all classes on all paths maintain thneit only statistical multiplexing gains, but also utilization gains
required service levels. from inter-class resource sharing. Thus, compared to diffserv
For admission control, our key technique is to develop a megd], [19], we achieve a more rigorous service model with
surement-based theory ehvelopeg$22] to accurately charac- controlled latency and loss. And compared to intserv [29], we
terize and control both arrivals and services in a general way.dohieve a controlled-load like service in a scalable way [27].
particular, we introduce a measurement-based service envelopginally, we have implemented the scheme on a network of
as a new way to adaptively describe the end-to-end service avpibtotype routers and performed an extensive measurement
able to atraffic class. By developing our approach using a “blaskudy. Our implementation consists of ingress—egress path
box” system model, we show how this service abstraction camonitoring, an admission control module at edge routers, and
incorporate the effects of interfering cross traffic without explica modification to RSVP to signal only egress nodes. We refer
itly measuring or controlling it. Moreover, the service envelop® [23] for a detailed description of the implementation and
effectively exploits features of the backbone nodes’ scheduleneasurement study and in this paper focus on simulation-based
and the effects of statistical resource sharing at both the flperformance analysis.
level and the class level. For example, if a class is provided a cir-The remainder of this paper is organized as follows. In Sec-
cuit-like service without sharing among traffic classes, the sdien Il we describe the architectural component of our solution.
vice envelope will measure a simple linear function. In contraddext, in Section Il we formulate the minimalist solution that
if the black box performs weighted-fair-queueing-like schedonforms to this architecture via a simple queueing theoretic
uling [24], [25], the service envelope will reflect the availablapproach. In Section IV we describe a refined measurement
capacity beyond the minimum “guaranteed rate” which can beethodology for inferring characteristics of a path and develop
exploited by the class, i.e., the excess capacity which is avah admission control algorithm based on these measurements.
able due to fluctuating resource demands of cross traffic amdSection V we present simulation experiments. Finally, in Sec-
other traffic classes. Finally, by limiting a class’ traffic by contion VI we discuss related work and in Section VII, we conclude.
trolling admission of flows into the class, we can ensure that the
class’ predicted quality-of-service is within its requirements. Il. SYSTEM ARCHITECTURE
To quantify the service quality received by a class, we es
mate the serviceonfidence levelvhich reflects the variation in
past envelope measurements and the uncertainty in the predidsonsider an autonomous systeas depicted by the cloud in
tion of future service and arrivals due to fluctuating demands bfg. 1. Suppose that a guaranteed-bandwidth session is desired
cross traffic. Building on [21], we apply extreme value theorpetween routers A and’AThe RSVP/intserv protocol would es-
to characterize the distribution of the measured peak-rate dadlish this session by sending a signaling message to reserve re-
minimum-service envelopes. In this way, we not only predictgources for the new flow at each hop along the path. Depending
class’ delay bound, but also the probability of its violation, anan the route selected, this would include several intermediate
the estimated fraction of packets that will receive the desir@@des such as D-E-F. As described in the Introduction, this ap-
service. proach has scalability limitations regarding signaling and state
We next perform a large set of simulation experiments tanagement for many flows. Moreover, without special mech-
study the performance of our approach. We consider a scenaidsms at intermediate nodes such as per-flow traffic reshaping,
characterized by highly variable traffic loads (with traffic flowsensuring end-to-end QoS measures remains an open problem.
exhibiting long range dependence), multiple network nodes,
unknown cross traffic, and several packet service disciplines, . _ _ . .
We find that while egress admission control is a scalable ap‘q'”éh's Paper, we donsider a single autonomous domain. Extenslons to mul-
Ipte aomains cou e achieve y concatenating domain reservations in a
coarse-grained solution for quality-of-service management, iti@nner analogous to RSVP’s concatenationardereservations.

tj-
A. Traditional Models for QoS Provisioning
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Observe further that simply establishing “pipes” to achieven the A-X flows must be inferred from measurement at the
scalability (such as aggregate diffserv-style Service Levegress point A
Agreements) between such pairs of nodes also encounter$o address this issue, we structurally map the network path
many inefficiencies. Most importantly, rigid and permanerto the “black box” model (as depicted in Fig. 1) in which we
partitioning of resources precludes statistical resource sharantrol a system without direct knowledge of its service disci-
among traffic classes and paths. In the example, if B-D-E-pline, cross traffic, load, etc. We then measure the arrival and
cross traffic is lightly loaded, an increased number of flowservice characteristics of the multinode path and control the path
could be admitted between A and.Adowever, this would not by limiting admissions at the egress point. Moreover we implic-
be possible under a pipe model without “resizing” the pipe,idy control other paths by having all edge points in the domain
hard global state management problem itself. In Section V werform the same algorithin.
show that such statistical sharing across paths and classes is inla measuringarrivals, an important distinction between the
portant for achieving efficient utilization of system resour¢es.black-box model and realistic networks is that in the former

case, the controlling node can directly measure both the arrival

B. Egress Model and departure process, whereas the egress node views only the
it is clear that curreStem departures. Consequently, to obtain the arrival charac-
ristics as viewed by thiagressrouter, packet entrance times
8the ingress point must be communicated to the egress node.

service model. Our goal is to develop an architecture a gre ?}re two ba?c a.pp:joalche;(s: f;LSt’ i thehmgreksst and egresls
admission control algorithm that can combine the strong a gaes have synchronized clocks, then each packet can simply

multiclass service model of intserv with the scalability o € “”_‘e'stta"_‘p‘?d at the Ingress router. Second, i clopk Syn-
diffserv. chronization is impossible or the granularity of synchronization

1) Architecture: The main idea of our architectural solutiorVailable is too coarse, a cumulative queueing time may be sub-
jtuted for the ingress arrival time. In particular, if all nodes

is to process reservation messages only at the network e ) .
INgress and core nodes) compute the time a packet is locally

(egress router) and to use continual passive monitoring o d and add this time t lati t stored in a field
path to assess its available resources, implicitly including the gueuedand a IS ime fo a cumufative count stored in a fie

fects of cross traffic that are not directly measured at the egré’ééhe packet header, the egress node can compute the packet's

oint, and implicitlypreventingother egress points from admit-Sntrance time. A var_ian_t (.)f the Iatte_r technique is employe_d in
'Eng flows be)F/)ond );F:] acceptgkj)le range P the FIFO+ service discipline [9] to improve a flow’s QoS via

In particular, to establish a new session, aresource reservaﬁ8ﬁ’rdmated scheduling, and the former technique is employed

message is generated by the user which contains its traffic spéQ:ll- ur-own mplemen}aﬂon. both the af tioned
fication and QoS requirements. For the traffic specification, a% f_measuringservice we Uuse bo € alorementione

Based on the discussions above,
solutions cannot simultaneously achieve scalability, statistiég
sharing across flows and classes, and a strong and differenti

deterministic traffic model may be used (e.g., dual leaky buc stem-entrance times alqng with packet dep_ar?ure times
parameters or merely peak rate). Moreover, a flow's specifi easured at the egress point) to construct a statistical charac-

traffic parameters play only a minor role as they are only usé%rization of the service available along the path. In the baseline

when the flow itself is being established: admission of futur?‘eChe.me of Secthn i, we will simply compute the mean
sessions will be based aneasurementsf aggregate traffic service rate, and in Section IV, we develop an envelope-based

rather than user specifications. For quality-of-service parar(ﬁpproach to also capture the temporal correlation and variation

eters, users specify their required packet loss probability a%both arnvatls a?ﬁ Zelrwc_e. A If{ﬁytptﬁmt al_alf)u';] bOtht S.erv'(;ﬁ
delay bound via their requested class. measurement methodologies is that they will characterize the

This reservation request is then forwarded to the egress roﬁg?”able service on a path as oppased to, for example, the

(router A in the example) which makes the final admission decidW link capacity as done for network management purposes

sion and notifies both the sender and receiver of the establisﬁ%cjm]'ﬂBy aISso tt.)ourll\(ilrg:g the marglnalt e1;f§:tcts f(f) f ?dmlttlt?]g
session. The key point is that only the egress router proces@e@ew ow (Section 1V-C), we can control its effects on the

the reservation request, all intermediary nodes merely forweﬁarformance of eX|st|ng_rows. . . .
OfAs an example, consider the network of Fig. 1 in which all

the request packet and neither perform admission control n, . .
store state information for the session. In this way, the solutir{mkS have 1 Mb/s capacity. Suppose an 800 kbis flow is estab-

ished along ADEFA Can a 300 kb/s flow be mistakenly es-
blished along BDEH and force the A-fow into violation?
ecall that egress router H has no explicit knowledge of the

achievesscalability.

2) QoS Control: Akey challenge is then to enable the egre§
node to make a good prediction of the new flow’s service, a . . .
more generally, to ensure that all flows of all classes and pal EFA f_low.). Proylded that an algorithm measures theail-
maintain their desired service level. For example, B-H flow? le service (in this case 200 kb/s), the answer is no: egress
would be admitted by router H and will share the link D-E wittfouter H W|II.pro.perIy block the 300 Kbfs flow. :

A-A’ flows. However, existence of these B-H flows will not be A key point is that the admission controlier applies to a

explicitly signaled to router Arather, theim actofcrosstrad'ficgener_‘leI system model including single _and multiple-node
PHCIty sig P domains, FCFS and class-based scheduling, and standard as

2Further limitations of the pipe model are described in [12]'s motivation for 3While multipath routing is rarely used in practice, we assume for generality
the “hose” model. that multipath routingcanoccur, and do not distinguish among the paths.
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well as QoS-enhanced backbone networks. When QoS mecivaerel(-) is an indicator function, and the mean delay is
nisms are present in the network (such as class-based queueing

rather than FCFS), the admission controller will measure the Z(dj —a)lt —T < d; <t)
corresponding performance improvements and exploit the D— 4 ' @)
QoS functionality by admitting more flows per class, thereby Zl(t ~T<d; <)

increasing the overall system efficiency. Finally, notice from 7

Fig. 1 that the admission controller does not measure or model )
resources at the node level, such as link capacity of a cdf@der the assumptions of the M/M/1 model, the unknown ser-

node. Instead, we abstract all low-level resources into a virt)4fe rate is estimated by

server which allows us to design an admission controller that 1
is applicable to a broad class of core network topologies and H= D + A ®3)
configurations.
With admission of a new flow with rate, the new delay bound
lIl. BASELINE SCHEME violation probability will be
In this section, we sketch a simple queuing theoretic algo- P(Delay > D) = exp(—D(pp — A —7)). 4)

rithm devised to satisfy a delay target in the black box model.

The goal here is threefold. First, we illustrate an abstractidius, the new flow should be admitted only if the new esti-
of a network path into a simple single-server queuing moddénated delay-bound-violation probability is less than the class’
Second, we highlight key issues for managing multiclass néa&rget value. Consequently, under the particular assumptions of
work services. Finally, we use the approach as a baseline #¢ M/M/1 model, the above scheme limits the class’ latency
experimental comparisons and, by highlighting its limitation$@ Within the target delay bound for the specified fraction of
we further motivate the envelope-based scheme. packets.

A. Problem Formulation C. Limitations of the Baseline Scheme

Consider a single traffic class with quality-of-service targets While admission control based on (1)—(4) does target satis-
given by a delay bound of 200 ms to be met by 99.9% of packefgction of a class’ quality-of-service objectives using a scalable
Further consider a stationary and homogeneous arrival of flog¢stem model, it encounters several key problems which pre-
and packets within flows, so that there exists some maximu#tide its practicality to realistic networks.
number of packets per second which can be serviced so that thiEirst, it offers no support for multiple services classes. That
QoS requirement is met. If the overall arrival rate of packets t®, by treating each class independently, the impact of a new
the server is greater than this maximum, the difference shodilew on other classes is ignored. Second, the assumption that
be blocked by the admission controller to prevent an overloétier-packet times are independent and exponentially distributed
situation. conflicts with measurement studies [14]. Third, the assump-

The key question is, how to determine which load level #on of independent and exponentially distributegvicetimes
the maximum one that can support the service. Specifically,agnnot account for the highly variable service times in real-
the current load is below this maximum, then the current 99istic networks; it ignores the strong effects of cross-traffic and
percentile delay will be below the target. However, when a neWter-class resource sharing, namely, that packet services times
flow’s packets access the network, the new 99.9 percentile def@n be highly variable as well as correlated due to interference
of this class and others is in general a complex function of tfi@m bursts of cross traffic.
loads at the constituent routers along the path. Below, we sketctn Section V, we experimentally quantify the impact of these
a baseline approach for assessing the impact of new pacKiétations in a realistic scenario.
and flows on the delay target via a simple queuing theoretic
abstraction. IV. SERVICE MEASUREMENT AND ADMISSION CONTROL

. In this section, we develop a more accurate framework for
B. Sketch Algorithm : . X
. _ assessing the workload and service properties of a network path
Here, we approximate a class’ end-to-end service by @ a general traffic and serviemvelopebstraction. Moreover,

M/M/1 queue with an unknown service rate. In particular, age show how such a service inference can be employed within
described above, a packets’s service latency includes delgys edge-based admission control architecture.

from multiple constituent queues. The M/M/1 model abstracts
these resources into a single virtual server with independent Adaptive Measurement of Class Arrival Envelopes

and exponential packets and services as follows. To accurately characterize a class’ resource demands, our
~ Denotinga; andd; as the arrival and departure time of packej ) is to model traffic in a way that 1) exploits the effects of
Js over the lasf” s from the current time¢, the mean arrival rate statistical multiplexing, 2) applies to both large and moderate
IS numbers of flows per class (important in link sharing environ-
Zl(t —T<a;<t) ments), and 3) inC(_)rporate_s temporal correlationin _ageneral and
; tractable way. Using traffic envelopes together with the mea-
A= T (1) surement methodology described below, we achieve these goals
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Fig. 2. Traffic envelope for multiplexed flows.

with (respectively) aggregate measurements, measured pegkently, the variance of the measured envelopes over thépast
and the theory of traffic envelopes. windows of lengtHl” can be computed as
Building on [21] and analogous to [5], we characterize traffic
via aggregate peak-rate envelopes. In particular, to characterize
a flow's rate, an associated interval length must also be speci-
fied. For example, denoting[s, s + I;] as a flow’s arrivals in
the intervals, s + I], Als, s+ Ix]/ I} is the rate in this partic- where R, is the empirical mean of th&"'s, 3, R;*/M.
ular interval. Moreover, the peak rate over any interval of lengtfhus, we measure thariability of the aggregate envelope over
I is given by Ry, = max, Als, s+ Ix]/Ix. We refer to asetof 7. A7 time slots to characterize the variation of the peak rate en-
ratesR;, which bound the flow’s rate over intervals of lendth velope itself over longer time scales.
as a peak rate envelope [17]. To illustrate the properties of the envelopes defined above,
The goal of our measurement methodology is twofold. Firsie provide an example envelope from the simulation experi-
by measuring an envelope of the aggregate flow, we capture fents. Fig. 2(a) depicts a class’ empirical maximal rate enve-
short time scale burstiness of the traffic which we wiill employ)pe normalized to the mean rate. The scenario consists of 50
in resource reservation and admission control. Second, we MeRdtiplexed independent Pareto On—Off sources with on-rate
sure the variation of the aggregate rate envelope to charactejzep/s and parameters as given in Section V. Plotting the peak
measurement errors and longer time scale fluctuations in i3ge R, (normalized) versus the interval length, the figure
traffic characteristics. Using the variance of the measured &kows how the traffic characterization captures the maximum
velope, we can determine the confidence values of our schegistes and durations of the flow’s bursts. For example, for small
|abl|lty condition and estimate the expected fraction of paqu‘ﬁervaJ |engtthk approaches the source’s peak rate, which is
dropped should the schedulability condition fail to hold. about ten times its mean rate. This peak-to-mean ratio is quite
Specifically, we consider time to be slotted with width= |arge and indicates the extreme burstiness of these multiplexed

I, the minimum interval of the measured rate envelope. Thysareto flows. Regardless, for longer interval lengfisrapidly
the maximal rate envelope over the p?EStJme slots from the decreases toward the |Ong term average rate.

1 M .
Ao 2 (B - R (6)

m=1

o2 =

current timet is defined as Similarly, Fig. 2(b) shows the un-normalized peak envelope
1 along with its 99% variation. Observe that such variation of the
Ri=-— max Al(s—k+1)7, s7] (5) maximuntraffic over intervals is relatively moderate indicating
kT t—T+k<s<t . . - .
that high-confidence predictions are viable.
for k = 1, ---, T. Thus, the envelop&l, k& = 1, ---T de- We also note from Fig. 2 that the key temporal characteristics

scribes the aggregate maximal rate envelope over intervalsChfhe flow are revealed from the traffic envelope. For example,
lengthl;, = &+ in the most recerif'r s. This envelope measuredY intervals of 10 ms, the worst case burst rate is reduced to two

the short-time scale burstiness and autocorrelation structurdiges the average rate, significantly reduced from the peak of
the aggregate flow. ten. This means that over all intervals of length 10 ms, the max-

Every T time slotst the current envelopé! is measured imum arrival rate is double the average arrival rate (averaged
using (5) andRz (_,R(rn—l) for k — 1 kT andm — over the entire lifetime of the flow). Similarly, the instantaneous
" . =1, =

2, ---, M. Thus, at each iteration we discard the envelope f8|ea_k Is ten imes the average rate. .
the oldest time window and retain the information embedded in Finally, we note.that n add_mon 10 character_|2|ng the extreme
the most recend? windows, including the current one. Consevalues of the traffic flow which can be exploited for resource
’ allocation, the maximal rate envelope has the desirable property
that the variation of thenaximunrate tends to be less than the
“Guidelines for setting the measurement windbytypically on the order of v2ariance of the flow itself. This is demonstrated analytically in

several seconds, are presented in [21].
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B. Adaptive Measurement of Class Service Envelopes whereY ™ (s, t) denotes the total classiraffic served in time

For a single network node, previous work on measuremerLﬁI?rval [s, t]. The essgntial traffic _has an i.mportant.interpre—
based admission control focused on a scenario characterized@j{Pn: suppose a classpacket arrives at time and is ser-
the following two assumptions. The first assumption is that affced exactly at its delay bountdt- D;. Then Ay, (s, ¢) is the
traffic flows traversing the node are explicitly controlled by thatl@ss# traffic which will be serviced before the claspacket.
node. In other words, the node itself has admitted all flows tdihe essential traffic is a function of the particular service disci-
which it forward packets. The second assumption is that tRin€, and plays a key role in characterizing inter-class resource
multiplexer services packets in first-come first-serve order, SP1NG- , _ _
if multiple traffic classes are supported, isolation among classe2€finition 2 (Available Service)Let A(s, ¢) denote the
is assumed. minimal class: input such that class is continuously back-

In contrast, even in the single node case, we consider the mid@ged in[s, ¢|. The available service of classn [s, ¢ + Di]
general scenario depicted in Fig. 1. In particular, we consider #5e7€fined as the classoutputYy, (s, #) given this minimally
case in which cross traffic also shares the node’s resources.#¢klogging input trafficA’(s, #), and other classes’ input
cross traffic, we do not refer to best-effort flows (which wouldraffic as their essential traffid}, (s, £), n # i.
be isolated from the real-time flows) but rather other real-time Note that the available serviag;, (s, ¢) is a function of the
flows that have been admitted by other nodes, without necégheduling mechanism and the essential trafffg (s, t), n #
sarily having the explicit consent of the traversed node undeMotice further thal’;, (s, ¢) isindependent of the input traffic
discussion. In Section IV-C, we show that this system modef classi; whereas thactualoutput proces¥™ (s, t+D;) is de-
plays a key role in scalable admission control. cided byall classes’ inputs. By using this notion of available ser-

Second, we allow the node to employ any packet service diéee, we decouple clags input traffic A(s, t) from its avail-
cipline and do not require the admission control algorithm @ble servic&’;, (s, t), makingY’, (s, t) a pure description of
have knowledge of which service discipline is being used, navailable network resources, separate from the traffic that is ac-
of the service discipline’s parameters such as priority weightgally sent.

While it may appear that the admission control algorithm can Definition 3 (Statistical Service Envelopef sequence of
easily access this information at a given node, we will showandom variables?, (t) is a statistical service envelope of class
in Section IV-C that removal of this assumption also plays s traffic, if for any interval[s + 1, s +¢], the available service
key role for scalable services. Regardless, we note here thatfe(s + 1, s + t) satisfies

service discipline remains important in quality-of-service pro- - ‘

visioning, as a poorly chosen scheduler will result in lower net- Yp.(s+1, s+1) > Sp.(¢).

work utilization.

Below, we develop a framework for assessing and controlling Using this definition, we showed how to compute statistical
a class'serviceusing measurement based service envelopes. Wfvice envelopes and hence perform admission control for sev-
build on the general abstraction of [22], which uses statistic@la! service disciplines, including weighted fair queueing and
service envelopes to study inter-class resource sharing. ~ static priority [22].

1) Service Definition: To devise a multiclass admission con- Unfortunately, a direct application of this approach to mea-
trol algorithm with controlled statistical sharing across classe®@irement based admission control is not possible. First, while
a theory is needed which can characterize the extent to whifig concept of the service received by a minimally backlogging
classes can be “overbooked,” while limiting inter-class interfeflow is a useful analytical tool, it cannot be efficiently mea-
ence such that all class QoS constraints are satisfied. In [22], $k##€d, as it would require transmitting traffic into the network
introduced such a scheme for multiclass admission control usigthe precise rate that causes packets to be queued: not only
a framework of statistical service envelopes. Such envelopes ¥¢tild this be an additional traffic load, but determination of
be viewed as the statistical analogue of a deterministic “servigys rate itself would be problematic. Second, the approach ex-
curve” [10]. ploits knowledge of the node’s service discipline as well as the

For example, under General Processor Sharing (GPS), a fleharacteristics of other flows being multiplexed at the node. As
with guaranteed ratg has at leasy - ¢ bits serviced in an in- discussed above, this is a problematic assumption for scalable
terval of lengtht during which it is backlogged. This functionmultinode admission control.
g-tis therefore the flow'sninimumservice envelope. However, 2) Measuring Path ServiceHere, we define and show how
the flow may receive a much greater service than due to to adaptively measure a black box’s service envelope. Analo-
fluctuations in the demands of other flows statisticalservice gous to the peak-rate envelope of Section IV-A, this envelope
envelope is therefore a general way to describe this randorfi§scribes the minimum service received by a traffic class as a
fluctuating excess capacity as a function of interval length. fHnction of interval length. We obtain this envelope by mea-
particular, to study inter-class resource sharing, we defined &gting the service received when the class is backlogged, an es-
sential traffic, available service and statistical service envelopé®ate of the ideal service envelope defined above. Moreover,

as follows. we will show how measured variations of this envelope can be
Definition 1 (Essential Traffic): The essential traffic of class Used to quantify the confidence level of the class’ predicted QoS
n with respect to classis defined as values.

Considering a single traffic class to simplify notation, we de-
Ap (s, 1) =A"(s, t+ D)) NY" (s, t+ D;) (7) note thejth packet’s arrival time by; and its departure time by
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Fig. 3. Example flow for service envelope computation.

While indivi o - 0 5 10 15 20 25 30
d;. While individual p_acket delaysl_g a;) are considered, the Interval Leneth (msec)
envelope also describes the service received by the flow over
longer intervals in which the class is backlogged. In Fig. 1's Fig. 4. Service envelope for multiplexed on—off sources.

scenario, we consider a flow to be backlogged whenever it has

at least one packet inside the system. This backlogging condifor example, consider the flow of Fig. 3. For packet 3, two
tion can be easily checked by examining properties of the @erations are performed as two backlogging times are present.
rival and departure sequence. Specifically, a traffic flow is cofor . = 1, we havel/; = max(Uy, d3 — a3). and fork = 2,
tinuously backlogged fok packet transmissions in the intervalye havel/; = max(Us, dy — az) where the subscript 3 df

laj, djtr—1] if represents the combined sizes of packets 3 and 4.
Next, we note that in packet systems, packets are serviced at
djgm > Gjymi1  forall0<m < k-2 (8)  discrete instances rather than continuously over time as in a fluid

. system. As we are considering a packet system, we must ensure
for k 2. 2. No?e that all packet transmissions are backlogged f at the resulting service envelope is an increasing function and
k= 1 in the mtgrv_al[aj, d;]. - . Pence perform a final iteration in whidl;, = max;<; Uy.

This concept is illustrated in Fig. 3 which shows an example Finally, in a manner analogous to the arrival_envelope we
arrival and departure sequence. In the figure, the second pa pute,the empirical mean and variance of the service énve-
arrives into the system after the first packet departs. Hence, 8[5e over successive windows which aids in assessing the con-
the first packet, the backlogging condition is satisfied only qu

T dence level of the service predictions.
k . 1; likewise for t_he second packet. In contrast, for the Fig. 4 shows an example minimum service envelope with
t.h'rd packet, the flow is also bacqugged tor= 2 CONSECU- gq percentile variation from the multinode experiments of Sec-
tive packets as the fourth packet arrives before the service of{ &V In particular, for a link with 10 Mb/s capacity and the
third packet. Similarly, a sequence lof= 3 packets are back- ' !

logged beginning with the arrival of packet 5 and ending Wit}s?]ame 50 Pareto on—off sources as in Fig. 2, the figure depicts

the d A f ket 7. In oth ds. the int ld]i e minimum empirical service versus interval length, that is,
€ departure of packet 7. In other woras, the In eﬂfa@_ 7]is 1 versusU;. For the figure, the Core-Stateless Fair Queuing
a backlogging interval fok = 3. Notice that the sub-intervals

CSFQ) service discipline [25] is employed in the backbone net-

[a5, de] and[ag, d-] are also backlogged fdf,: 2 packets. \(/vork. I\?otice that thepenve[lop]e hasr; rﬁughly convex shape in-
At time ¢, the minimum service envelope’s mean and VarHicating that the serviceate is increasing with interval length.

ance can be measured over the intefvat .Tf’ t] as follows. Moreover, the variation in the envelope’s slope is due to varia-

We express the envelope as a vector of tifiesuch thatl; is tions in available capacity due to the burstiness of other traffic

the maximum tlme reqw_re_d to ser_vmeL bits, WhereL IS the flows. In the following sections, we show how properties of this
number of bits in the minimum sized packet. We initially se

S X . - i dervice envelope can be exploited for scalable admission con-
U = 0 and iteratively compute the final service envelope con-)
sidering all packetd < j < n in the window. '

For packetj, we consider not only the delay of packeit- < admission Control

self, but also longer backlogging intervals. Thus, we update the i ) .
In this section, we develop a class-based admission control

envelope as X .
algorithm for the black box model, and show that the generality
U; = max(U;, djqpn_1 — a;) (9) of the model (in contrast to previous studies of single-node first
come first serve schedulers) enables us to apply it to scalable
where admission control.

Upon arrival of a new flow requesting admission to a partic-
i Z L. (10) ular traffic cle_lss,_ the fol!owin_g test ensures that the class’.r_e-
Jrm quested service is satisfied with what we term a “schedulability
confidence level™: as there is uncertainty in the future arrival
andl, ., is the size of packet + m expressed in unité. For patterns and service fluctuations due to variable rate interfering
a particular packej, all £ > 1 satisfying Inequality (8) are cross traffic, this confidence level quantifies the likelihood that
iteratively considered. the requested service will continue to be provided.
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For simplicity of presentation, we use continuous time natate is not required at any nodes as even egress admission
tation such that for examplé(t) denotes the mean peak rateontrol is class-based.
over intervals of lengtht (as opposed tdz; for intervals of
length; = k7). Moreover, we describe the service envelop®. Resource Sharing, Borrowing, and Stealing

by random variablesi(#) which characterize variation in the  The above admission control tests assess the available service
available service, i.e., variations inversusl/; as depicted in along a path. A key issue for distributed admission control is

Fig. 4. o N _ _the mechanism by which classes interpret this available service
Class Admission Control ConditionConsider a system in \ypen admitting or rejecting new flows.

which a traffic class has a measured maximum arrival envelopea; one extreme, the admission control algorithm can be
with meanR(#) with varianceo®(t). Moreover, let the class’ «greedy” and admit any flow for which there is available
measuQred minimum service envelope have me@hand vari- capacity. In this way, inter-class resource sharing is fully
ancey(t). Finally, consider a flow requesting admission to thgypjoited as a class can borrow unused resources from other
class with peak-rate envelopg). The flow is admissible with |3sses to admit additional flows.

delay boundD and confidence leveb(a) if® However, in certain cases, such borrowing introduces a recip-

FRO 4418 — S (4D 2521 3+ D) <0 (11 .roc.al risk of resource “stealing.”. As_ described in [7], if a mon-
(D) +r(t) = S(t-+ D)+ a/#2(1) + 92(t + D) < 0 (11) itoring class is unable to asses its impact on other classes (e.g.,

for all interval length®) < ¢+ < 7T’, and traversing different paths), it may inadvertently admit new flows
_ and force other classes into QoS violations. This can occur in

lim R(¢)+7r(t) < lim 5(@) (12) certain cases in the egress archi_tecture if additiona_ll mecha_nisms

t—oo tmoo  t are not present. For example, in class based fair queueing, a

with ®(a) = exp(—exp(—(a—\)/§)) and\ andé determined class currently transmitting at less than its guaranteed rate could

as described in the Appendix. admit additional flows, even if other classes are currently “bor-
Thus, we apply this theory to characterize the fluctuations fRWing” this capacity. Consequently, the borrowing flows could

the peak-rate and minimum-service envelope and better predigve this excess bandwidth stolen. _ '

the future service received by the class for a broad class of unAt the other extreme, a class can determine that it does not

derlying traffic and service typés. wish to risk the effects of stealing nor exploit the advantages
For the new flow, the envelope can be simply set to the peik resource borrowing. In this case, simple mechanisms can

rate p such thatr(t) = p. Likewise, for dual-leaky bucket Prevent the aforementioned stealing problem. For example, the

(p, r, b) flows, 7(t) = min(p, (b+ rt)/t). class can perform an additional test that

Consequently, denoting(mn, v) as a Gumbel distribution g A
with means and variances, we have the peak rate over in- lim R(t) 4 r(t) < min lim M (15)
tervals of lengtht converging to t—oo toat—o At

= ) 2 2 In this way, a class can restrict itself to using its true “guar-
Hmax Als, 5 +1] = GHE(E) + (1)), £707(1)). (13) anteed rate” (observe that for class based queueing, this guaran-

Likewise, denoting the service obtained by the class in tfiged rate is simply the slope of the service envelope for stpall

interval[s, s + #] by S[s, s + ], we have and consequently, the class eliminates its risk of having capacity
’ ’ stolen. Thus, within the framework of the egress admission con-
min S[s, s 4 t] — G(S(t), ¥ (t)). (14) trol architecture, different policies can yield different service

models (with and without stealing) and different network uti-

Finally, we utilize the deterministic [10] and statistical [22]izations (with and without interclass resource sharing).
schedulability condition which ensures that arriving packets However, we note that such an inference cannot be obtained
are serviced withinD s. Here, we ensure that the condition isor all schedulers. For example, if the scheduler is Strict Pri-
satisfied for all interval lengths with a confidence level of agrity (not the rate constrained version of Strict Priority) and the
least®(«). Approximating the sum of two Gumbel distributediormer flow is low priority and the latter flow is high priority,
random variables by a Gumbel distributed random variable, thes high priority class issolatedfrom the low priority class, and
admission control test follows. cannot assess the true available bandwidth. Hence, if blindly ap-

Using [21], we can extend this result to estimate each clagsiied to a network of strict priority schedulers, egress admission
packet loss probability in addition to its maximum delay angontrol would encounter a variant of tiséealingproblem de-

service envelope. scribed in [7].
Thus, the approach achieves scalability via simplification
of the backbone routers’ communication, computation, and V. EXPERIMENTAL INVESTIGATIONS

storage overheads. Only egress nodes are required to process

signaling messages and perform admission control. Per-flown this section, we evaluate the performance of the egress ad-
mission control algorithm via a set of simulation and admission
SNote that the first flow must always be admitted to begin the process. gbntrol experiments performed under a wide variety of traffic
individual flows can be too large for this simple approach, probing can achieye: - T }
the same effect [7]. _}ﬁlxes, QoS parameters, service disciplines, and network capac
SWhile all traffic/service models including this one have their limitations, WétIeS and topologles. Itis to be noted here that in the results pre-

evaluate the effectiveness of the model through admission control experimesgnted below we allow borrowing to take place.
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study a number of aspects of admission control, including accu-
racy of the admissible region, statistical multiplexing, admission
control under moderate numbers of traffic flows, inter-class re-
source sharing, gains over a simple pipe model, and the impact
of the network’s service discipline.

In all cases, many simulations are performed and average re-
sults are reported along with 95% confidence intervals where
applicable.

A. Admissible Regions

Here, we compare the network’s admissible regions mea-
sured via simulations with those predicted by the egress admis-
sion control algorithm in a manner analogous to the study of
[16].

For the results depicted in Fig. 6, we consider a scenario in
which both deterministic and statistical services are supported.
Moreover, the network nodes employ CSFQ scheduling [25]
with nodes A, B, A, and B acting as edge nodes and nodes
C and D as core nodes. Each link capacity is 10 Mb/s.

The class receiving deterministic service has 24 constant rate
flows with rate 150 kb/s. For the statistical class, the flows are
Pareto on—off sources with on-rate 64 kb/s, mean on and off

() time 360 ms, and Pareto shape parameter 1.9 (as in [15]). Recall
Fig. 5. Simulation topologies. that a Pareto shape parameter less than 1 results in an infinite
mean while a shape parameter less than 2 results in an infinite
variance.

We study the admissible region of a group of flows obtaining
a statistical service between nodes A and Por background
and cross traffic, we have 22 on-off flows and 22 constant-rate
flows entering from ingress node B and interfering at node
i D. Moreover, we have 24 constant rate flows entering from
node A. In the simulation experiments, the number of on—off
flows obtaining statistical service traversing nodes A-D-C-A
is varied and the resulting quality-of-service parameters are
0.2 - =~ Simulation |1 measured. In the admission control experiments, the number of

— Egress A.C . . . ,
—— Peak-Rate flows requesting statistical service across nodes A-D:GsA
9% 15 20 25 30 35 40 45 again varied, but the resulting quality-of-service parameters are
Delay (msec) computed via the egress admission control algorithm.

The results of the experiments are depicted in Fig. 6. Here,
class utilization is defined as the average capacity used by the
class divided by the average capacity available. Specifically, it

We consider two network topologies as depicted in Fig. & the class’ average bandwidth divided by the average idle ca-
The first is depicted in Fig. 5(a) and consists of six nodes eaphcity of link D-C, which is link D-C’s bandwidth (10 Mb/s)
with link capacity 1.5 Mb/s or 10 Mb/s, depending on the exninus the mean rates of all other flows. Thus, the class utiliza-
periment. The second topology is derived from the UUNet U.8Bon reflects the ability of a class to exploit the available re-
backbone, except that for simulation efficiency, we consider lirdources along the path. The figure shows this class utilization
speeds of 10 Mb/s and do not consider all paths of the true bagkfsus the delay of the class in consideration: packets meet this
bone. Packet sizes are fixed to 1 kB and all propagation delalalay bound with average probability 0.9999 as measured or
are 1 ms. Moreover, all experiments have at least two servicemputed using admission control for the respective curves.
classes and traffic types present in the network. For traffic typeswWe make the following two observations regarding the
we consider Pareto on—off sources which even in aggregate, figure. First, both the simulation and egress admission control
hibit highly bursty characteristics; we also consider constant raterves are significantly above the curve for peak rate alloca-
sources. tion. This indicates that even for these long range dependent

For service classes, we consider both deterministic servicdiaffic flows traversing multiple nodes, significant statistical
which capacity is allocated via peak rate reservation, and stadltiplexing gains are available. Second, we observe that the
tistical service which we provision via egress admission corgress admission control algorithm is able to exploit a large
trol. By considering various mixes of traffic and services, wiaction of this gain. For example, by a delay bound of 30 ms,

Class Utilization

Fig. 6. Simulated and predicted admissible regions (10 Mb/s links).
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the egress algorithm admits a sufficient number of flows to 1

utilize the system to 75% average utilization, within 5% of the

maximum utilization achievable in simulations. 0.8 3
In the next experiments, we consider a scenario similar to that g

of Fig. 6, but with a link capacity of 1.5 Mb/s and the on—off gos

sources having a peak rate of 32 kb/s. While the egress admis- ;5

sion control algorithm is targeted toward high-speed links sup- %04 p

porting many flows, this scenario illustrates an important aspect O L

of realistic systems: while a node may support a large number 02 o~ Smulation |1

of flows in aggregate, if there are many traffic classes and many — Egress A.C

virtual private networks supported, a particular class may have a o—— —— Peak-Rate

relatively moderate capacity allocated to it. Consequently, large 40 50 Delay (nGlgec) 0 80

statistical multiplexing gains may not be available, and cen-
tral-limit-theorem based algorithms may not be applicable (see Fig. 7. Simulated and predicted admissible regions (1.5 Mb/s links).
[21] for further discussion of such scenarios).

Fig. 7 shows the results for this scenario. As shown, the avail- 1
able statistical multiplexing gains are lower in these experi-
ments, with both the simulation and egress admission control 0.8f
curves indicating lower utilizations than in Fig. 6. Regardless, -
the figure indicates that the admission control algorithm is still '§0.6
able to control the admissible region within a range quite close %
to the measured one. 204l
Finally, the simulation results depicted in Fig. 8 are obtained é ‘
using the UUNet topology. Specifically, we consider the
Houston-Toronto path via Atlanta and Chicago, with Pareto 0.2 ~=- Simulation | |
on-off sources having a peak rate of 64 kb/s. Moreover, 15 con- i EgrissRAC
stant rate flows with rate 50 kb/s have the same ingress—egress 9 0 30 m 50 eZo_ ate 20
pair. Cross traffic consists of nine additional ingress—egress Delay (msec)

pairs with each pair having deterministic and statistical classes.
Deterministic classes consist of 15 to 25 constant rate flof§- 8. Simulated and predicted admissible regions (UUNet topology).
and statistical classes consist of 20 Pareto on—off sources.

The key features of the scenario is that the traffic class of ine allocate a fixed capacity to each class and compute the max-
terest now represents a significantly smaller fraction of the totahum number of admissible flows: points on the curve represent
traffic. Thus, not only does cross traffic dominate, but the croglifferent allocations to each class. For example with thirty class
traffic itself traverses multiple hops, becomes distorted, and ih-flows and no class 2 flows, 100% of the available capacity
terferes at various points. The figure depicts a set of results foe., a pipe of rate 1.5 Mb/s) is allocated to class 1 traffic. Class
the Houston-Toronto flows and illustrates that even under tHigs then able to admit no more than thirty flows while satisfying
more complex scenario, the service envelope has inferred the required deterministic service. Similarly, if each class is allo-
available resources to a sufficient degree of accuracy to conttated a bandwidth of 750 kb/s, 15 class 1 flows can be admitted

the admissible region. while 36 class 2 flows can be admitted. Clearly, under equal al-
_ location, the number of admissible class 2 flows is larger than
B. Inter-Class Resource Sharing that of class 1, as class 2 exploits statistical multiplexing. How-

Here, we investigate the algorithm’s ability to exploit gain§Ver, class 2 doesot exploit unused capacity of class 1 under
from inter-class resource sharing. In particular, we compare the pipe model.
egress admission control algorithm with a simple “pipe” model In contrast, the egress admission control algorithm exploits
in which each traffic class is pre-allocated a certain bandwidte effects of inter-class resource sharing and consequently ob-
and classes perform admission control independently. (We ré@ins a significantly larger admissible region. Specifically, the
erate that there are further limitations to the pipe model such@@ €ss router measures the available service for class 2 as sig-
how to set the pipes’ rates in the first place. We point interestgicantly larger than the corresponding pipe, due to variations
readers to [12] and limit our discussion to inter-class resourtkclass 1's aggregate rate. Under egress admission control, class
sharing.) 2 exploits this available capacity and admits a larger number of
We consider 0n|y on—off flows and both deterministic (C|a§§aﬁic flows. For example, with a 60/40 class a”ocation, the uti-
1) and statistical (class 2) service classes with the latter digation under the pipe model is 44%, while it is 75% for egress
taining a delay bound of 100 ms again with probability 0.999@dmission control.
Class 1 flows are exponential on—off sources with mean onand _ i
off times of 500 ms and on-rate 50 kb/s. Class 2 flows are ag&mn Fair Queueing and Guaranteed Rates
Pareto on—off sources with mean on and off times of 360 msin this set of experiments, we show a number of empirical
and on-rate 32 kb/s. To obtain the “pipe model” curve in Fig. $ervice envelopes to illustrate several aspects of the egress ad-
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Fig. 9. Admissible regions for deterministic and statistical services.
Fig. 10. Empirical and guaranteed service rates.
mission control algorithm. We consider the same scenario as 1
above with the exception that all routers schedule packets ac- "
cording to the Deficit Round Robin (DRR) algorithm [24] rather 0k /
than CSFQ, thus eliminating any envelope variations due to the - //
core-stateless approximation of fair queueing. So0.6. //
The lower curve of Fig. 10 depicts the minimum guaranteed § :
service envelope under DRR, a linear function as described 5 // /
in Section IV-B. The upper curves depict the mean and 99th 504 V74 /
percgntlle of the measqred minimum service envelope over the 02 . Simulation
duration of the simulation. This illustrates the mechanism by - —— Egress A.C.
which egress admission control exploits inter-class resource —— Baseline
sharin_g_: an increase in the measure_d service_ envelope_ apove 00 10 20 30 40 50
the minimum rate corresponds to an increase in the admissible Delay (msec)
region.

Fig. 11. Comparison with baseline scheme.

D. Comparison with Baseline Scheme ] ] ) )
and signaling demands of such architectures remains an open
Finally, we compare the egress algorithm with the base“'@r?;lestion.
scheme of Section lil. For this purpose, we consider a singlegyr approach is also related to recent advances in core-state-
node with link capacity 1.5 Mb/s and DRR scheduling. less admission control [26] and scheduling [1], [25] in which
Fig. ;1 shows the results_ for a single statistical class and @Hge routers perform per-flow management but core routers do
ponential on—off sources with on-rate 64 kb/s and mean on afgk |n particular, a technique termed “Dynamic Packet State”
off time 360 ms. The figure indicates that while egress admig:jntroduced in [26] to provide guaranteed service in this sce-
sion control attains an admissible region within 8% of the simy,rio: by having ingress routers insert information into packet
ulated region, the baseline scheme is significantly less accurgigders. deterministic QoS guarantees are provided over a scal-
with errors above 25%. This indicates that both the architectug|e network core which does not maintain per-flow state nor
and envelope-based algorithm are important for achieving Scﬁé'rform per-flow packet scheduling, i.e., the core network is
ability and accurate traffic control. scalable in both the control plane and data plane. In contrast, our
approach for egress admission control providstatisticalser-
vice rather than a deterministic one: beyond the obvious tradeoff
of increased utilization for weaker QoS guarantees, this has sev-
Here, we discuss related work in addition to the aforemearal importantimplications. Specifically, by focusing on a statis-
tioned studies of measurement-based admission control.  tical service we are able to relax several necessary assumptions
Scalability of QoS management techniques has receivef26]. First, we do not require core nodes to process resource
significant attention and indeed partially motivatddfserv reservation messages as only egress routers are involved in ad-
solutions [4], [11]. Such architectures offer scalability bynission control. Second, while sophisticated core-stateless ser-
offering a small number of traffic classes and provisioningice disciplines such as CSFQ [25], CEDF [1], or Jitter-VC [26]
resources via slow-time-scale service level agreements. In coan improve the system’s performance, we do not require them:
trast, our approach is able to make stronger quality-of-servibackbone routers can employ simple class-based fair queueing.
statements without over-provisioning by operating at the “flowhird, route pinning, a key ingredient for guaranteed service, is
time-scale,” yet without maintaining per-flow state. Similarlypnot fundamentally required in our approach as service variations
aggregation and hierarchy have been proposed as mechanidugsto route fluctuations could be incorporated into the egress
to scale intsery, e.g., [2], [20]. However, the utilization cost®uter’s service envelope. Finally, as our service is a class-based

VI. RELATED WORK
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one, egress routers perform admission control for traffic aggreven if Xy, X,, --- aredependentfor most correlation struc-
gates, and do not need to store or monitor per-flow traffic cotures and the same class of distributions above, the asymptotic

ditions.
Finally, several schemes have recently been developed in
which end hosts probe the network, assess the performance
properties of the probes, and admit or reject the flow accord-[l]
ingly [3], [7], [13]. Such schemes have the advantage that
no network control is required and all QoS functionality is
performed by hosts. However, since Egress Admission Controf?
performs control at edge routers rather than hosts, passive)
monitoring of aggregated traffic significantly reduces flow
setup times from several seconds of probing to the round trip4]
time incurred by the setup message. Similarly, by monitoring
aggregate traffic, a higher confidence level of future perfor- [5]
mance is achieved due to collection of many samples at a router
versus far fewer samples at the host. 6]

VII. CONCLUSIONS [7]

This work addresses how to support the demanding
quality-of-service requirements of real-time multimedia flows (g
in a scalable way, without sacrificing utilization or weakening
the service model. We developed an approach terBEwgdss
Admission Controin which all admission control decisions are
made at egress routers alone, without any signaling or coordingto]
tion of state among other egress nodes or backbone nodes. Our
key technique is to develop a framework for admission contro[ll]
under a generic “black-box” model, controlling the system
via inferences on the system’s arrival and service envelopefl.z]
We conclude that egress admission control offers a scalable
alternative to traditional quality-of-service provisioning as it
can effectively control the network’s admissible region without
fine grained flow-by-flow and node-by-node management.

[9]

(13]

APPENDIX (14]

BACKGROUND ON EXTREME VALUE THEORY

To describe the formulation of the egress admission contrdf®!
algorithm, we provide background on extreme value theory as

follows. Consider a sequencé;, X», --- of independent and [16]
identically distributed random variables with distributibi(z ). [17]
The maximum of» X; has distribution
r < max X; < x) = F™(x). [18]
1<i<n
- [19]

Extreme value theory addresses the asymptotic distributioEO]
of max;<;<, X;: analogous to how the central limit theorem
describes the distribution of sums of random variables without
requiring knowledge of their exact underlying distributions, ex-[21]
treme value theory describes the distribution of éxtremes |5
of sequences of random variables for a general class of under-
lying distributions. In particular, for a large class of distributions[zs]
F(z), including Gaussian, exponential, log-normal, Gamma,
Gumbel, and Raleigh distributions,

x—A
i P < = — —
nlgr;o P <11£%Xn X; < a:) exp { exp < 5 )}

whereexp[— exp(—(z — A)/6)] is a Gumbel distribution with
meary, = A+0.577 726, and variance? = 7262 /6. Moreover,

[24]

(25]

distribution of P(maxi <;<, X; < z) is still Gumbel [8].
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